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Abstract
Background: Lower respiratory tract infections continue to exact unacceptable worldwide mortality, often because 
the infecting pathogen cannot be identified. The respiratory epithelia provide protection from pneumonias through 
organism-specific generation of antimicrobial products, offering potential insight into the identity of infecting 
pathogens. This study assesses the capacity of the host gene expression response to infection to predict the presence 
and identity of lower respiratory pathogens without reliance on culture data.

Methods: Mice were inhalationally challenged with S. pneumoniae, P. aeruginosa, A. fumigatus or saline prior to whole 
genome gene expression microarray analysis of their pulmonary parenchyma. Characteristic gene expression patterns 
for each condition were identified, allowing the derivation of prediction rules for each pathogen. After confirming the 
predictive capacity of gene expression data in blinded challenges, a computerized algorithm was devised to predict 
the infectious conditions of subsequent subjects.

Results: We observed robust, pathogen-specific gene expression patterns as early as 2 h after infection. Use of an 
algorithmic decision tree revealed 94.4% diagnostic accuracy when discerning the presence of bacterial infection. The 
model subsequently differentiated between bacterial pathogens with 71.4% accuracy and between non-bacterial 
conditions with 70.0% accuracy, both far exceeding the expected diagnostic yield of standard culture-based 
bronchoscopy with bronchoalveolar lavage.

Conclusions: These data substantiate the specificity of the pulmonary innate immune response and support the 
feasibility of a gene expression-based clinical tool for pneumonia diagnosis.

Background
Pneumonias result in substantial mortality, causing more
premature death and disability worldwide than any other
disease [1]. Unfortunately, while patient survival depends
upon the rapid identification of infecting pathogens [2],
the means for prompt and accurate diagnoses of pulmo-
nary infections remain inadequate.

Despite widespread acceptance as the diagnostic tool of
choice for unexplained pulmonary infiltrates [3-5],
fiberoptic bronchoscopy with bronchoalveolar lavage
(BAL) provides an unambiguous diagnosis in only 25-

51% of cases [2,4,6-9]. The diagnostic utility of BAL is
predicated on culturing pathogens from lavage effluent,
without accounting for ongoing antibiotic therapy, non-
pathogenic microbial colonization, or the technical chal-
lenge of navigating the bronchoscope into involved air-
ways. Molecular techniques, such as antigen detection
and polymerase chain reaction (PCR) testing, enhance
BAL sensitivity for a subset of pathogens, but still often
fail to explain infiltrates [7].

Often regarded as passive gas exchange barriers, the
active responses of the lungs are critical to protection
from infections. In the presence of inflammatory stimuli,
the respiratory epithelia rapidly recruit inflammatory
cells and undergo remarkable structural and functional
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changes [10-13], including the release of pathogen-spe-
cific antimicrobial products [14-16].

Even in the absence of an adaptive immune system,
lower metazoans like Drosophila melanogaster selectively
respond to different classes of microorganisms following
pathogen detection with conserved pattern recognition
receptors [17,18]. Similarly, stereotyped pathogen-spe-
cific host innate immune responses are also observed
from human dendritic cells [19], human monocytic cells
[20-24], human endothelial cells [25], murine microglial
cells [26], and murine jejunal epithelial cells [27]. Based
upon these multiply observed tailored responses and the
inflammatory capacity of pulmonary epithelium [12,28],
we hypothesized that the lungs also respond selectively to
different pathogens. In order to pursue the potential to
achieve superior diagnostic utility in a timely manner, we
interrogated this selective response to determine the eti-
ology of pneumonias without reliance on culture data.

Methods
Animals and reagents
Unless otherwise specified, reagents were obtained from
Sigma (St Louis, MO). All experiments were approved by
the M. D. Anderson Cancer Center Institutional Animal
Care and Use Committee. Specific pathogen free BALB/c
mice were purchased from Harlan (Indianapolis, IN) and
used in experiments at five to eight weeks old.

