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Abstract

Background: Surfactant protein A (SP-A) is a C-type lectin involved in surfactant homeostasis as
well as host defense in the lung. We have recently demonstrated that SP-A enhances the killing of
bacillus Calmette-Guerin (BCG) by rat macrophages through a nitric oxide-dependent pathway. In
the current study we have investigated the role of tyrosine kinases and the downstream mitogen-
activated protein kinase (MAPK) family, and the transcription factor NFkB in mediating the
enhanced signaling in response to BCG in the presence of SP-A.

Methods: Human SP-A was prepared from alveolar proteinosis fluid, and primary macrophages
were obtained by maturation of cells from whole rat bone marrow. BCG-SP-A complexes were
routinely prepared by incubation of a ratio of 20 pg of SP-A to 5 % 105 BCG for 30 min at 37°C.
Cells were incubated with PBS, SP-A, BCG, or SP-A-BCG complexes for the times indicated. BCG
killing was assessed using a 3H-uracil incorporation assay. Phosphorylated protein levels, enzyme
assays, and secreted mediator assays were conducted using standard immunoblot and biochemical
methods as outlined.

Results: Involvement of tyrosine kinases was demonstrated by herbimycin A-mediated inhibition
of the SP-A-enhanced nitric oxide production and BCG killing. Following infection of macrophages
with BCG, the MAPK family members ERKI and ERK2 were activated as evidence by increased
tyrosine phosphorylation and enzymatic activity, and this activation was enhanced when the BCG
were opsonized with SP-A. An inhibitor of upstream kinases required for ERK activation inhibited
BCG- and SP-A-BCG-enhanced production of nitric oxide by approximately 35%. Macrophages
isolated from transgenic mice expressing a NFkB-responsive luciferase gene showed increased
luciferase activity following infection with BCG, and this activity was enhanced two-fold in the
presence of SP-A. Finally, lactacystin, an inhibitor of IkB degradation, reduced BCG- and SP-A-
BCG-induced nitric oxide production by 60% and 80% respectively.

Conclusion: These results demonstrate that BCG and SP-A-BCG ingestion by macrophages is
accompanied by activation of signaling pathways involving the MAP kinase pathway and NFkB.
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Background

It is estimated that one-third of the world's population is
infected with Mycobacterium tuberculosis, with over three
million deaths and eight million new cases per year [1].
The causative agent of this disease is an obligate intra-
macrophage pathogen that survives within immature
phagosomes of these cells [2]. The success of this organ-
ism in causing disease is intimately related to its ability to
evade killing by the resident macrophages. Thus, myco-
bacteria have devised ingenious strategies to evade killing
by the very host cell that they depend on for survival [3].
At least two processes have been reported as key to the
ability of the ingested bacteria to survive. First, mycobac-
teria enter macrophages via receptor-mediated processes,
move to an immature phagosome stage, and actively
block maturation of the phagosome and ultimate fusion
with lysosomes [4-7]. Second, mycobacteria subvert sig-
nalling pathways that lead to production of potentially
lethal mediators [8]. The ability of host factors to over-
come these mycobacterial strategies is the focus of the cur-
rent study.

The initial interaction between the host macrophage and
mycobacteria results in the induction of intracellular sig-
nalling pathways that connect receptor-mediated events
to transcriptional activation in the nucleus. Bacillus Cal-
mette-Guerin (BCG) and other mycobacteria enter macro-
phages after engaging host cell receptors, and activate a
series of pathways during this process. These signals can
lead to production of immune effector molecules that are
critical for limiting the lifespan of the internalized
microbes. However, our understanding of the signalling
pathways that are stimulated during mycobacterial infec-
tion and how the mycobacteria modulate these pathways
is limited. Recent studies suggest that one possible strat-
egy might involve regulation and activation of protein
tyrosine kinases (PTKs) [9] that subsequently activate
members of the STAT pathway, PI3K/Akt pathway and
mitogen-activated protein (MAP) kinase family [10-12].
MAP kinases are a family of serine/threonine kinases that
are activated by phosphorylation of conserved tyrosine
residues [13]. Multiple members of this family including
the p42/p44 extracellular signal-regulated kinases (ERK1/
2), c¢-Jun amino-terminal kinases (JNKs), and p38 MAP
kinase have been reported to be involved in inflammatory
mediator production in response to a wide variety of
microbial stimuli. For example, ERK activation is involved
in response to Salmonella infection of macrophages [14],
and MAP kinase activation is required for tumor necrosis
factor-a (TNF) production in response to Group B strep-
tococcus infection [15]. Additionally, a number of labora-
tories have shown that MAP kinases are involved in
macrophage activation following exposure to lipopolysac-
charide (LPS) and other bacterial cell wall components
[13,16]. Recent studies have begun to investigate the role
of these kinases in mycobacterial signalling [17]. Early
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studies by Chan et al showed that the cell wall component
of mycobacteria - lipoarabinomannan (LAM) - stimu-
lated nitric oxide production through a pathway involving
ERK and JNK [18]. In addition, a number of studies have
shown that infection of macrophages with intact myco-
bacteria activate specific MAP kinases [8,19,20]. Further
supporting a role for the importance of these kinases in
controlling microbial infection are the findings that path-
ogenic strains of various bacteria block inflammatory
mediator production through inhibition of MAP kinases
[21-23].

