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Abstract
Background: Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane
conductance regulator (CFTR) gene. Infections of the respiratory tract are a hallmark in CF. The
host immune responses in CF are not adequate to eradicate pathogens, such as P. aeruginosa.
Dendritic cells (DC) are crucial in initiation and regulation of immune responses. Changes in DC
function could contribute to abnormal immune responses on multiple levels. The role of DC in CF
lung disease remains unknown.

Methods: This study investigated the expression of CFTR gene in bone marrow-derived DC. We
compared the differentiation and maturation profile of DC from CF and wild type (WT) mice. We
analyzed the gene expression levels in DC from naive CF and WT mice or following P. aeruginosa
infection.

Results: CFTR is expressed in DC with lower level compared to lung tissue. DC from CF mice
showed a delayed in the early phase of differentiation. Gene expression analysis in DC generated
from naive CF and WT mice revealed decreased expression of Caveolin-1 (Cav1), a membrane lipid
raft protein, in the CF DC compared to WT DC. Consistently, protein and activity levels of the
sterol regulatory element binding protein (SREBP), a negative regulator of Cav1 expression, were
increased in CF DC. Following exposure to P. aeruginosa, expression of 3-hydroxysterol-7
reductase (Dhcr7) and stearoyl-CoA desaturase 2 (Scd2), two enzymes involved in the lipid
metabolism that are also regulated by SREBP, was less decreased in the CF DC compared to WT
DC.

Conclusion: These results suggest that CFTR dysfunction in DC affects factors involved in
membrane structure and lipid-metabolism, which may contribute to the abnormal inflammatory
and immune response characteristic of CF.
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Introduction
Cystic fibrosis (CF) is caused by mutations in the cystic
fibrosis transmembrane conductance regulator (CFTR)
gene, a member of the ATP-binding cassette (ABC) pro-
tein family that functions as a cAMP-dependent chloride
channel [1-4]. ABC transport proteins play important
roles in a variety of tissues including lung, liver, pancreas
and the immune system[2]. Although CF is primarily
thought to be a disease of abnormal salt and fluid trans-
port caused by the defective chloride channel function of
the CFTR protein, dominant additional features of defec-
tive CFTR include an exaggerated inflammatory response
and susceptibility to microbial colonization in the lung,
particularly with P. aeruginosa [5-7]. The exact mechanism
for this is not completely understood. Overall in CF, host
immune responses do not seem to be adequate to eradi-
cate P. aeruginosa from the respiratory tract. Attention in
this regard has been primarily focused on the role of CFTR
in epithelial cells [8-10]. However, functional expression
of CFTR has been demonstrated in a variety of non-epithe-
lial cells, including lymphocytes, neutrophils, monocytes,
macrophages and endothelial cells [11-15]. The wide-
spread distribution of CFTR expression in non-epithelial
cells and cells of the immune system implies a variety of
functions, including a possible regulatory role in the
secretion of cytokines and antibodies by lymphocytes and
regulation of lipopolysaccharide (LPS) and interferon--
induced macrophage activation[15,16]. In murine alveo-
lar macrophages CFTR-expression is related to lysosomal
acidification and intracellular killing of P. aeruginosa [15],
and macrophages directly contribute to the exaggerated
inflammatory response in CFTR knockout mice [17]. The
interaction of the CF-specific infectious organisms with
cells of the host immune system are likely important in
determining the extent of the inflammatory responses and
the subsequent clearance of the bacteria from the airways
[6,18,19].

Abnormalities in the lipid metabolism have been
described in CF patients [20], and have been suggested to
be related to the inflammatory responses in CF [19-21].
Deficiency of essential fatty acids is thought to be prima-
rily a result of defective intestinal fat absorption secondary
to a deficiency of pancreatic lipase due to obstruction of
the pancreatic ducts [20]. It has furthermore been sug-
gested that mutant CFTR plays a role in cellular essential
fatty acid utilization [20,22]. The misassembled
deltaF508 CFTR leads to altered cellular lipid trafficking in
the distal secretory pathway [21]. Localization of CFTR to
lipid rafts, cellular lipid membrane domains that are
enriched cholesterol and sphingolipids, has been
described following infection with P. aeruginosa, and has
been linked to inflammatory signaling and apoptosis [23-
25].

