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Abstract

Background: Upper airway collapse does not occur during wake in obstructive sleep apnea
patients. This points to wake-related compensatory mechanisms, and possibly to a modified
corticomotor control of upper airway dilator muscles. The objectives of the study were to
characterize the responsiveness of the genioglossus to transcranial magnetic stimulation during
respiratory and non-respiratory facilitatory maneuvers in obstructive sleep apnea patients, and to
compare it to the responsiveness of the diaphragm, with reference to normal controls.

Methods: Motor evoked potentials of the genioglossus and of the diaphragm, with the
corresponding motor thresholds, were recorded in response to transcranial magnetic stimulation
applied during expiration, inspiration and during maximal tongue protraction in |3 sleep apnea
patients and 8 normal controls.

Main Results: In the sleep apnea patients: 1) combined genioglossus and diaphragm responses
occurred more frequently than in controls (P < 0.0001); 2) the amplitude of the genioglossus
response increased during inspiratory maneuvers (not observed in controls); 3) the latency of the
genioglossus response decreased during tongue protraction (not observed in controls). A
significant negative correlation was found between the latency of the genioglossus response and the
apnea-hypopnea index; 4) the difference in diaphragm and genioglossus cortico-motor responses
during tongue protraction and inspiratory loading differed between sleep apnea and controls.

Conclusion: Sleep apnea patients and control subjects differ in the response pattern of the
genioglossus and of the diaphragm to facilitatory maneuvers, some of the differences being related
to the frequency of sleep-related events.

Background bility. Several factors contribute to this upper airway insta-
The obstructive sleep apnea syndrome (OSAS) is charac-  bility (anatomical features, muscular dysfunction, and
terized by repetitive episodes of upper airway collapse = impaired neuromuscular activation mechanisms) [1-6]
during sleep that relate to alteration in upper airway sta-  but remarkably, upper airway collapse does not occur in
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awake OSAS patients. This points to wake-related neu-
romuscular compensatory mechanisms, and hence, possi-
bly, to OSAS-specific changes in the cortical motor control
of the upper airway dilators. Indeed, these muscles not
only obey brainstem automatic respiratory commands
but also in behavioral and voluntary commands, suprap-
ontine in origin, that involve their somatotopic represen-
tation within the primary motor cortex. This accounts for
the execution of voluntary maneuvers that can be respira-
tory (e.g. volitional inspiration) but most often are not
(e.g. tongue protraction). Both the bulbar and the cortical
commands to the upper airway muscles converge to
"peripheral” motoneurones where they are integrated and
modulate one another [7], as it is the case at the spinal
level for phrenic motoneurones [8-10]. This cross-modu-
lation can be studied through the analysis of the electro-
myographic responses to transcranial magnetic
stimulation (TMS) and of the effects of voluntary and
involuntary muscle activations on these responses. With
this approach, the intensity of the automatic drive to
breathe has been shown to increase the excitability of the
corticospinal pathway to the diaphragm - facilitation
phenomenon - [11,12]. We have demonstrated, in nor-
mal individuals, that the response of the genioglossus to
TMS is differently influenced by respiratory and non-res-
piratory maneuvers [7], with a pattern of change that is
distinct from that of the diaphragm [7].

From the fact that upper airway collapse does not occur
during wake in OSAS patients, that cortical arousal is
often required to increase UA muscles activity in OSAS
[13] and also that the net activity of the upper airway dila-
tors is higher in awake OSAS patients than in normal indi-
viduals [14,15], we hypothesized that the OSAS should be
associated with plastic neural changes modifying the
interaction between the bulbar and cortical inputs to the
upper airway dilators. Considering that the pre-inspira-
tory activation of UA muscles is a physiological determi-
nant of UA patency [6], we further hypothesized that
respiratory and non respiratory-maneuvers would result
in specific changes in the pattern of response of UA and
respiratory muscles to TMS. To test this hypothesis, we
compared the influences of tidal inspiration, resistive
loaded breathing and voluntary tongue protraction on the
responses of the genioglossus and of the diaphragm to
TMS in OSAS patients and normal individuals.

Methods

Subjects

Eight healthy male volunteers and thirteen men with
untreated OSAS participated in this study. All efforts were
made to recruit normal subjects whose age and body mass
index were close to those of OSAS. A conventional in-lab
full night polysomnographic study (Sandman 4.1, Nellcor
Puritan Bennett Ltd.,, Canada) was completed in every
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subject. The Laval hospital internal review board
approved this protocol and written informed consent was
obtained from each subject.