Following activation, MAP kinases phosphorylate specific
transcription factors leading to modulation of cytokine
gene transcription. A key transcription factor involved in
the up-regulation of many cytokines and other mediators
essential to host defense is nuclear factor (NF)xB [24].
Genes regulated by this factor encode a number of pro-
teins involved in the early response to pathogens. Several
groups have recently reported activation of NF«B in
response to both intact mycobacteria and mycobacterial
cell wall components [18,25-27], and NF«B activation has
been reported in monocytes of patients infected with M.
tuberculosis [28,29].

Our laboratory has been studying the role that host factors
play in enhancing the innate response to challenge by
invading mycobacteria. One of these factors is surfactant-
associated protein A (SP-A), a member of the C-type lectin
family that is synthesized and secreted by type II epithelial
cells in the lung [30]. Work from a number of laboratories
has demonstrated that SP-A plays a major role in the clear-
ance of a variety of respiratory pathogens during the
innate host response. In vitro studies have shown that SP-
A functions as an opsonin and enhances the ingestion of
such pathogens as BCG [31], Mycobacterium tuberculosis
[32], influenza A virus [33],E. coli [34], Haemophilus influ-
enzae [35], Staphylococcus aureus [36], Streptococcus pneu-
moniae [37], Mycoplasma pulmonis [38] and Klebsiella
pneumoniae [39]. The importance of SP-A in in vivo host
defense has been supported recently by the demonstra-
tion that mice deficient in SP-A show decreased resistance
to group B streptococcal and Pseudomonas aeruginosa
pneumonia [40,41], decreased clearance of respiratory
syncytial virus [42], and reduced killing of mycoplasma
[43]. In in vitro studies, Kabha et al. and Hickman-Davis et
al. demonstrated that SP-A enhances the ingestion and
killing of K. pneumoniae [39] and mycoplasma [38] by
macrophages.

Recent work from our laboratory has shown that SP-A
enhances clearance of BCG and avirulent Mycobacterium
tuberculosis (H37Ra) by cultured rat macrophages [44].
This enhanced clearance is accompanied by increased pro-
duction of nitric oxide and TNF. The focus of the current
study was to determine if SP-A enhances production of
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inflammatory mediators by rat macrophages in response
to BCG through increased activation of intra-macrophage
signalling pathways involving MAP kinases and NF«xB. We
have examined the role of both the MAPK pathway and
NFkB activation in BCG killing and nitric oxide produc-
tion. We report that both of these pathways are activated
by BCG alone and that opsonization of BCG with SP-A
leads to enhanced activation of both pathways, contribut-
ing to increased intracellular BCG killing.

Materials and methods

Materials

[5, 6-3H]-Uracil was purchased from NEN (Boston, MA).
Fetal bovine serum (FBS) for culture of rat bone marrow
macrophages (RBMM) was purchased from HyClone Lab-
oratories; all other tissue culture reagents were from
GIBCO-BRL (Grand Island, NY). Kinase assay kits, U0126,
and antibodies against phosphorylated and non-phos-
phorylated ERK1 and ERK2 were obtained from Cell Sig-
nalling Technologies (Beverly, MA). All other reagents
were purchased from Sigma Chemical (St. Louis, MO).

Cells and bacteria

Rat bone marrow-derived macrophages (RBMM) were
isolated from female Sprague-Dawley rats as previously
described [31]. Briefly, femurs were removed from rats
and the marrow flushed into 50 ml conical tubes. The
cells were resuspended in DMEM and cultured in DMEM
with 10% fetal bovine serum (FBS), antibiotics, and 10%
L-cell conditioned medium for 5-7 days. Macrophages
were then removed from the culture dishes with cold
EDTA and plated in 24 or 6 wells dishes as described for
each experiment. Prior to infection with BCG, the media
was changed to serum- and antibiotic-free DMEM. For
NF«kB experiments, bone marrow macrophages were pre-
pared from femurs of transgenic mice expressing a luci-
ferase gene driven by the HIV-1 long terminal repeat
containing six kB consensus sites in its promoter
(obtained from T. Blackwell; [45]).

BCG, Pasteur strain, was obtained from the American
Type Culture Collection (Rockville, MD). Bacteria were
cultured in Middlebrook Broth (BBL Microbiology Sys-
tems) supplemented with OADC enrichment (Laboratory
Supply Company, Nashville, TN), and 1.5 ml aliquots of
bacteria at approximately 108 bacteria per ml were stored
at -70°C. Colony forming units per ml were determined
by plating serial dilutions of the bacteria onto Middle-
brook agar plates, and counting colonies after 2-3 weeks
of growth.

