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Abstract
Diseases featuring abnormally low alveolar PO2 are frequently accompanied by systemic effects.
The common presence of an underlying inflammatory component suggests that inflammation may
contribute to the pathogenesis of the systemic effects of alveolar hypoxia. While the role of
alveolar macrophages in the immune and defense functions of the lung has been long known, recent
evidence indicates that activation of alveolar macrophages causes inflammatory disturbances in the
systemic microcirculation. The purpose of this review is to describe observations in experimental
animals showing that alveolar macrophages initiate a systemic inflammatory response to alveolar
hypoxia. Evidence obtained in intact animals and in primary cell cultures indicate that alveolar
macrophages activated by hypoxia release a mediator(s) into the circulation. This mediator
activates perivascular mast cells and initiates a widespread systemic inflammation. The inflammatory
cascade includes activation of the local renin-angiotensin system and results in increased leukocyte-
endothelial interactions in post-capillary venules, increased microvascular levels of reactive O2
species; and extravasation of albumin. Given the known extrapulmonary responses elicited by
activation of alveolar macrophages, this novel phenomenon could contribute to some of the
systemic effects of conditions featuring low alveolar PO2.

Introduction
Reduced alveolar PO2 is observed in a number of clinical
settings, and is frequently associated with systemic effects,
many of which present an inflammatory component. On
the other hand, alveolar macrophage-induced systemic
inflammation has been documented in humans and in
animal experiments. The objective of this review is to
describe a novel phenomenon, namely the systemic
inflammation initiated by alveolar macrophages activated
by a reduction of alveolar PO2. Investigation of the links
between alveolar macrophages, alveolar hypoxia, and sys-
temic inflammation could provide insights into the

pathogenesis of the systemic effects of conditions associ-
ated with alveolar hypoxia.

Systemic effects in conditions exhibiting low alveolar PO2
Systemic effects are frequently observed in pulmonary or
extrapulmonary diseases associated with low alveolar
PO2. While the pathogenesis of this diverse group of con-
ditions is varied, the presence of systemic markers of
inflammation has been demonstrated either in clinical
cases or in animal models. Examples of systemic conse-
quences of alveolar hypoxia in which an inflammatory
component has been proposed are the cachexia and mus-
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cle wasting of chronic obstructive pulmonary disease [1-
4], the insufficient hemopoietic response in pulmonary
fibrosis [5], the cardiovascular and metabolic dysfunc-
tions in sleep apnea [6-9], the multiple organ failure sec-
ondary to atelectasis [10], acute lung injury [11-13] and
pulmonary contusion [14], the systemic inflammation of
pneumonia [15,16] and the acute illnesses of high alti-
tude [17-19]. While it is possible that systemic inflamma-
tion does not play a causal role in every one of these
conditions, it is reasonable to assume that, at least,
inflammation influences their development and out-
come. Accordingly, a better understanding of the patho-
physiological role of systemic inflammation should help
in the management of conditions associated with alveolar
hypoxia.

Systemic effects of alveolar macrophage activation
There is evidence that alveolar hypoxia induces lung
inflammation, and that alveolar macrophages play an
important role in the modulation of this phenomenon.
Rats breathing 10% O2 for periods ranging from 1 to 8 h
show extravasation of albumin and increased pulmonary
expression of HIF-1α, NF-κB, and pro-inflammatory
cytokines; these markers are attenuated by elimination of
alveolar macrophages [20-23]. Hypoxia leads to upregula-
tion of the expression of neurokinin-1 receptors in alveo-
lar macrophages and in epithelial cells [24]. Activation of
these receptors leads to inflammatory responses mediated
by cytokines IL-1, IL-6, and TNFα [24,25]. Furthermore,
alveolar macrophages have been implicated in the syner-
gistic effects of hypoxia on pathogen-induced lung
inflammation [26,27].