Measurements

EMG

Surface recordings of the right and left costal diaphrag-
matic EMG activities were obtained with silver cup elec-
trodes placed on the mid-clavicular line in the seventh to
eighth right and left intercostal spaces, in such a way as to
minimize signal contamination from other muscles [16].
Signal impedence was always lower than 2 kOhm. The
good quality of the diaphragmatic EMG signal was
assessed by the rise in its raw EMG activity during tidal
inspiration. The EMG activity of the genioglossus was
recorded by intra-oral electrodes mounted on each side of
a mouthpiece made from dental impression [17]. A sur-
face EMG of the dominant-sided abductor pollicis-brevis
(APB) was simultaneously recorded with silver cup elec-
trodes as a non-respiratory control muscle. All EMG sig-
nals were digitally recorded at a 10 000 Hz sample rate
(Digidata 1320, Axon Instrument, Foster City, CA), fil-
tered (10 Hz to 1 KHz) and amplified (Grass CP122,
Grass Instrument Co., U.S.A). The EMG activity of the gen-
ioglossus during tidal breathing and volitional maneuvers
(see below) was also rectified and integrated with a mov-
ing averager (MA 1000, CWE, Ardmore, PA) using a time
constant of 100 ms. Swallowing, maximal protraction of
the tongue over the alveolar ridge and a Miieller maneuver
were completed to determine the maximal voluntary
activity of the genioglossus [14].

Flow

A plastic nasal stent was placed in the anterior nares to
prevent nasal collapse. An airtight nasal continuous-posi-
tive-pressure mask was then placed over the nose. Instan-
taneous flow was obtained from a pneumotachograph
(Hans Rudolph, model 112467-3850A, Kansas City, MO)
connected to the mask. A unidirectional three-way valve
could be connected to the pneumotachograph to apply an
inspiratory resistance (see below). Flow was digitally
recorded at a 2000 Hz sample rate (Digidata 1320, Axon
Instrument, Foster City, CA). Subjects were studied lying
in a comfortable armchair with a 60 degree inclination
and with the head supported by a premolded firm pillow
to keep head and neck in the same position during the
whole experiment.

Study Design

All measurements were made with subjects breathing
exclusively by the nose. TMS was administered with a
Magstim 200 stimulator (Magstim, Whiteland, Dyfed,
UK) equipped with a 90 mm circular coil. For each stimu-
lation site, the position of the coil was kept constant by
gripping the coil handle to a high precision multi-posi-

Page 2 of 10

(page number not for citation purposes)



Respiratory Research 2009, 10:74

tional support consisting of two articulated arms (MAN
143, Manfrotto Trading, Milano, Italy). The response of
the diaphragm to TMS was assessed with the coil placed at
or near Cz (2 cm anterior or 1 cm posterior to Cz), so as
to maximize the amplitude of the diaphragmatic motor
evoked potential (MEPdi) [18]. The response of the gen-
ioglossus to TMS was assessed with the coil placed on the
dominant side, over an antero-lateral region (AL) O to 6
cm anterior and 6 to 10 cm lateral to the vertex. This area
was divided in a 2*2 cm grid using an EEG skin China
marker and the coil was successively centered on each
intersection point to identify the site yielding the greatest
genioglossus motor evoked potential (MEPgg) [19]. Cz-
TMS and AL-TMS were delivered in random order.

At each stimulation site, magnetic stimulations were
applied in random order in four different conditions (the
stimulator being triggered by a timer driven by the zero
crossing of the flow signal):

- 0.5 s after the onset of expiration (Exp);

- 0.5 s after the onset of expiration and maximal tongue
protraction against the maxillar ridge (Exp+P);

- 1 s after the onset of inspiration (Insp);

- 1 s after the onset of an inspiration loaded by a 100 cm
H,0/]/s resistance (Insp+R).

Five stimuli were delivered at each stimulation site and in
each condition, with the stimulation intensity set at the
maximum available output. The intensity was then
decreased in a stepwise manner to identify the diaphragm
and genioglossus motor thresholds (lowest stimulator
output eliciting a 50 puV response on at least 3/5 stimula-
tions).