The present study analyzed dendritic cells (DC) derived
from CF and WT mice. DC are the most potent antigen
presenting cells and are crucial in the initiation and regu-
lation of immune responses [26-29]. Changes in DC func-
tion could contribute to abnormal immune responses on
multiple levels, such as antigen processing and presenta-
tion, expression of costimulatory molecules, and produc-
tion of cytokines [26-29]. The DC from CF mice were
delayed in their differentiation compared to the WT mice,
but were able to reach fully maturation after 8 days. Inter-
estingly, of the relatively few genes found to be down-reg-
ulated comparing CF and WT DC in gene expression
studies, was Caveolin-1 (Cav1), a lipid raft membrane
protein related to the cellular lipid metabolism. The pro-
tein expression and activity of the sterol regulatory ele-
ment binding protein (SREBP), a negative regulator of
Cav1 expression [30-32], was increased in CF DC com-
pared to WT DC. Among the genes showing expression
change comparing WT and CF DC upon P. aeruginosa
infection, were 3-hydroxysterol-7 reductase (Dhcr7)
and stearoyl-CoA desaturase 2 (Scd2), two enzymes
involved in the lipid metabolism that are also regulated
by SREBP [33-37]. This study provides insight into CFTR-
dependant gene expression abnormalities related to the
cellular lipid homeostasis in a non-epithelial cell type.

Materials and methods
Mice
Congenic C57BL/6J heterozygous breeding pairs
(Cftrtm1UNC) were maintained on regular mouse chow and
continuously bred. To maintain congenic status and pre-
vent genetic drift, each new generation of mice was bred
to WT C57BL/6J mice, obtained from Jackson Laborato-
ries (Bar Harbor, ME). Male and female WT (cftr+/+) ani-
mals were used in alternate breeding. Offspring were
genotyped at 14 days of age by PCR analysis of tail-clip
DNA. To minimize bowel obstruction and optimize long-
term viability, 21- to 23-day-old CF mice (C57BL/6J Cftr
tm1UNC/Cftrtm1UNC) and their cftr+/+ littermates were fed a
liquid diet (Water and Peptamen, Nestle Nutrition) pro-
vided ad libitum. All procedures were approved by the
Institutional Animal Care and Use Committee of Weill
Cornell Medical College.

Bone marrow-derived dendritic cells (DC)
DC, generated from mouse bone marrow precursors from
the three pair of CF mice and their WT littermates with age
5 to 6 wk old, were cultured in RPMI 1640 medium sup-
plemented with 10% fetal bovine serum (FBS), penicillin
(100 U/ml), streptomycin (100 g/ml) (Invitrogen Cor-
poration, CA), recombinant murine granulocyte-macro-
phage colony-stimulating factor (GM-CSF, 10 ng/ml;
R&D System, MN) and recombinant murine interleukin-4
(IL-4, 2 ng/ml; R&D System), for 8 days as previously
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described [38]. DC represent the mature DC population
after differentiation for 8 days.

Aliquots of DC were harvested, and differentiation and
maturation profiles were analyzed on day 0, 2, 4, 6 and 8
for expression of CD11c and CD40, CD40L, CD80, CD86,
ICAM, MHCI or MHCII (BD Pharmingen, CA) by flow
cytometry (FACS Calibur, BD, CA). On day 8 more than
85% of the cells were mature DC. The assays have been
carried out at least three times.

DC Infection with P. aeruginosa
The P. aeruginosa strain used was the laboratory strain PAK
(kindly provided by A. Prince, Columbia University, NY).
Bacteria were grown from frozen stocks in tryptic soy
broth (Difco, MI) at 37°C to mid-log phase, washed three
times with phosphate buffered saline (PBS) pH 7.4 (Invit-
rogen Corporation), and resuspended in the infection
media at the desired concentration as determined by spec-
trophotometry. The DC were incubated for 4 h with 10
CFU of PAK per cell in RPMI 1640 supplemented with 25
mM Hepes (Biosource International, MD) and then har-
vested for RNA and protein extraction.

CFTR Expression in DC
RNA was extracted from lung and DC from three WT mice
using TRIzol (Invitrogen Corporation). Following reverse
transcription of 2 g RNA, CFTR mRNA was amplified by
real-time RT-PCR using a CFTR-specific probe
(Mm00445197_m1, Applied Biosystems, CA). The CFTR
mRNA levels were quantified using the Ct method
(Ambion, Instruction Manual) and normalized relative to
GAPDH (Applied Biosystems). The PCR reactions for
CFTR and GAPDH were optimized to have equal amplifi-
cation efficiency.