Infection Model
To achieve simultaneous exposure of large numbers of
mice to respiratory pathogens, mice were placed in a neb-
ulization chamber that was sealed except for an efflux
limb that vented to a low resistance filter in a biohazard
hood. An AeroMist CA-209 compressed gas nebulizer
(CIS-US, Inc., Bedford, MA) was used to aerosolize
pathogen suspensions, driven by 10 L/min of room air
and supplemented with 5% CO2 to promote maximal ven-
tilation and homogeneous exposure throughout the
lungs, as we have previously described [29-32]. While it is
conceivable that exposure of mice to increased inspired
CO2 concentrations might alter gene expression, our
experience supports prior reports that this promotes
pathogen deposition in the lungs [33,34], and our strategy
involves differential gene expression analysis where all
mice are exposed to the same CO2 environment, thus no
differential effects should be detected.

Organisms
For bacterial pathogens, the inocula were targeted to an
LD75 by 48 h after infection. After growth to log phase,
Streptococcus pneumoniae serotype 4, and Pseudomonas
aeruginosa strain PA103 were each suspended in phos-
phate buffered saline (PBS) and delivered by aerosol. A
standardized nebulization of 10 ml pathogen suspension

over one hour to achieve the desired lethality required
concentrations of approximately 1 × 1010 CFU/per ml S.
pneumoniae and approximately 1 × 1011 CFU/ml of P.
aeruginosa, as we have previously described [29,31].

Because Aspergillus fumigatus is not lethal in non-
immunosuppressed BALB/c mice, we delivered the maxi-
mal reproducible concentration of organisms as limited
by viscosity. This dose was 1 × 109 conidia/ml, as deter-
mined using a standard hemacytometer. Conidia of strain
Af293 were stored as frozen stock (1 × 109 conidia/ml) in
20% glycerol in PBS. One ml of stock was plated on yeast
extract agar plates at 37°C in 5% CO2 for 3 days, then har-
vested by gentle scraping in PBS containing 0.1% Tween-
20, and the suspension was filtered through 40 μm filters,
centrifuged at 2,500 × g for 10 min, washed, resuspended
in 10 ml PBS and aerosolized over 60 min, identical to the
bacterial infections. To confirm both pulmonary deposi-
tion and infective capacity of the pathogen, additional
mice were challenged with the same A. fumigatus proto-
col with or without prior cyclophosphamide and cortisol
immunosuppression, as previously described [31].

A sham intervention group was treated with 10 ml PBS
nebulized over 60 min under the same conditions used
for infectious challenges.

Cytokine response to pathogen challenge
At designated time points after infection, mice were anes-
thetized and their tracheas were exposed. BAL was per-
formed and lavage effluent cytokine concentrations were
determined by ELISA, as described [29,30].

Gene expression analysis
At designated time points after infection, gene expression
microarray analysis was performed on lung homogenates
from mice after challenge following leukoreduction by
repeated BAL and vascular perfusion with sterile PBS
[31,32]. Lungs were excised and homogenized, total RNA
was extracted, and amplified cRNA was hybridized to
Illumina Sentrix Mouse-6 BeadChips (Illumina, Inc., San
Diego, CA). All primary data were deposited at the NCBI
Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/
geo/, accession GSE15869) consistent with MIAME stan-
dards (see Additional File 1).

Blinded challenges
To test the predictive ability of the gene expression data,
three blinded investigators (SEE, MJT, BFD) were inde-
pendently challenged to identify the infectious conditions
based on gene expression patterns without reliance on
culture data. After identifying characteristic changes for
each condition in the gene expression analysis, the inves-
tigators were provided the data from only six transcripts
that were each believed to be uniquely altered by one of
the potential infectious conditions. In order to identify
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potentially discriminating transcripts and to assign cutoff
values for a diagnostic panel we used two approaches.
First, after confirming that there was no overlap of signal
intensity between 2 standard deviations below a differen-
tially upregulated gene and 2 standard deviations above
the next highest condition for that transcript, we assigned
a cutoff value for a positive test at 1 standard deviation
below the mean signal intensity for the transcript in ques-
tion. As a second approach, we created receiver operating
characteristic (ROC) curves for each potentially discrimi-
nating transcript, selected from the list of differentially
expressed genes. Two potentially predictive genes for
each of the three infections were hand-selected for the
panel, and the investigators were instructed to predict the
pathogen based on the prestated rules (Additional File 2).
Investigators were instructed to infer that a sample was
from the sham group if the values did not meet criteria
for one of the infections.