Data and Statistical Analysis

All EMG and flow tracings were recorded on a microcom-
puter (AxoScope software 9.0, Axon Instruments, Inc.,
USA). The responses of the diaphragm and of the gen-
ioglossus to TMS were described in terms of the corre-
sponding motor evoked potentials (MEPdi and MEPgg,
respectively). Each single twitch was analyzed separately
and results obtained in each given site and condition were
pooled in the analysis. The MEP latency was defined as the
time elapsed from the stimulus to the first deflection last-
ing more than 5 ms from baseline. The MEP amplitude
was measured from peak to peak. After controlling for
univariate normality using the Shapiro-Wilk test, the data
were expressed as mean + SD. The instantaneous flow and
integrated GG activity values at which TMS were applied
were compared between groups and between maneuvers
using a one-way analysis of variance. The effects of the
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maneuvers on MEP latencies, amplitudes, motor thresh-
olds and genioglossus/diaphragm response patterns to
TMS were analyzed using a mixed model analysis, with
the subjects as a nested random factor and the interaction
terms between the maneuver and the stimulation site as
fixed factors. Before this analysis, the equal variances
assumption had been verified using the Brown and For-
sythe's variation of Levene's statistical test. Multivariate
normality had previously verified using Mardia's test. The
post-hoc comparisons to assess the effects of the different
maneuvers on the muscle responses within groups and
within muscles were performed using orthogonal con-
trasts. These procedures were also completed after adjust-
ment for age and BMI. The relationships between MEP
characteristics and the apnea-hypopnea index were stud-
ied using linear correlation analysis. Differences were con-
sidered significant when p-values < 0.05. All analyses were
conducted using the statistical package SAS v9.1.3 (SAS
Institute Inc, Cary, NC, U.S.A.).

Results

The age, body mass index (BMI), apnea-hypopnea index
(AHI), neck circumference, instantaneous flow and the
baseline GG activities preceding TMS in the different con-
ditions are presented in Table 1. There was no difference
between the two groups, except for the AHI.

MEPs characteristics in OSAS patients and normal
controls

Figure 1 gives representative examples of the responses of
the diaphragm, genioglossus and abductor pollicis brevis
to AL-TMS during the Exp condition in one OSAS patient
and one normal subject.

Responses occurrences

AL-TMS and Cz-TMS systematically evoked abductor pol-
licis brevis responses (Table 2). A diaphragm response,
when present, was systematically associated with a gen-
ioglossus response, both with AL-TMS and Cz-TMS and in
both the OSAS patients and in the normal individuals.
Genioglossus responses not associated with a concomi-
tant diaphragm responses occasionally occurred (Table
2). The occurrence of combined GG and diaphragm
responses to AL-TMS was significantly more frequent in
patients than in controls (P = 0.007) (Table 2).

Latencies

In the normal subjects, MEPdi and MEPgg latencies were
not influenced by the condition underlying AL-TMS and
Cz-TMS (Table S1, Additional file 1), but tongue protrac-
tion was associated with shortened MEPabp latencies in
response to AL-TMS.

In contrast, in the OSAS patients, tongue protraction sig-

nificantly decreased MEPgg latencies in response to Cz-
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Table I: Demographic characteristics and genioglossus baseline activity of normal subjects and OSAS patients

OSAS (n = 13)

Normal (n = 8)

Age (years)

BMI (Kg/m?)

49 + 6 (40 — 59)

31.1 42 (25.0 - 39.4)

49 + 5 (40 — 56)

31.6 + 4.3 (26.0 - 38.0)

Neck circumference (cm)

41419 (38—44)

40.0 +33 (37 - 43)

AHI (n/h) 36.0 + 15.8* 6.6 £3.0
PreTMS Exp GG activity (%max) 80+89 1.1 +£6.3
PreTMS Insp GG activity (%max) 8.0+89 85+85
PreTMS Insp+R GG activity (%max) 11.3£9.1 10.3 £ 6.7
PreTMS Exp+P GG activity (%max) 54.1 £ 14.2 498 + 12.7
PreTMS Exp flow (ml/s) -513+43 -494 + 39
PreTMS Insp flow (ml/s) 490 + 50 499 + 80
PreTMS Insp+R flow (ml/s) 179 £25 190 + 23
PreTMS Exp+P flow (ml/s) - 554 +53 - 547 + 58

Data are presented as Mean * SD as well as range for anthropometric variables. *: P < 0.0] between normal and OSAS patients.