Purification of SP-A

SP-A was purified from human alveolar proteinosis fluid
(APF) (obtained from Dr. J.R. Wright (Duke University)
or Dr. Samuel Hawgood (University of California, San

http://respiratory-research.com/content/10/1/60

Francisco) as previously described [31]. Briefly, 1-2 ml of
APF in PBS was extracted with 25 ml of 1-butanol (Sigma)
and then dried overnight under nitrogen. Dried protein
was resuspended in 1 mM HEPES buffer, pH 7.5, with
0.15 M NaCl and 20 mM n-octyl-B-D-glucoside. The pel-
let was collected by centrifugation at 17,000 x g and the
process repeated. The final pellet was resuspended in 5
mM HEPES buffer with 1 mM EDTA (pH 7.5) and dia-
lyzed for 48 hours with buffer changes. After dialysis, pol-
ymyxin B-agarose was added to the SP-A and the mixture
was rotated for one hour at room temperature. The poly-
myxin B-agarose was removed by centrifugation and the
SP-A concentration was determined using the BCA pro-
tein kit from Pierce. The final SP-A preparation was
divided into 1 ml aliquots and stored at 4°C for immedi-
ate use or -20°C for long-term storage. The SP-A was ana-
lyzed for purity by SDS-PAGE and for endotoxin
contamination using the Limulus amebocyte lysate assay
(Associates of Cape Cod, MA). Endotoxin levels were rou-
tinely determined to be less than 0.05 units/ml.

Infections

Frozen stocks of BCG were thawed and vortexed vigor-
ously with a glass bead to break up any clumps. The myco-
bacteria were collected by centrifugation, and then
resuspended in PBS. SP-A or buffer was added, and the
mixture incubated for 30 minutes at 37°C. The cells in
DMEM were then infected with the opsonized or buffered
mycobacteria for the time periods and at the MOlIs as indi-
cated in each experiment.

BCG killing assays

To determine the effect of protein tyrosine kinase inhibi-
tors on BCG killing, a modification of the method of
Chan et al. [46] using metabolic labelling of viable BCG
was used as follows: cells were incubated with BCG or SP-
A-BCG for 4 hr at 37°C. The cells were washed, and
DMEM containing 10% serum plus 2.5 pCi of 3H-uracil
was added to each well. Assays were performed in quadru-
plicate. At various times from 1 to 5 days, the macrophage
monolayers were dissolved in 0.25% SDS and the labelled
BCG were collected on GF/C filters, washed extensively
with water, dried, and counted in a liquid scintillation
counter.

Nitric oxide assays

Cells were incubated for 24 hr with PBS, SP-A, BCG, or SP-
A-BCG in DMEM without serum. Aliquots (100 pl) of the
spent media were incubated with an equal volume of
freshly prepared Griess reagent (0.5% sulfanilamide and
0.05% naphthylethylenediamidedihydrochloride in 2.5%
H,PO,) for 5 min at room temperature. The level of nitrite
as a measure of nitric oxide production was determined
spectrophotometrically at 540 nm and compared to
standards of sodium nitrite.
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Immunoblot analysis

Cells were incubated with PBS, SP-A, BCG, or SP-A-BCG
complexes for 24 hr in serum- and antibiotic-free medium
at a ratio of 1:1 BCG:macrophage and 20 pg of SP-A per 5
x 105 BCG. The cells were washed, and then lysed in
immunoprecipitation buffer (20 mM Tris, pH 7.75, con-
taining 1% Triton X-100, 0.5% deoxycholate, 0.15 M
NaCl, 0.02% sodium azide, and 0.34 trypsin inhibitory
units of aprotinin/ml). Protein concentration in the cell
lysate was measured using the BCA protein kit from
Pierce, and equal amounts of protein were loaded per lane
on a 10% or 4-20% SDS polyacrylamide gel. Proteins
were electrophoretically separated, then transferred to
nitrocellulose. The nitrocellulose blot was incubated in
Tris-buffered saline (TBS) containing either 5% bovine
serum albumin (BSA) or 5% milk. The blots were then
incubated with the primary antibody indicated in each
experiment at the noted concentration. The blot was incu-
bated overnight at 4°C, then washed and incubated with
HRP-conjugated goat anti-rabbit IgG (1:10,000). Reactive
proteins were visualized by incubation of the blot in 0.2
M Tris-HCI (pH 8.5), 2.5 mM luminol, 0.4 mM p-cou-
maric acid, and 0.0002% H202, followed by exposure of
X-OMAT film (Kodak, Rochester, NY). In the ERK activa-
tion immunoblot experiment, to normalize for protein
loading, the blot was stripped with NaOH (200 mM) and
reprobed using anti-ERK antibody. Densitometry was per-
formed to quantify protein band intensity using the UN-
SCAN-it digitizing system.