Computer Algorithm
A computer algorithm was devised to automate the pre-
diction of infecting organisms, based on the 18 h
microarray data described above. The predictive model is
a decision tree, with the first branch a decision between
lungs infected with a bacterial pathogen and those not
infected with bacteria. The sequential decisions are
between S. pneumoniae and P. aeruginosa in the bacteria
branch and between A. fumigatus and sham in the non-
bacterial branch. Transcripts with predictive power to
discern between branches were identified by fitting a lin-
ear model for each transcript, then the infectious condi-
tion of each blinded sample was sequentially predicted
based on the expression of 1 to 21 discrete transcripts,
with each transcript "voting" for one side of the decision
tree (e.g., predicting either "bacterial" or "not bacterial").
To avoid ties when using majority vote rule, only odd
numbers of predictor genes were allowed (see Additional
File 1).

Results
Infectious pneumonia model
Consistent with our prior observations [29-31], our bac-
terial pneumonia model yielded highly reproducible mor-
tality (Figure 1A). No mortality was observed following
fungal challenges or sham treatment. We confirmed
delivery of infective conidia through the observation of
highly reproducible mortality at the same inoculum for
immunosuppressed mice (Figure 1B), and serial dilution
culture of lung homogenates showed deposition of
approximately 3 × 106 conidia per A. fumigatus-chal-
lenged mouse.

Proteomic comparison
We initially suspected that lung cytokine responses to dif-
ferent pathogens might be diagnostically predictive. To

test this, we compared the BAL concentration of 16
inflammatory cytokines by ELISA (Additional File 3) to
determine whether this approach would be allow discern-
ment of the conditions. Representative examples of IFN-
γ, TNF-α, IL-6, and CCL-17 are shown in Figure 2 to be
strongly induced by P. aeruginosa infection, with lesser
induction by other infections. No cytokines were
uniquely induced by any other pathogen.

Infection-induced gene expression changes
Since the protein-level cytokine response only differenti-
ated P. aeruginosa from the other conditions, we interro-
gated the transcriptional response of differently infected
lungs. Gene expression differences emerged very early
after infection. Using an extremely rigorous false discov-
ery rate (FDR) < 1 × 10-7, we identified 20 differentially
expressed genes (DEGs) at our earliest investigated time
point, 2 h after challenge. By 6 h after challenge, this
number had increased to 4,274 DEGs, nearly 10% of the
45,992 oligonucleotides probed. By unsupervised cluster-
ing, the samples tended to assemble themselves into con-
dition-specific groups even at this early time point, with
grossly recognizable patterns already developing (Figure
3B).

Over the course of 12 to 18 h, the total number of DEGs
at FDR of 1 × 10-7 decreased to 367, but even greater con-
dition-specific clustering was observed than at 6 h. Of
these 367 DEGs, 179 were differentially expressed at both
6 h and 18 h time points. Notably, while the total number
of DEGs decreased over time, the average fold-change of
the remaining DEGs was generally increased.

Figure 3B demonstrates the temporal effect on gene
expression in this model. The 30 most strongly differen-
tially expressed genes at 18 h were analyzed at earlier
time points, revealing progressive intensification of the
gene expression patterns. Of these 30 DEGs, 18 were also
differentially expressed at 6 h.

Condition-specific transcripts
By 18 h after challenge, unsupervised clustering resulted
in all of the specimens correctly segregating themselves
by pathogen (Figure 4A). After identifying patterns asso-
ciated with each infectious condition, we focused on indi-
vidual transcripts with each condition. The 367 DEGs at
18 h were sorted according to pathogen specificity (Fig-
ure 4B). Not surprisingly, the two conditions that caused
mortality induced more gene expression changes than did
A. fumigatus. However, each condition induced unique
changes, and by lessening the FDR requirements, these
numbers further increase.

Manual review of the 367 DEGs identified unique tran-
script changes for each pathogen that were included in a
predictive panel. Strategies using either the magnitude of
differential expression or ROC curve performance were
equally efficacious for defining the prediction rule cut-off
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values. As shown in Additional File 4, each included tran-
script yielded a cutoff that achieved 100% sensitivity and
100% specificity in the 18 h training set (i.e., area under
the ROC curve = 1.0). Additional Files 2 and 5 show the
panel of transcripts, the prediction rules, the data pro-
vided to the blinded investigators, and their predictions.
Blinded review of 18 samples at 18 h after infection
resulted in 100% correct categorization of infectious con-
ditions for all three reviewers.