In addition to the well known pulmonary effects of alveo-
lar macrophage activation with hypoxia and other stimuli,
there is mounting evidence that activation of alveolar
macrophages may have substantial extrapulmonary
effects. An example is the systemic microvascular response
to particulate matter inhalation. Epidemiological studies
have demonstrated a correlation between environmental
air pollution and cardiovascular morbidity [28], and
human and animal studies have shown that phagocytosis
of fine particles by alveolar macrophages leads to pulmo-
nary inflammation with increased number of activated
alveolar macrophages [29]. This is accompanied by ele-
vated levels of circulating cytokines, systemic inflamma-
tion, and microvascular endothelial dysfunction in the
systemic circulation [30-33]. It has been suggested that
following phagocytosis of particulate matter, cytokines
released by activated alveolar macrophages act on the
bone marrow to mobilize platelets and leukocytes which
stimulate the release of acute phase proteins and lead to
systemic inflammation [34].

The results discussed below will show that reduction of
alveolar PO2 activates alveolar macrophages and initiates
a systemic inflammatory cascade, demonstrating the pres-
ence of a link between alveolar hypoxia, alveolar macro-
phages and systemic inflammation.

Alveolar hypoxia and systemic inflammation
Rats breathing 10% O2 show a rapid inflammatory
response in mesentery, skeletal muscle and pial microcir-
culations within minutes of the onset of hypoxia [35-38].
This response is characterized by increased levels of reac-
tive O2 species (ROS) [39], mast cell degranulation [40],
increased leukocyte-endothelial adhesive interactions
[35-37,40], and extravasation of albumin [41]. Increased
levels of ROS-dependent fluorescence occur within min-
utes of the onset of hypoxia, and are observed in perivas-
cular mast cells, in the endothelial layer of postcapillary
venules and at the sites of leukocyte-endothelial adher-
ence [39,41]. The magnitudes of the ROS-dependent flu-
orescence intensity, and of the leukocyte-endothelial
adhesive interactions are inversely related to the PO2 value
[42]. Both ROS-dependent fluorescence intensity and
increased leukocyte-endothelial adherence were signifi-
cantly attenuated by the antioxidants SOD/catalase and
lipoic acid [39,41]. Increasing microvascular NO levels by
administration of a NO donor, spermine NOnoate (sNO)
or of the NO precursor L-arginine blocked the increases in
ROS and in leukocyte-endothelial interactions induced by
hypoxia [42]. This suggests that hypoxia is associated with
a decrease in NO as well as an increase in ROS levels. NO
levels could be reduced as a result of consumption by the
elevated ROS; alternatively, NO generation could be
decreased by reduced NO synthase (NOs) activity due to
limitation of O2 substrate availability in hypoxia [43,44].
However, if this were the case, it would be expected that
administration of the substrate L-arginine would not be
effective in restoring NO levels during hypoxia. The obser-
vation that administration of L-arginine and of sNO had
the same effects, qualitatively and quantitatively, suggests
that the decrease in microvascular NO levels is not the
result of reduced NO synthesis, but of increased consump-
tion by ROS[42].

Mast cell degranulation is a necessary event which pro-
vides the chemotactic gradient for the increased leuko-
cyte-endothelial adhesive interactions of hypoxia [40].
Prevention of mast cell degranulation with cromolyn, a
mast cell stabilizer, attenuates all of the markers of inflam-
mation [36,40]. The inflammatory cascade includes acti-
vation of the local renin-angiotensin system (RAS): the
leukocyte-endothelial adherence and increased vascular
permeability observed in skeletal muscle during alveolar
hypoxia are attenuated by inhibition of angiotensin con-
verting enzyme (ACE) and by blockade of angiotensin II
(Ang II) receptors [45].
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A series of observations suggests that the key initial event
of the inflammatory response, the activation of mast cells,
is not triggered by the reduced PO2 of the environment
surrounding the mast cells, but rather by an agent(s)
released by alveolar macrophages into the circulation. The
evidence leading to this hypothesis is as follows:

Selective reduction of tissue microvascular PO2 does not induce 
inflammation unless it is accompanied by alveolar hypoxia
Cremaster microvascular PO2 (CmvPO2), estimated using
a phosphorescence decay method [36], was selectively
reduced in rats breathing room air. Cremaster hypoxia
was induced either by mechanical restriction of cremaster
blood flow [36], or by in vivo equilibration of the cremas-
ter with 5% CO2/95% N2 [36,37] in the presence of nor-
mal systemic arterial and alveolar PO2. Although CmvPO2
decreased to levels comparable to those seen in rats
breathing 10% O2, neither of these interventions pro-
duced mast cell degranulation or leukocyte endothelial
adherence in cremaster post-capillary venules. On the
other hand, cremaster mast cell degranulation and leuko-
cyte adherence occurred when the animals breathed 10%
O2 and CmvPO2 was maintained at a higher than normal
level [36,37]. One possible explanation for these results,
among other alternatives, is that mast cell degranulation
is triggered by an agent released from a distant site.

Plasma from hypoxic rats induces inflammation in normoxic tissue
If a putative mediator released from a distant site is trans-
ported by the systemic circulation, it would be expected
that plasma obtained from hypoxic animals would elicit
inflammation in normoxic tissues. Plasma obtained from
conscious rats breathing 10% O2 for 5 min produced mast
cell degranulation, leukocyte endothelial adherence, and
extravasation of albumin when applied to the cremaster
muscle of normoxic rats [46]. The inflammatory effect is
specific for hypoxic rat plasma since plasma from nor-
moxic animals had no effect. The inflammation is not trig-
gered by mediators released from activated mast cells or
adherent leukocytes into the plasma of the donor rat: pre-
treatment of the donor with cromolyn, which blocks alve-
olar hypoxia-induced mast cell degranulation and
leukocyte adherence [40], did not attenuate the response
to hypoxic rat plasma. The inflammatory agent contained
in hypoxic rat plasma is not originated in blood cells,
since plasma separated from blood equilibrated in vitro
with hypoxic gas mixtures did not produce inflammation
[46].

Alveolar macrophages are necessary for the inflammation of alveolar 
hypoxia
Since systemic inflammation occurred only when alveolar
PO2 was reduced, alveolar macrophages, given their loca-
tion and their systemic effects, were thought of as a likely
source of the circulating mediator of the systemic inflam-

mation of alveolar hypoxia. A role for alveolar macro-
phages in this phenomenon was demonstrated by three
lines of evidence [47]: first, depletion of alveolar macro-
phages by tracheal instillation of clodronate-containing
liposomes blocked the mast cell degranulation, the
increased leukocyte-endothelial adherence and the
extravasation of albumin that follows alveolar hypoxia in
intact rats. Second, plasma obtained from hypoxic, alveo-
lar macrophage-depleted rats did not elicit inflammation
when applied on the normoxic cremaster; third, superna-
tant of primary cultures of alveolar macrophages exposed
to 10% O2 induced mast cell degranulation and leukocyte
endothelial adherence when applied topically onto the
normoxic cremaster. A non-specific effect was ruled out by
the observation that supernatant of alveolar macrophages
cultured in normoxia had no inflammatory effect. The
inflammation initiated by hypoxic alveolar macrophage
supernatant shares common pathways with that second-
ary to alveolar hypoxia in intact animals, since both are
attenuated by blockade of the RAS [45,47].

Mast cell degranulation leads to activation of the local RAS
Non-selective Ang II antagonists and ACE inhibitors
attenuate the inflammation induced by alveolar hypoxia
in intact rats, pointing to a participation of the RAS in the
inflammatory cascade initiated by alveolar hypoxia. Sev-
eral lines of evidence obtained in skeletal muscle and
mesentery microcirculations indicate that mast cell
degranulation is responsible for the activation of the RAS:
first, while cromolyn blocks the inflammatory effects of
hypoxic rat plasma and of hypoxic alveolar macrophage
supernatant, it does not block the inflammatory response
to topical Ang II [45]. This is in agreement with the obser-
vation that topical Ang II produces increased leukocyte-
endothelial adherence and increased albumin extravasa-
tion, but does not cause mast cell degranulation [45,48].
Finally, the leukocyte-endothelial adherence induced by
the mast cell secretagogue C4880 is attenuated by ACE
inhibition and by Ang II receptor blockade [45,48]. While
it is clear that the RAS is activated by mast cells, the under-
lying mechanism is uncertain. Mast cells of some species
contain chymases which act as ACE to convert Ang I to
Ang II [49]; alternatively, renin contained in mast cells
[50,51] may initiate the RAS cascade. Activation of the
RAS by cardiac mast cell renin released during ischemia/
reperfusion has been demonstrated recently [51]. It is
important to keep in mind that while the role of the RAS
in the inflammation of alveolar hypoxia is strongly sup-
ported by the data presented here, these results do not rule
out the participation of additional mast cell-borne inflam-
matory mediators, such as histamine.