Immunoprecipitation and kinase assays

Cells were incubated with PBS, SP-A, BCG, or SP-A-BCG
for varying times as indicated for each experiment. Alig-
uots (100 pl) of total cell lysate were transferred to micro-
fuge tubes. A 1:25 dilution of antibody directed against
the active, phosphorylated form of ERK1/2 was added to
each tube and the mixture incubated overnight with rota-
tion at 4°C. Protein A-Sepharose (100 ul) was added to
each tube and incubated with rotation at room tempera-
ture for 1 hr. Pellets were collected by centrifugation and
washed three times with kinase buffer. After the final
wash, the pellets were resuspended in kinase buffer and 1
pg of Elk-1-glutathione-S-transferase fusion protein as a
substrate in the kinase reaction was added to each tube.
The tubes were incubated with rotation at 4°C for 1 hr.
SDS-containing sample buffer was added to each tube and
samples were resolved by electrophoresis on a 4-20% gra-
dient gel, transferred to nitrocellulose, and analyzed for
the presence of phosphorylated substrate by immunoblot
with anti-phospho-Elk-1 antibody.

Electrophoretic mobility shift assays (EMSA)

Cells were incubated with LPS (100 pg), SP-A, BCG, or SP-
A-BCG for 30 min. Nuclear extracts were isolated from
cells as follows: cells were suspended in lysis buffer (10
mM HEPES, pH 7.9; 10 mM KCI; 0.1 mM EDTA; 0.1 mM

http://respiratory-research.com/content/10/1/60

EGTA; 0.4% Nonidet P-40; 1 mM dithiothreitol (DTT);
0.5 mM phenylmethylsulfonyl fluoride; and 100 pl pro-
tein inhibitor solution (Sigma)), and placed on ice for 10
min. After centrifugation for one minute at 13,000 x g, the
nuclei-containing pellet was washed once in lysis buffer,
and then suspended in extraction buffer (20 mM HEPES,
pH 7.9; 0.4 M NaCl; 1 mM EDTA; 1 mM EGTA; 1 mM
DTT; and 100 pl protease inhibitor solution) and vortexed
for 15 min at 4°C. Gel shift oligonucleotides containing
an NFkB consensus site from the human iNOS promoter
(AGTTGAGGGGACTITTCCCAGGC) [47] were end-
labelled using T4 polynucleotide kinase (Promega) and
[y-32P] ATP. Labelled oligonucleotide (2 x 105 cmp), sin-
gle-stranded salmon sperm DNA (200 ng), nuclear extract
proteins (10 pg), and binding buffer (20 mM Tris-HCI,
pH 7.5; 20% glycerol; 5 mM MgCl,; 2.5 mM EDTA; 2.5
mM DTT; 250 mM NacCl; 0.25 mg/ml poly(dI-dC)) were
incubated at room temperature for 20 min. A 10-fold
excess of unlabeled oligonucleotide was used in the com-
petition assays. Samples were resolved by electrophoresis
on 5% polyacrylamide non-denaturing gels in 0.5x Tris-
borate-EDTA (TBE) buffer at 150 volts constant. The gels
were dried and bands visualized by autoradiography.

Statistical analyses

The differences between groups were tested using one-way
ANOVA. In all cases, a p value of < 0.05 was considered
significant. Data in figures are expressed as mean + SD.

Results

Herbimycin A inhibits nitric oxide production induced by
BCG and SP-A-BCG complexes

Activation of intracellular protein tyrosine kinases is a
common pathway involved in signalling induced by a
variety of pathogens and pathogen-derived products. To
determine if BCG-induced production of nitric oxide by
rat macrophages in the presence and absence of SP-A
involves tyrosine kinase activation, RBMM were incu-
bated with BCG or SP-A-BCG complexes in the presence
and absence of 100 nM herbimycin A. As shown in Figure
1, nitrite/nitrate levels in the supernatant of cells treated
with BCG alone for 24 hr were approximately 12 nmol/
ml. This level was increased 2.5-fold when the BCG was
opsonized with SP-A, similar to results previously
reported [44]. When cells were pre-incubated with her-
bimycin A for 30 min prior to infection, nitric oxide pro-
duction in response to BCG or SPA-BCG complexes was
reduced by 60%, suggesting that protein tyrosine phos-
phorylation is involved in production of nitric oxide in
response to BCG or SP-A-BCG complexes. No effect was
seen with SP-A or PBS alone.

Herbimycin A blocks SP-A-enhanced BCG killing

We have previously reported that SP-A enhances the kill-
ing of BCG by rat macrophages. To determine if intracel-
lular growth of BCG is dependent on protein tyrosine
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Herbimycin A inhibits BCG- and SP-A-BCG-induced
production of nitric oxide. BCG were collected by centrifu-
gation, and then suspended in PBS. SP-A (20 pg/5 x 105BCG) or
buffer was added, and the mixtures incubated for 30 min at
37°C. The BCG (B) or SP-A-BCG (B/S) complexes were pel-
leted, resuspended in medium, and added to RBMM (5 x 10°) in
24 well plates at an MOl of |. One-half of the cells from each
treatment (BCG or SP-A-BCG) were exposed to herbimycin A
(HA) at a concentration of 100 nM. Cells plus mycobacteria
were incubated for 24 hr in serum-free DMEM. The spent cul-
ture medium was removed at 24 hr, and nitrate/nitrite levels
were measured using the Griess reagent. Results are the aver-
age * S.D. for triplicate determinations, and are representative
of four separate experiments. *p <.001 for B/S compared to
BCG; **p < .00 for B+HA compared to BCG; **p <.001 for
B/S + HA compared to B/S.