When we applied these prediction rules to 18 unique
samples from a validation dataset, however, the predic-
tion accuracy dropped to only 44.4%. As shown in Addi-
tional File 6, Additional File 7 and Additional File 8, there
was congruity of the blinded investigators insofar as sam-
ples were most often either correctly predicted by all
three investigators or incorrectly predicted by all three
investigators. No statistically significant patterns
emerged among the incorrect predictions.

Computerized prediction of infectious conditions
Since a small panel of hand selected transcripts predicted
infectious conditions as well or better than traditional
cultures historically perform, we sought to automate the
process of prediction. We devised a multiply branching
decision tree algorithm that first separated bacterial
infections (S. pneumoniae and P. aeruginosa) from non-
bacterial conditions (A. fumigatus and sham). We identi-
fied 4,799 transcripts from the training set that could dis-

Figure 1 Survival following infectious challenges. (A) Using an experimental model of inhalational pneumonia in BALB/c mice, P. aeruginosa and 
S. pneumoniae both induced consistent mortality >80%, while mice challenged with A. fumigatus or PBS (sham) had 100% survival. (B) Mice treated 
with cyclophosphamide and cortisol prior to infection also consistently succumbed to A. fumigatus challenge, substantiating the effective delivery of 
pathogens to the mice (N = 10 mice/group, *p = 0.0007 vs. A. fumigatus, **p = 0.0001 vs. A. fumigatus, †p < 0.0001 vs. A. fumigatus).
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tinguish these two groups. Using our predetermined
criteria for predictor transcripts, we found that Ccl4
(chemokine C-C motif ligand 4) performed most
robustly, correctly classifying all training set samples as
bacteria or non-bacteria. We also found individual tran-
scripts with very high predictive accuracy for subsequent
branches of the decision tree. Ccl3 (chemokine C-C motif
ligand 3) expression always separated S. pneumoniae
infection from P. aeruginosa in the training set. A single
gene, Ttn (titin), discriminated between A. fumigatus and
sham in 90% of the samples, reflecting all but one sample
accurately categorized by the transcript. Notably, the
sham sample that was inaccurately categorized as A.
fumigatus by Ttn was also predicted to be A. fumigatus
using multiple other transcripts, and inspection of the
overall gene expression profile appeared more consistent
with A. fumigatus than sham. This raises the possibility

that the mouse was inadvertently or incidentally infected
with fungus. If true, the Ttn-based categorization would
be 100% correct for this branch point, as well.

After identifying the most discriminant transcripts
from the training set, we tested the 18 h predictor genes
at other time points. Gene expression data from lungs 2
h, 6 h, and 12 h after infection were combined into a sin-
gle group, then infectious predictions were made accord-
ing to the algorithm. As described in Additional File 1, we
used increasing odd numbers of "voting" transcripts up to
21. The prediction accuracy for discriminating bacterial
infections from non-bacterial conditions was 78% for 2 h
specimens, 100% for 6 h specimens, and 89% for 12 h
specimens using 15 transcripts as predictors (Figure 5A).
Performance of the model appeared to stabilize around
15 "voting" transcripts per branch point, with only a
modest increase to 83% accuracy at 2 h using 21 predic-

Figure 3 Early development of infection-specific transcription profiles. (A) Six hours after challenge with P. aeruginosa, S. pneumoniae, A. fumig-
atus or PBS (sham), lungs were removed and submitted to microarray analysis, and a heatmap was generated with green indicating decreased gene 
expression and red indicating increased gene expression. At this time, 4,274 genes were highly differentially expressed (FDR< 1 × 10-7), and by unsu-
pervised clustering, most samples self-segregated by challenge. (N = 6 sham infected mice, 8 mice for each infection.) (B) The 30 genes that were 
most strongly differentially expressed at 18 h after infection were examined at earlier time points, demonstrating the increasing clarity of the differ-
ential pattern. (N = 6 sham infected mice, 4 mice for each infection.)
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tors. There were no changes in the other time points with
more than 15 predictors. The accuracy of diagnoses pre-
dicted by the second branch point was 50%, 30%, 55% and
95% for the 2, 6, 12, and 18 h specimens using 15 predic-
tors, respectively.