Supernatant of hypoxic alveolar macrophages elicits
degranulation of mast cells followed by activation of the
RAS in two different microvascular beds: mesentery and
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skeletal muscle. The similarity of these responses is con-
sistent with the notion of a widespread inflammation
originated by an alveolar macrophage-borne mediator
carried by the circulatory system.

The results presented so far suggest that reduction of alve-
olar PO2 in intact organisms initiates the sequence of
events presented schematically in Figure 1: alveolar mac-

rophages activated by hypoxia release a mediator into the
circulation; this mediator activates mast cells which, in
part at least through activation of the RAS, induce sys-
temic inflammation. If this sequence of events is correct,
several conditions must apply:

Alveolar macrophages, but not resident tissue macrophages, are 
directly activated by low PO2
Indirect evidence that alveolar macrophages are activated
by hypoxia is provided by the observation that superna-
tant of hypoxic alveolar macrophages initiates an inflam-
matory response in skeletal muscle [47] and in mesentery
[48]. More direct evidence of hypoxia-induced activation
was provided by studies in primary cultures of alveolar
and peritoneal macrophages, and peritoneal mast cells. In
these studies, the cell cultures were equilibrated with gas
mixtures providing a range of PO2 values that would
encompass conditions from normoxia to severe hypoxia
in vivo. In this respect it should be remembered that alve-
olar macrophages are normally exposed to PO2 values
close to 100 Torr, while resident tissue macrophages (and
tissue mast cells) may be in "normoxic" conditions in PO2
environments lower than 30–35 Torr [48]. Equilibration
of alveolar macrophages with hypoxic gas mixtures (PO2
ranging from 5 to 65 Torr) resulted in a respiratory burst
evidenced by a release of H2O2 into the supernatant, the
magnitude of which was inversely related to the medium
PO2. The H2O2 release reached a peak at 15 min of
hypoxia and returned to pre-hypoxic values by 30 min of
exposure [48]. Equilibration of alveolar macrophages
with PO2 > 100 Torr did not induce a respiratory burst.

In contrast with alveolar macrophages under hypoxia,
peritoneal macrophages did not release H2O2 when
medium PO2 was reduced to values as low as ~5 Torr. The
dissimilar effects of hypoxia on activation of the two types
of macrophages are paralleled by the different effects of
their supernatants applied onto the normoxic mesentery:
while supernatant of alveolar macrophages exposed to
hypoxia for > 30 min elicited mast cell degranulation and
leukocyte endothelial adherence, supernatant of perito-
neal macrophages equilibrated with even lower PO2 had
no inflammatory effects [48]

Mast cells are not directly activated by low PO2, but they degranulate 
when in contact with hypoxic alveolar, but not with resident tissue 
macrophages
According to the sequence of events illustrated in Figure 1,
mast cells are activated by a mediator released by hypoxic
alveolar macrophages, and not by the reduced local tissue
PO2. That this is the case was suggested by the lack of cre-
master mast cell degranulation in the experiments in
which CmvPO2 was selectively reduced while alveolar and
arterial PO2 were maintained within normoxic values
[36,37]. These results were confirmed by in vitro experi-

Schematic representation of the systemic inflammation of hypoxiaFigure 1
Schematic representation of the systemic inflamma-
tion of hypoxia. Reduced alveolar PO2 activates alveolar 
macrophages (AMØ) but not peripheral tissue resident mac-
rophages (Tissue MØ) or mast cells. Activated AMØ release 
H2O2 which is the product of dismutation of O2