TMS, and decreased MEPdi latencies in response to AL-
TMS (Table S1, Additional file 1). For AL-TMS, the differ-
ence in MEPdi and MEPgg latencies in response to Exp +
P twitches (normalized for Exp values) significantly dif-
fered between OSAS and control subjects (-9.3 + 2.5% Exp
and 6.6 + 3.1% Exp respectively, p = 0.03). The difference
in MEPdi and MEPgg latencies in response to Insp AL-TMS
between OSAS and control subjects after adjustment for
BMI and age approached significance (12.5 + 1.0 ms and
9.1 + 1.4 ms respectively, p = 0.07). MEPapb latencies in
response to Cz-TMS were systematically shorter than their
"Exp" values in all the conditions. MEPgg latencies in
response to AL-TMS were negatively correlated with the
apnea-hypopnea index in all conditions, for the anterola-
teral site of stimulation (Figure 2).

Amplitudes

Tidal inspiration and resistive inspiration significantly
increased the amplitudes of the MEPgg in response to AL-
TMS and Cz-TMS in the OSAS patients, but not in the nor-
mal individuals. In both groups the amplitudes of the
MEPgg in response to AL-TMS and Cz-TMS increased dur-
ing tongue protraction in comparison with every other
conditions (Table S2, Additional file 2). The amplitudes
of the MEPdi responses to AL-TMS and Cz-TMS were sim-
ilar and not significantly influenced by the underlying
condition, both in the OSAS patients and in the normal

subjects. However, the difference in MEPgg and MEPdi
amplitudes (normalized for Exp values) in response to
Cz-TMS applied during Exp + P was significantly higher in
control than in SAS (1620 + 330% Exp and 181 + 258%
Exp respectively, p = 0.02).

The amplitudes of the MEPapb responses to AL-TMS and
Cz-TMS were increased by tongue protraction in the OSAS
subjects. This phenomenon was observed only for AL-
TMS in the normal individuals. The pattern of changes in
MEPdia and MEPgg amplitudes to AL-TMS was signifi-
cantly different between the "respiratory" and the "non-
respiratory” conditions in the normal individuals, which
was not the case for MEPapb.

Motor thresholds

In both groups, the motor threshold of the MEPgg
response to AL-TMS and Cz-TMS was significantly lower
during tongue protraction than in any other of the condi-
tions studied. The motor threshold of the MEPdi response
to Cz-TMS was significantly lower during tongue protrac-
tion as compared with the "Exp" condition (74.3 + 2.4%
and 80.4 + 3.2% respectively) (Figure 3). In the OSAS
patients, the MEPgg threshold in response to AL-TMS and
Cz-TMS was systematically lower than the MEPdi thresh-
old in any underlying condition (e.g. Cz-TMS during the
"Exp" condition 72.9 + 2.8% vs. 80.4 + 3.2% respectively)
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Representative responses of the genioglossus (GG, top), the diaphragm (Dia, middle) and the abductor pollicis
brevis (APB, bottom) to transcranial magnetic stimulation applied anterolaterally during expiration in one
normal subject (A) and one patient with OSAS (B). The arrow indicates the time of stimulation.
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Table 2: TMS-induced EMG responses to 100% TMS intensity at
the two TMS sites (% of TMS applied)

Cz AL
normal OSAS normal OSAS
Dia alone 0 0 0 0
GG alone 15.6 13.5 375 1.5
Dia +GG 84.4 86.5 62.5 88.5
No response 0 0 0 0
P values 0.7 0.007

The distribution pattern of the diaphragm and genioglossus responses
significantly differed between the two groups in AL.

(Figure 3). In the normal individuals, a similar difference
existed only in response to Cz-TMS during tongue protrac-
tion (Figure 3). The difference between MEPdi and MEPgg
thresholds (normalized for Exp values) in response to Cz-
TMS applied during Insp + R was significantly higher in
SAS than in control (20.9 + 3.4% Exp and 9.6 + 3.4% Exp
respectively, p = 0.02).