phosphorylation, cells were pre-treated with 100 nM her-
bimycin A for 30 min, then infected with BCG or SP-A-
BCG complexes for 4 hr. The cells were washed, and
ingested BCG was metabolically labelled with 3H-uracil.
After incubation for 5 days, the labelled BCG were col-
lected and the associated radioactivity was quantified. The
3H-uracil assay is useful in this instance since unlike mam-
malian host cells the parasite (BCG) can utilize the uracil
directly for pyrimidine salvage. 3H-Uracil is therefore a
valuable counting assay because it allows for pathogen-
specific labelling. There should be very little if any label-
ling of co-purified cellular components. For example, pre-
vious studies by Somogyi and Foldes showed that
mycobacteria incorporate 80% of 3H-uracil into RNA and
20% into DNA [48]. In studies by Aston et al. it was
shown that uninfected phagocytes incorporated less than
1% of the 3H-uracil used in the experiment [49].
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As shown in Figure 2, SP-A reduced the level of intracellu-
lar BCG growth by approximately 40%, in agreement with
previous reports [44]. Inclusion of herbimycin A blocked
intra-macrophage BCG killing, both in the presence and
absence of SP-A, as evidenced by the increase in labelled
BCG. These results suggest that tyrosine kinases are
involved in induction of nitric oxide and subsequent BCG
killing, both in the presence and absence of SP-A. Quali-
tative determination of cell survival in the presence or
absence of herbimycin A was performed by trypan blue
exclusion. After five days, there was no evidence of a
decrease in cell viability.

SP-A enhances ERKI/2 activation in the presence of BCG
Several groups have identified MAP kinase family mem-
bers as key targets of PTKs and participants in signalling
cascades leading to the induction of proinflammatory
mediators. To determine if two of these family members,
ERK-1 and ERK-2, are involved in BCG and SP-A-BCG sig-
nalling, immunoblot analysis was used to examine the
level of ERK phosphorylation as a measure of ERK activa-

* %

200_ * k%

100+

Uracil Incorporation (cpm)

BCG B/S B+HA B/S+HA

Figure 2

Herbimycin A inhibits BCG- and SP-A-BCG killing by
rat bone marrow macrophages. RBMM were incubated
with BCG or SP-A-BCG (B/S) complexes as described in Fig-
ure |. After removal of unbound BCG, cells plus ingested
organisms were supplied with fresh medium minus antibiot-
ics, plus serum containing 2 puCi per well of 3H-uracil. After
five days incubation, macrophages were lysed with SDS, and
viable BCG were collected by filtration over GF/C filters.
The filters were dried, and then counted by liquid scintilla-
tion counting. Viability of macrophages in companion wells
was verified by vital dye exclusion. Results shown are the
average of quadruplicate determinations + S.D., and are rep-
resentative of two separate experiments. * = p < .001| for
BCG compared to SP-A/BCG; ** = p <.001| for SP-A/BCG +
NMMA compared to BCG and SP-A/BCG.

Page 5 of 11

(page number not for citation purposes)



Respiratory Research 2009, 10:60

tion. Cells were incubated for the indicated times with
BCG or SP-A-BCG. At each time point, cells were washed,
and then solubilized in immunoprecipitation buffer.
Extracts were analyzed by immunoblot analysis, using an
antibody specific for the phosphorylated forms of ERK-1
and ERK-2. As shown in Figure 34, in cells stimulated with
BCG alone, both ERK-1 and ERK-2 were phosphorylated.
ERK phosphorylation was observed to be minimal in cells
incubated in medium (data not shown) or SP-A alone
which was found to be roughly equivalent to levels seen
with BCG alone (Figure 3C). Maximal stimulation
appeared at 15 min, followed by diminution of the signal
at 30 min. In cells treated with SP-A-BCG, a stronger signal
was evident at 5 min, and the phosphorylation was sus-
tained through 30 min.

To determine if the enhanced phosphorylation of ERK-1
and ERK-2 correlated with increased kinase activity, in
vitro kinase assays were performed. Cells were treated
with BCG or SPA-BCG for 5 and 15 min. Control cells
were incubated for 15 min with SP-A alone. Total cellular
protein was extracted, and phosphorylated ERK-1/2 was
immunoprecipitated using a polyclonal antibody specific
for the phosphorylated forms of both enzymes. The
immunoprecipitates were then incubated with kinase
buffer and Elk-1-glutathione-S-transferase fusion protein
as a substrate in the kinase reaction. ERK activation was
then determined by immunoblot analysis of the cell
extracts using anti-phospho-Elk-1 antibody. As shown in
Figure 3B, treatment of RBMM with BCG for 5 or 15 min
resulted in increased phosphorylation of the Elk-1 sub-
strate compared to SP-A alone, and this activation was sig-
nificantly increased by opsonization of the BCG with SP-
A. Figure 3C, shows densitometric quantitation of the
bands from the five-minute treatments of cells with BCG,
BCG + SP-A, and SP-A, as well as the positive control of
Elk-1 fusion protein incubated with commercially availa-
ble activated Erk-2 protein. Results demonstrate that there
is a significant increase in the phosphorylation of Elk-1 in
cells treated with BCG + SP-A versus BCG alone suggesting
greater activation of Erk-1/2 in those cells. These results
suggest that BCG signalling involves ERK kinases, and that
SP-A enhances the activation of this pathway.