- generated 
during the respiratory burst. AMØ stimulation leads to 
release of monocyte chemoattranctant protein-1 (MCP-1), a 
chemokine with mast cell secretagogue properties. Hypoxia-
induced release of additional mediators by AMØ can not be 
ruled out. The mediator is trasported by circulation and acti-
vates mast cells. Activation of mast cells is evidenced by 
degranulation and by generation of reactive O2 species (ROS) 
and reduction of NO levels. Mast cell activation leads to 
microvascular inflammation charcterized by increased leuko-
cyte-endothelial adhesive interactions, leukocyte emigration 
and increased vascular permeability. The renin-angiotensin 
system (RAS) is activated by mast cell degranulation and par-
ticipates in the production of the inflammation, although par-
ticipation of other mast cell-borne mediators (histamine) can 
not be ruled out. ROS generation is detected in the endothe-
lial layer of post-capillary venules as well in the sites of adhe-
sion of leukocytes.
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ments: reduction of medium PO2 to ~5 Torr failed to elicit
degranulation in primary cultures of peritoneal mast cells.
However, degranulation occurred when mast cells of the
same culture were immersed in supernatant of alveolar
macrophages which had been exposed to a PO2 of ~65
Torr for 30 min. In contrast, immersion of peritoneal mast
cells in supernatant of hypoxic peritoneal macrophages
(PO2 ~5 Torr) did not elicit degranulation. These results
provide a direct link between alveolar macrophages and
mast cells and demonstrate that alveolar macrophages
release a mast cell secretagogue when stimulated by
hypoxia. The results also show that reduced tissue PO2
and activation of resident tissue macrophages are not nec-
essary to initiate the systemic inflammation of alveolar
hypoxia.

Alveolar macrophages, but not peritoneal macrophages or mast cells 
release a mast cell secretagogue during hypoxia
The hypothesis that the systemic inflammation of alveolar
hypoxia is initiated by an alveolar macrophage-borne
mediator is strengthened by the findings that monocyte
chemoattractant protein-1 (MCP-1), a mast cell secreta-
gogue, is released by primary cell cultures of alveolar mac-
rophages exposed to hypoxia [48]. MCP-1, a chemokine
of the CC family, was the only agent of several investi-
gated which demonstrated a several-fold increase in the
supernatant of alveolar macrophage cultures 30 min after
reduction of the PO2. In contrast, no changes in MCP-1
supernatant concentration were observed when primary
cultures of peritoneal macrophages or peritoneal mast
cells were exposed to hypoxia [48]. MCP-1 fits the criteria
for a putative mediator of hypoxia-induced inflamma-
tion: MCP-1 induces chemotaxis of alveolar macrophages,
mast cells, and human T-lymphocytes [52]. MCP-1 is
released from alveolar macrophages in vitro in response to
hypoxia and hypoxia/reoxygenation [53,54], influences
distal organ damage in hemorrhagic shock [55] and acti-
vates mast cells to elicit microvascular inflammation [56-
58]. Further studies are necessary to determine the mech-
anism underlying the release of MCP-1 by alveolar macro-
phages, the interaction of MCP-1 with mast cells, and
whether other alveolar macrophage-borne agents partici-
pate in the activation of mast cells. Mast cell secretagogues
potentially released from alveolar macrophages include
neuropeptides such as adrenomedullin, CGRP, and sub-
stance P [24,25,59]. These proinflammatory agents have
several physiological functions [58] and participate in
inflammatory processes, including pulmonary responses
to hypoxia and sepsis [27,59].

The lung as a target of systemic hypoxia or ischemia
This review addresses a novel phenomenon, the systemic
inflammation elicited in response to activation of alveolar
macrophages, the stimulus in this case being a reduction
of alveolar PO2. The opposite phenomenon, namely acute