The decision tree model was then tested against a
unique (validation) set of gene expression data from lung
homogenates collected 18 h after challenge. Using the
same algorithm, the correct prediction of bacterial vs.
non-bacterial status was made with 89% accuracy with 15
predictor genes and with 94.4% accuracy with 21 predic-
tors (Figure 5B). Discrimination of S. pneumoniae vs. P.
aeruginosa and of A. fumigatus vs. sham was achieved
with >70% accuracy (Figure 5C and 5D). We again found
that increasing the number of "voting" transcripts
improved accuracy, with stabilization around 15 tran-
scripts. The effect of adding additional predictor tran-
scripts was minimal for separating the bacterial
conditions from each other, but increasing from 3 to 15
transcripts correctly reclassified several samples from A.
fumigatus to sham.

Discussion
The informative value of host responses is increasingly
recognized to differentiate between clinically confound-
ing conditions [35]. Markers of generic inflammation
have been used for decades to hint at the presence of
inflammatory and infectious diseases [36,37]. More
recently, host response elements have been studied to aid
identification of life-threatening diseases, such as sTREM
and procalcitonin in respiratory infections and sepsis [38-
41]. Efforts are underway to characterize pulmonary con-
ditions as diverse as interstitial lung diseases, pulmonary
vascular diseases and asthma based on gene expression
analysis [42-46]. Diagnostic host responses to Mycobacte-
rium tuberculosis, are increasingly described [47-49]. Dif-
ferential gene expression has been reported in the lungs
following different infections [50] and gene expression
profiling of leukocytes has been proposed to provide
prognostic insights in the setting of lung infection [51].
However, to the best of our knowledge, this report is the
first to describe a means of identifying etiologic agents of
infectious pneumonia based solely on the host gene
expression response.

Figure 4 Differential gene expression 18 hours after infectious challenge. (A) A heatmap shows the expression patterns of 367 DEGs after inha-
lational challenge with P. aeruginosa, S. pneumoniae, A. fumigatus or PBS (sham). By unsupervised clustering, the samples all correctly segregate them-
selves by condition. (B) A Venn diagram indicates the striking specificity of these expression patterns, with <10% of DEGs induced or repressed by 
more than one condition.
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Because of the potential ease of sampling and abun-
dance, we first sought to discriminate between infectious
conditions based on BAL cytokine levels. Using a panel of
16 cytokines, P. aeruginosa-infected mice were consis-
tently differentiated from the other three conditions. This
is consistent with the recent report of McConnell and
colleagues who found that a panel of 18 cytokines could
discriminate P. aeruginosa-from S. pneumoniae-infected
mice [52]. However, while we identified a robust cytokine
signature for one pathogen, we were unable to discern
between the non-pseudomonal conditions by that
method. Further proteomic analysis for non-cytokine
host response elements may discriminate between the
conditions, but our prior experience resolving low abun-
dance peptides from BAL fluid [29] suggests that the
technical challenges would offset the enhanced diagnos-
tic capacity. Therefore, we elected to investigate host
response specificity using gene expression analysis.

Our gene expression data suggest that host responses
are sufficiently specific to discriminate between condi-
tions that may be indistinguishable, such as different

infectious pneumonias. While there appears to be a mod-
est early peak of non-specific inflammation, we were sur-
prised to identify such efficient discrimination by as early
as 2 h after challenge. By 6 h after challenge, there was a
robust response that waned in number of DEGs by 12 h,
but clearly increased in signal amplitude of the persisting
transcript changes. This durable signal increased to the
18 h time point and allowed for consistent blinded diag-
noses. Remarkably, fewer than 10% of the 367 DEGs at 18
h were induced by more than one infectious condition
(none by all three). Further, we found no evidence that
the different infections simply induced the same gene
expression patterns at different paces, rather each condi-
tion resulted in a unique gene expression profile. These
findings attest to the high specificity of the host response.
While the number of Aspergillus-regulated transcripts
was low compared to the bacteria-induced DEGs, these
findings are consistent with the finding of DeGregorio, et
al. [53], and of Huang, et al. [19], when investigating fun-
gus-induced gene expression in Drosophila and in human
dendritic cells, respectively. Based on these results, we
hypothesize that human lung gene expression patterns on
clinical biopsy specimens will demonstrate similar speci-
ficity.