ERK inhibitors block SP-A-enhanced nitric oxide
production

To determine if ERK activation in response to BCG
resulted in production of nitric oxide, cells were pre-
treated with 0126, an inhibitor of the upstream kinases
MEK-1 and MEK-2 required for ERK activation. U0126 (1
puM) or methanol (vehicle) was added to RBMM 30 min
prior to incubation with PBS, SP-A, BCG, or SP-A-BCG.
After 24 hr, nitric oxide levels in the media were meas-
ured. As shown in Figure 4, U0126 reduced nitric oxide
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SP-A enhances BCG-induced ERK1/2 MAP kinase
activation. Panel A: RBMM were incubated with BCG or
SP-A-BCG complexes as described in Figure | for 0—30 min.
At each time point, cells were washed with cold PBS contain-
ing 100 1M sodium vanadate to remove any uningested BCG
and to inactivate phosphatase activity. Cells were solubilized
in immunoprecipitation buffer and total proteins were iso-
lated. Extracts were analyzed by SDS-PAGE, followed by
transfer to nitrocellulose, and analysis by Western blot using
an antibody specific for phosphorylated forms or ERK-1 and
ERK-2. Panel B: RBMM were incubated for the indicated
times with BCG, SP-A-BCG, or SP-A alone. Total protein
was extracted as described above. Activated ERK-1/2 was
immunoprecipitated using a phospho-specific antibody. The
antibody-ERK-1/2 complex was then added to a mixture con-
taining ATP and a GST-Elk-1 fusion protein and allowed to
incubate for 5 min. The proteins were separated by SDS-
PAGE and phosphorylated Elk-1 was visualized by Western
blot analysis. Panel C: bands from the blots shown in panel B
corresponding to phosphorylated Elk-1 after 5 min treatment
with immunoprecipitated ERK-1/2 were quantified using
image analysis. Blots are representative of three independent
experiments and were normalized for equal protein loading
by Western blot analysis for non-phosphorylated proteins
within the same membrane.
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production in cells treated with either BCG or SP-A-BCG
by approximately 35%.

SP-A enhances the BCG-induced activation of NFkB

Several groups have recently reported activation of NF«kB
in response to both intact mycobacteria and mycobacte-
rial cell wall components [25-27]. To determine if BCG
infection of rat macrophages leads to activation of NFKB,
two separate strategies were used. First, macrophages from
mice engineered to constitutively express a luciferase
reporter gene driven by a kB-containing promoter were
incubated with BCG or SP-A-BCG complexes. After 24 hr,
luciferase activity was measured. As shown in Figure 5A,
SP-A enhanced the BCG-induced activation of the NF«xB
promoter by approximately 2-fold. This was further con-
firmed by gel shift analysis as shown in Figure 5B. Little or
no effect was seen with SP-A alone. To determine if NFxB
activation plays a role in BCG- and SP-A-BCG-induced
nitric oxide production, RBMM were incubated with lacta-
cystin which blocks NF«B activation by preventing IxB
degradation and release from the NFxB complex [50].
Cells were pre-incubated with lactacystin or vehicle
(DMSO) for 30 min, then BCG or SP-A-BCG were added
for an additional 24 hr. Nitric oxide was measured in the
supernatant as nitrate/nitrite. As shown in Figure 5C, SP-
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Figure 4

Inhibition of ERK-1/2 results in decreased nitric oxide
levels. RBMM were pre-treated with U0126 (I uM) or vehi-
cle (MeOH) for 30 min prior to infection as described in Fig-
ure |. Cell supernatants were analyzed for nitric oxide
production after 24 hr. *p < 0.001 for BCG vs BCG+U,
BCG+SP-A vs BCG+SP-A+U; n = 3.
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Figure 5