Discussion

This study shows that the genioglossus/diaphragm
response patterns to single shock TMS are different in
OSAS patients and in normals. Firstly, coupled responses
of the two muscles occur more frequently in OSAS
patients (Table 1). Secondly, facilitatory maneuvers have
different effects in the two groups (Table 2 and 3), and
thirdly these maneuvers differently influence the respon-
siveness of UA and respiratory muscles to TMS in terms of
response latency, amplitude and response threshold.
Schematically in OSAS patients as compared to controls,
tongue protraction has an enhanced facilitatory effect on
the genioglossus response to TMS, inspiratory maneuvers
facilitate the response of the genioglossus in terms of
latency, amplitude and motor threshold, and tongue pro-
traction cross-facilitates the response of the diaphragm.
These differences are observed in spite of similar baseline
EMG activities. Of note, the significant correlation that is
found between the latencies of the genioglossus responses
and the AHI in the OSAS patients, while there is no rela-
tionship between the diaphragm latencies and the AHI,
reinforces the notion that the genioglossus - diaphragm
corticomotor tuning is modified in this population.

Methodological considerations

The present study was conducted in a male population.
Considering the paucity of studies that examined the
influence of apnea status on cortico-motor responsive-
ness, it is not possible to state about the possible influence
of gender on the upper airway and diaphragmatic
responses to TMS depending on sleep apnea status. Inter-
esting information could come from investigations on the
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influence of hormonal status (menopause, menstrual
cycle) on these responses. It must be pointed out that TMS
in this study was performed nonfocally. Our aim was
indeed not to separate the genioglossus and the dia-
phragm responses, but rather to study their coupling dur-
ing respiratory and non-respiratory maneuvers, in a
manner similar to that previously used to study the inter-
actions of the diaphragm bulbospinal and corticospinal
commands [9,10,20] or to study some aspects of the
motor control of the genioglossus [7,19,21]. Our experi-
mental approach therefore seems adequate to test our
hypothesis (OSAS-related changes in the genioglossus
and diaphragm motor controls), the non-focal nature of
the stimulus not being an obstacle to the interpretation of
our results. Of importance, we always positioned the coil
in such a way as to obtain optimal EMG responses, and
took stringent measures to keep the coil position strictly
constant throughout the experiments. The nature of the
experimental paradigm and these precautions make us
confident about the validity of our observations. Finally,
we defined response thresholds in a simplified manner
(presence of a response above 50 uV in amplitude in 3 out
of 5 attempts, instead of the recommended 5 out of 10
attempts). This choice was mainly motivated by accepta-
bility concerns and was encouraged by previously pub-
lished studies using a similarly simplified approach
[22,23]. The same threshold determination method was
used in the two study populations, which should make
comparisons possible.

Increased genioglossus-diaphragm coupling in OSAS
patients

The present observations confirm the marked neurophys-
iological coupling between the genioglossus and the dia-
phragm that was previously evidenced in normal subjects
[7] through the existence of cross-facilitation during respi-
ratory maneuvers. Here we show that this coupling is par-
ticularly marked in OSAS patients. This could result from
plastic adaptive changes occurring at the level of the UA
muscles brainstem motoneurons, their cortical represen-
tation, or both.

Our findings are indeed consistent with observations
depicting a modified behavior of the UA dilator muscles
in OSAS patients. For instance, an OSAS-related increase
in the tidal phasic activity of these muscles has been inter-
preted as compensatory of smaller pharyngeal dimen-
sions and of an exaggerated pharyngeal collapsibility
[14,15]. This increase could be due to an augmented gain
of the reflex response of the UA dilators to negative upper
airway pressure. However, the increased phasic genioglos-
sus activity persists after unloading [24], and the tonic
activity of this muscle is also elevated in OSAS patients
[15]. This points to factors other than an increased reflex
gain, as, for example, an increase in the respiratory-related
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Figure 2

Relationship between MEPgg latencies and the apnea
hypopnea index in the OSAS patients. Dotted lines
represent the 95% confident interval.

drive to upper airway dilators. Such an increase would be
consistent with the modulation of the activity of
hypoglossal motoneurons by inputs from respiratory neu-
rons that has been reported in animal studies [25-27], and
also consistent with the pre-activation of UA muscles
before the onset of inspiration [28]. It would explain the
increased MEPgg amplitude and the decreased MEPgg
motor thresholds that we observed during inspiratory
TMS in our OSAS patients.

Additional interesting information come from the influ-
ence of respiratory and volitional maneuvers on the differ-
ence in genioglossus and diaphragm cortico-motor
responses between SAOS and controls. Our results are
consistent with a predominant rise in diaphragm rather
than genioglossus corticomotor responsiveness during
active tongue protrusion in OSAS. On the other hand, the
facilitatory effect of tidal inspiration on genioglossus pre
activation tended to be higher in OSAS than in controls
also with a preferential increase in UA muscles excitability
during inspiratory loading in sleep apnea patients. Con-
sidering the importance of the balance between UA and
respiratory muscles cortico-motor acivation process
(amount of UA muscles pre-activation and respective
activity of these muscles) on the occurrence of UA closure,
it will be particularly interesting to investigate the influ-
ence of sleep on this motor activation pattern.