lung injury initiated by remote events, has been known
for some time and is exemplified by the acute lung injury
which may develop after non-thoracic trauma, hemor-
rhage, sepsis, or ischemia/reperfusion[60]. A frequent
example is the acute lung injury secondary to intestinal
ischemia/reperfusion (I/R) that follows hemorrhagic
shock and resuscitation. The pulmonary response in this
case is characterized by leukocyte recruitment, alveolar
macrophage activation, endothelial and epithelial cell
damage, increased vascular permeability and pulmonary
edema [61]. Both the systemic effects of alveolar macro-
phage activation and lung injury secondary to intestinal
ischemia/reperfusion-feature remote inflammatory
responses elicited by a mediator transported from a dis-
tant site. However, while the results presented here indi-
cate that the mediator released by hypoxic alveolar
macrophages is transported by blood, mounting evidence
suggests that the agent(s) responsible for the lung injury
secondary to intestinal I/R is transported by mesenteric
lymph. Diversion of mesenteric lymphatic outflow
blocked the acute lung injury following shock/resuscita-
tion [62], and mesenteric lymph, but not portal venous
blood of rats undergoing hemorrhagic shock increased
permeability of isolated endothelial cell monolayers and
induced acute lung injury [63]. Mesenteric lymph from
shocked rats primed neutrophils for production of super-
oxide, increased expression of surface adhesion mole-
cules, and inhibited leukocyte apoptosis [64]. Further
research demonstrated that the agent responsible for this
effect is contained in the lipid fraction of lymph [65].
Recent observations suggest an involvement of arachi-
donic acid as a mediator of the lung injury following
intestinal ischemia/reperfusion. According to this sce-
nario, ischemia/reperfusion would activate phospholi-
pase A2 to release arachidonic acid into the lymph.
Arachidonic acid, in turn, would contribute to the initia-
tion of the inflammation and the local generation of leu-
kotriene B4 in the lung [65,66].

Although there is evidence that alveolar macrophage acti-
vation plays an important role in the development of
acute lung injury induced by intestinal I/R, its exact role is
not clear. Alveolar macrophages recovered from broncho
alveolar lavage of rats with intestinal ischemia reperfusion
release more H2O2 in response to phorbol myristate ace-
tate and produce more TNFα than those recovered from
control animals[67]. Selective alveolar macrophage deple-
tion with intratracheal instillation of clodronate-contain-
ing liposomes significantly attenuates the increase in
pulmonary vascular permeability of rats with intestinal
ischemia/reperfusion [68]. Hemorrhagic shock is associ-
ated with an increase in LPS-induced TNFα and a decrease
in the anti-inflammatory cytokine IL-10 by alveolar mac-
rophages [69], as well as LPS-induced nuclear transloca-
tion of NF-KB in alveolar macrophages. All these markers
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of activation are attenuated in alveolar macrophages
recovered in broncho alveolar lavage fluid of hemorrhagic
shock rats resuscitated with hypertonic saline, a treatment
which prevents hemorrhagic shock-induced lung injury
[70].

Thus, while the lungs can be the target of remote ischemic
or hypoxic processes, they also can be the source of agents
that may induce inflammatory responses in peripheral tis-
sues. While the specific cellular pathways and the modes
of translocation of inflammatory agents vary in different
conditions, these examples point out to an important
phenomenon, namely the production of inflammatory
responses initiated from remote sites, an issue of impor-
tant clinical significance.

Conclusion
In summary, strong evidence supports the hypothesis that
the systemic inflammation of alveolar hypoxia is initiated
by the release of a circulating mediator from activated
alveolar macrophages. The data represents an example of
a growing body of evidence regarding systemic effects of
alveolar macrophage activation. While the sequence of
events described in this review has firm experimental sup-
port, several areas remain unclear. These include the
mechanism of activation of the alveolar macrophages, the
possible contribution of additional alveolar macrophage-
borne mediators, the mechanism of activation of the RAS,
and whether Ang II is the only effector of the microvascu-
lar response. It should be kept in mind that exposure of an
intact organism to environmental hypoxia is a complex
stimulus which sets in motion a number of processes with
different time courses. Other mechanisms are likely to
participate later in the development of the systemic
inflammation. Nevertheless, given the widespread nature
of the inflammatory response, and the prevalence of
inflammation in many conditions associated with alveo-
lar hypoxia, further understanding of this phenomenon
should provide insights into the role of inflammation in
conditions associated with reduced alveolar PO2.
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