SP-A enhances BCG-induced NF«B activation. Panel
A: RBMM were obtained from an HIV-I-LTR-luciferase
(HLL) transgenic mouse. Mature macrophages were infected
for 24 hr with BCG or SP-A-BCG as described in Figure 1.
Cells were lysed and luciferase activity was detected by lumi-
nometry. Relative light units were corrected by total protein
content. *p < 0.05, n = 3. Panel B: RBMM were infected with
BCG, SP-A, or SP-A-BCG as described in Figure | for 30 min.
Nuclear proteins were extracted as described in Methods,
and incubated with a 32P-labeled oligonucleotide containing a
consensus NFkB binding sequence. Protein-oligonucleotide
complexes were then resolved by electrophoresis in a non-
reducing polyacrylamide gel. The gel was dried and exposed
to film for visualization of bands. LPS at a concentration of |
pg/ml was run as a positive control (L). Panel C: RBMM were
incubated with | mM lactacystin for 30 min prior to infection
with BCG or SP-A-BCG as described in Figure |. Nitric
oxide was measured in the supernatant after 24 hr. ¥ = p <
0.05,n = 3.
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A enhanced the production of nitric oxide, in agreement
with previous results [42], and lactacystin completely
blocked this effect suggesting that NFkB activation plays
an important role in BCG- and SP-A-BCG-induced nitric
oxide release.

Discussion

Mycobacteria are obligate intra-macrophage organisms,
and must devise ways to avoid triggering the host
response leading to microbe killing. It is therefore likely
that interaction of virulent mycobacteria with host macro-
phages will lead to minimal production of inflammatory
mediators and limited activation of anti-microbial proc-
esses. In previous studies we have shown that SP-A
enhances BCG-induced production of nitric oxide and
TNF, resulting in increased BCG killing by the infected
macrophages [44]. A common signaling pathway leading
to activation of the iNOS gene is phosphorylation of cel-
lular targets, mediated in part by the MAP kinase family.
In addition, binding of the transcription factor NFkB to
the iNOS promoter is known to be involved in nitric oxide
production. In the current study we have focused our
attention on the role that SP-A plays in enhancing signal-
ing in macrophages infected with BCG. Specifically we
have examined the effect of SP-A on activation of the MAP
kinases ERK1/2 and the transcription factor NF«kB.

In initial experiments we found that a general inhibitor of
PTKs (herbimycin A) blocked both the BCG- and SP-A-
BCG-induced production of nitric oxide and the killing of
internalized BCG, suggesting that one or more cellular
kinases was required for signalling. An important down-
stream target of cellular PTKs is the family of MAP kinases
that are activated following phosphorylation. These ser-
ine/threonine kinases then phosphorylate and activate
downstream targets such as specific transcription factors
that lead to modulation of gene expression. In the current
study we found that BCG alone activated ERK1/2 with
maximal stimulation at 15 min. SP-A enhanced and pro-
longed this activation with a maximal effect at 5 min.
Inhibitors of upstream kinases blocked nitric oxide pro-
duction in the presence of both BCG and SP-A-BCG, fur-
ther supporting a role for this pathway during BCG
infection. These results suggest that the ability of SP-A to
enhance BCG killing as previously described involves acti-
vation of the MAP kinases ERK1/2.

These studies are supported by work from other laborato-
ries demonstrating a role of members of the MAP kinase
family in mycobacterial signalling, but the specific mem-
bers of the family that play a role appear to be dependent
on the mycobacterial species as well as the source and
functional status of the macrophages used for study. For
example, Reiling et al. reported that M. avium-induced
TNF production in human monocyte-derived macro-
phages involved ERK but not p38 [20]. Blumenthal et al

http://respiratory-research.com/content/10/1/60

reported that interaction of M. avium with mouse bone
marrow macrophages resulted in TNF production that was
dependent on ERK activation but did not involve stimula-
tion of p38 [51]. In contrast, Tse reported that all three
kinases - p38, ERK, and JNK - were involved in M. avium-
induced TNF production in mouse bone marrow macro-
phages [52], and Roach and Schorey showed that virulent
M. avium activated ERK and p38 but not JNK in the same
cells [8]. Chan reported that the LAM from M. tuberculosis
activated ERK and JNK but not p38 in RAW cells [18]. We
have preliminary data showing that p38 and JNK are not
activated to any significant level following BCG or SP-A-
BCG infection of rat macrophages (data not shown).

There is a growing body of evidence that survival of intra-
macrophage pathogens is linked to activation and deacti-
vation of intracellular kinases. Studies with Leishmania
have shown that entry of organisms into non-activated
macrophages is accompanied by activation of protein
tyrosine phosphatases that inactivate MAP kinases
through removal of phosphate groups [53]. When Leish-
mania organisms are internalized by stimulated macro-
phages, MAP kinases are activated with concomitant
production of proinflammatory mediators. Ibata-
Ombetta reported that Candida was able to prolong sur-
vival in macrophages by specific activation of MAP kinase
phosphatase (MKP)-1, leading to deactivation of ERK1/2
[21]. Henning et al. also recently reported that SP-A can
decrease the phosphorylation of Akt potentially affecting
MAP kinases and NF-kB [54]. Thus, a key strategy for these
pathogens in evading intra-macrophage killing might
involve regulation of MAP kinases leading to enhanced
production of inflammatory mediators. We have prelimi-
nary data showing that BCG alone activates the phos-
phatase SHP-2, and pre-incubation of the BCG with SP-A
attenuates this activation, suggesting that SP-A might
enhance BCG Kkilling through alteration of the kinase-
phosphatase balance.