Putative sites of the excitability changes
Facilitatory maneuvers modify TMS responses by increas-
ing synaptic excitability at either the motor cortex and/or
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the spinal motoneurons [29] (o1, in the case of upper air-
way muscles, the "peripheral" bulbar motoneurons). Sin-
gle shock TMS as used in our study is not sufficient to
discriminate between cortical and "peripheral" facilita-
tion. Other TMS variables such as the central silent period
or intracortical excitability studied with paired stimula-
tions are necessary to do so. Our study was designed to
test the hypothesis that patients suffering from the
obstructive sleep apnea syndrome exhibit changes in the
corticomotor control of the upper airway dilator muscles.
In the absence of previous data of this kind, we chose a
global test of corticomotor function to provide a first
answer to the research question while keeping the study
feasible and acceptable to the participants. Our results are
consistent with a recent report describing, in OSAS
patients, increased genioglossus single motor unit action
potential and modifications in timing and firing inspira-
tory frequencies [30]. Further work will be needed to
understand the mechanisms underlying our observations.

Specificity of theGG corticomotor activation profile in
OSAS

We found that, in OSAS patients studied awake, the
MEPgg latency was inversely correlated with the AHI. In
other words, the more severe was the OSAS and hence the
instability of the upper airway, the more responsive was
the genioglossus to TMS and hence, possibly, the higher
the drive to the genioglossus. It is therefore tempting to
hypothesize that the TMS results unveil a compensatory
mechanism that prevents upper airway collapse during
wakefulness. A relationship between the AHI and MEPgg
latency was only observed in the OSAS group, supporting
the reality of OSAS-related changes in the corticomotor
control of the genioglossus.

In this view, it is of importance to note that in the OSAS
group the influence of the respiratory maneuvers on the
MEP characteristics and on the motor threshold was
marked for the genioglossus but lacked for the dia-
phragm. This complements previous studies having
shown that the TMS responsiveness of limb muscles is
unaltered in OSAS patients [31]. In our patients, the gen-
ioglossus motor threshold was lower than the diaphragm
motor threshold in all the study conditions in the OSAS
group, but this pattern was only observed for Cz-TMS in
response to a specific, non respiratory, genioglossus acti-
vation in the normal group (Exp+P condition, where TMS
was delivered at end expiration during voluntary tongue
protraction). This discrepancy between the genioglossus
cortico-motor responsiveness and the diaphragm one can
be put in parallel with previous observations. Indeed, it
has been shown that in response to a progressive isocap-
nic hypoxic challenge, the activity of the genioglossus
increases in a steeper manner than that of the diaphragm
in OSAS patients as compared to controls [32]. This has
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been seen as a protective mechanism for the maintenance
of upper airway patency in situations promoting their
instability.

Baseline genioglossus activity

We found a similar baseline genioglossus activity in our
OSAS patients and our control subjects, in contrast with
previous observations [14,15] but in line with others [33].
This difference between our study and others could result
from differences in the EMG recording technique or in the

sharpness of the between-groups weight matching. In this
regard, our OSAS and control subjects were remarkably
similar except for the AHI. The differences that we
observed in terms of TMS responses are thus not likely to
be explained by age or anthropometric differences, or
even by differences in baseline EMG activity. This illus-
trates the usefulness of TMS to assess the central neu-
romuscular drive to UA dilator muscles particularly when
conventional EMG recordings are not contributive.
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Conclusion

This study provides a strong clue to a modification in the
corticomotor control profile of certain upper airway mus-
cles in OSAS during wakefulness. Further experiments are
needed to evaluate the responsiveness of upper airway
dilators other than the genioglossus and particularly to
compare phasic and tonic muscles. The possibility to
apply TMS during sleep [10,31] also opens the way to a
direct exploration of the influence of sleep on upper air-
way and inspiratory neuromuscular activation processes.
This approach may also prove very useful to evaluate
pharmaceutical treatments of the OSAS aimed at modu-
lating the activity of UA dilator during sleep.
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