In order to systematize the otherwise subjective pro-
cess of pattern-identification and to automate the process
for efficiency, we devised a computerized algorithm to
test whether gene expression data could predict subjects'
infectious states. From a practical perspective, this strat-
egy allowed simultaneous assessment of massive num-
bers of transcript permutations. More importantly, it
provided diagnostic accuracy far better than that typically
encountered clinically with traditional culture-based
diagnostic strategies, and outperformed diagnostic pre-
dictions based on gene expression of hand selected tran-
scripts.

The algorithm was intentionally structured as a deci-
sion tree. This allows for determination of the most rele-
vant questions first, for sequentially increasing
refinement of answers, and for the flexibility to add new
branch points. In this case, based differences in available
treatment options, we felt the most clinically important
issue was to differentiate subjects with bacterial pneumo-
nia from those without bacterial pneumonia. The pro-
gram provided great accuracy in answering this question.
The model was also robust for the secondary questions,
though less so.

Typical of preliminary investigations, these data have
limitations to their generalizability. Comparison of three
organisms from different pathologic classes makes it
impossible to know whether the effects observed are spe-
cies-specific or broader effects of the group. This will be
assessed in future comparisons to other members of the
same classes. By design, the decision tree algorithm

Figure 5 Diagnostic accuracy of computerized gene expression 
interrogation. Mice were exposed to one of four potential infectious 
conditions, then gene expression profiling was performed at designat-
ed time points after the challenge. (A) Diagnostic accuracy of algorith-
mic predictions of whether or not different mice were infected with 
bacteria, based on the time after infection and the number of tran-
scripts used in the prediction model. (B-D) Rules derived from initial 18 
h experiments were used to predict the infectious conditions of differ-
ent mice 18 h after challenge in a separate validation set, based on 
number of transcripts in the algorithm. (B) Prediction accuracy for dis-
criminating bacteria vs. non-bacteria. (C) Prediction accuracy for dis-
criminating S. pneumoniae infection from P. aeruginosa infection. (D) 
Prediction accuracy for discriminating A. fumigatus from sham infec-
tion.
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allows for exactly this type of modification. It is also pos-
sible that some of the gene expression changes observed
in the A. fumigatus-infected animals may represent the
effects of their immunosuppression. Given the clinical
focus of our cancer center, future studies of potential
drug effects will be a high priority.

Another advantage of interrogating gene expression
profiles in suspected pneumonia is that it allows some-
what compartmentalized analyses of different cellular
elements of the host response. Because the lungs were
leukoreduced by bronchoalveolar lavage and vascular
perfusion, the data presented here largely reflect
responses of the epithelium. Expression patterns from
simultaneously harvested alveolar macrophages will be
separately analyzed and presented. Although the cellular
purity is incomplete, this approach may be viewed as a
preliminary model of the clinical situation where RNA
can be separately obtained from epithelial cells by brush-
ing and from alveolar macrophages by BAL. Such discrete
analyses may be applied to identifying etiologies of other
pulmonary condition, as well.

It could be argued that the samples were harvested
sooner after initiation of infection than would be clini-
cally possible. However, our model causes diffuse and
uniform infection of the lungs, whereas clinical pneumo-
nia generally begins with a localized infection that pro-
gresses spatially and temporally. Therefore, a clinical
specimen harvested from the most recently involved lung
segments will also be newly infected. Further, our obser-
vations of increasing signal intensity over time suggest
that a durable diagnostic pattern will be identifiable at
later stages. This will require confirmation in future, lon-
ger term studies.

Conclusions
The early and accurate diagnosis of the etiology of pneu-
monia would be of great clinical benefit. These findings
suggest that it may be feasible to harness the host
response to inform clinicians of a patient's infectious
state when pneumonia is suspected. We anticipate that
this will allow for development of a clinically-relevant
tool, as well as providing new insights into differences
between normal and ineffective host responses to infec-
tions.
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