It has been suggested that the MAP kinase-mediated
increase in the production of inflammatory mediators
may involve activation of transcription factors such as
NFkB, although a direct link leading from MAP kinase
activation to NFkB activation has not been established. In
the current study we have shown that BCG and SP-A-BCG
complexes activate NF«B in addition to members of the
MAP kinase family, but we cannot definitely say that
NF«B activation is dependent on MAP kinase activity.
Manucso et al. reported that the NFkB inhibitor CAPE
blocked GBS-stimulated TNF production, however ERK
inhibitors did not alter p50/p65 activation, suggesting
two independent pathways [15]. Carter et al. reported that
p38 regulates NFkB-dependent gene transcription by acti-
vating TFIID, but inhibitors of p38 did not alter NFkB acti-
vation, again suggesting that these two pathways are
independent [55].
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Receptors that might be involved in mediating mycobac-
terial or SP-A-mycobacterial effects are not yet known. The
mycobacteria species that have some clinical relevance -
including M. tuberculosis, M. avium, and BCG - all have
high mannose groups exposed on their surfaces, making
them good candidates for mannose receptor ligands [56].
In support of this, Schlesinger and co-workers reported
that M. tuberculosis was internalized by human monocyte-
derived macrophages through the mannose receptor in
the absence of opsonins. However, there is no report
directly linking mycobacterial binding to the mannose
receptor to activation of signalling pathways. In fact, Reil-
ing et al. reported that M. avium-induced TNF production
by human monocyte-derived macrophages was blocked
by anti-CD14 antibodies but not my anti-mannose recep-
tor antibodies [20]. More recent studies using mycobacte-
rial components have suggested that mycobacteria might
interact with toll-like receptors (TLRs) on the macrophage
surface [26,27,57,58]. We have suggested previously that
SP-A redirects mycobacteria to interact with the SP-A-spe-
cific receptor SPR210 [31,59]. Anti-SPR210 antibodies
block SP-A binding, inhibit ingestion of SP-A-BCG com-
plexes, and reduce SP-A-BCG-mediated production of
nitric oxide. The molecular characterization of this recep-
tor is currently underway, and no information is yet
known about specific interaction of the SPR210 with com-
ponents of the intracellular signalling pathways.

In the current and previous studies we have found no
effect of SP-A alone on RBMM function. Only when
attached to a particulate material does SP-A appear to
induce signalling in RBMM leading to production of
inflammatory mediators. This is somewhat controversial,
since other groups have found that SP-A alone has an
effect on resident macrophages. For example, early studies
from several laboratories reported that SP-A interaction
with macrophages and macrophage cell lines resulted in
production of reactive oxygen and nitrogen species and
inflammatory cytokines, and activated NFkB [60-64].
Vazquez et al. recently reported that SP-A induced the
expression of matrix metalloproteinase (MMP)-9 in
human MDM, and this activation appeared to involve
TLR2 [65]. Murakami et al. reported that a direct interac-
tion of SP-A with TLR2 on U937 macrophages altered
peptidoglycan-induced cell signalling [58]. Most likely
the specific SP-A preparations used and the source of the
macrophages affect these findings, and careful examina-
tion of need to sort out these differences to fully define the
role of SP-A in innate host defense.

Although we have shown that SP-A enhances killing of
BCG by rat macrophages, this does not appear to be the
case with M. avium. In previous work we have shown that
SP-A increases M. avium ingestion by RBMM and
enhances production of both TNF and nitric oxide [44].

http://respiratory-research.com/content/10/1/60

However, SP-A had no effect on intra-macrophage sur-
vival of the ingested M. avium. Gomes et al. reported that
M. avium growth was enhanced in the presence of nitric
oxide [66], and Tse et al. reported that inhibition of MAP
kinase inhibited M. avium growth [48]. One might predict
therefore that SP-A would enhance the activation of the
MAP kinase signalling pathway by M. avium, leading to
continued and possibly enhanced intracellular growth.
The effect of SP-A on pathogen survival may be directly
linked to the specific signalling pathways turned on by
each pathogen, and SP-A may not be able to overcome
alternative cellular pathways activated by certain patho-
gens.

Conclusion

This is the first report demonstrating that SP-A increases
mediator production in response to mycobacteria
through activation of MAP kinases and NFkB. Like other
intra-macrophage pathogens, mycobacteria have evolved
a variety of strategies for evading host defense, including
limitation of the ability of the host cell to trigger impor-
tant signalling pathways. In the lung, during the first
insult by mycobacteria, SP-A may play a role in the
response of uninfected, non-activated alveolar macro-
phages by enhancing their capacity to activate signalling
pathways, thus turning on necessary defense genes such as
iNOS and TNF. The role of SP-A is complex, and may
depend directly on the nature of the pathogen and the
state of activation of the macrophages. In addition, SP-A
may interact differently with mycobacteria released from
macrophages as opposed to mycobacteria in the initial
onslaught. These questions are currently being addressed
in our laboratory.
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