CFTR protein levels were determined by Western analysis.
Total cellular fractions were isolated from mouse lung and
DC. Following determination of protein concentration
(Micro BCA™ Protein Assay Kit; PIERCE, IL), 30 g protein
was separated by electrophoresis on NuPAGE@Novex 4–
12% Bis-Tris Gel (Invitrogen Corporation), transferred to
a polyvinylidene difluoride (PVDF) membrane (Bio-Rad
Laboratories, CA) and incubated with a rabbit anti-CFTR
antibody (1:200, Santa Cruz Biotech Inc., CA). Horserad-
ish Peroxidase-conjugated goat anti-rabbit IgG secondary
antibody (1: 3000, Bio-Rad Laboratories) and Amersham
ECL Plus Western Blotting System (GE Healthcare Bio-Sci-
ences Corp., NJ) were used for detection. Following scan-
ning, the membranes were stripped with stripping buffer
(100 mM 2-Mercaptoethanol, 2% SDS, 62.5 mM Tris-
HCl, pH 6.7) and re-blotted using a mouse anti-GAPDH
antibody (1:5000, Abcam Inc. MA). CFTR levels relative to
GAPDH levels were quantified using Image J software
[39]. The assays have been carried out at least three times.

Preparation of RNA for Microarray Analysis and 
Processing of Microarrays
All analyses were carried out with the Affymetrix MG-
U74Av2 GeneChip using the protocols from Affymetrix
(Santa Clara, CA). DC were purified from six mice with
age 5 to 6 wk old. Total RNA was extracted from the DC
using TRIzol followed by RNeasy (Qiagen, CA) to remove
residual DNA. First strand cDNA was synthesized using
the T7-(dT)24 primer (sequence 5'-GGC CAG TGA ATT
GTA ATA CGA CTC ACT ATA GGG AGG CGG-(dT)24-3',
HPLC purified from Oligos Etc., OR) and converted to
double stranded cDNA using Superscript Choice system
(Life Technologies). Double stranded cDNA was purified
by phenol chloroform extraction and precipitation and
the size distribution assessed by agarose gel electrophore-
sis. This material was then used for synthesis of the bioti-
nylated RNA transcript using the BioArray HighYield
reagents (Enzo), purified by the RNeasy kit (Qiagen) and
fragmented immediately before use. The labeled cRNA
was first hybridized to the test chip and then, when satis-
factory, to the MG-U74Av2 GeneChip for 16 h. The Gene-
Chips were processed in the fluidics station under the
control of the Microarray Suite software (Affymetrix) to
receive the appropriate reagents and washed for detection
of hybridized biotinylated cRNA and then manually
transferred to the scanner for data acquisition.

Microarray Data Analysis
The image data on each individual microarray chip was
scaled to arbitrary target intensity, using the Microarray
Suite version 5.0 (MAS 5.0). The raw data was normalized
using the GeneSpring GX 7.3.1 software (Agilent Technol-
ogies, CA) by setting measurements <0.01 to 0.01, fol-
lowed by per-chip normalization to the 50th percentile of
the measurements for the array, and per-gene by normal-
izing to the median measurement for the gene across all
the arrays in the data set. Data from probe sets represent-
ing genes that failed the Affymetrix detection criterion
(labeled "Absent" or "A", or "Marginal" or "M") in over
90% of microarrays were eliminated from further assess-
ment. All further analyses were carried out on the remain-
ing 6,474 genes selected using this criterion.

Genes with significantly different expression levels in WT
and CF DC with and without infection with P. aeruginosa
were annotated using the NetAffx Analysis Center http://
www.affymetrix.com to retrieve the Gene Ontology (GO)
annotations from the National Center for Biotechnology
(NCBI) databases. For probe sets with no GO annota-
tions, other public databases [Mouse Protein Reference
Database, Kyoto Encyclopedia of Genes and Genomes
(KEGG), PubMed] were searched. These genes were
grouped into 8 subcategories: (1) immunity; (2) metabo-
lism/enzyme; (3) signal transduction/growth control; (4)
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protein biosynthesis/cell adhesion; (5) cell cycle; (6) tran-
scription; (7) transport and (8) not classified genes.

Comparisons of the gene profile difference between WT
and CF naive DC, and DC following infection with P. aer-
uginosa were carried out using the normalized data using
the Welch's approximated t-test with Benjamini-Hoch-
berg multiple testing correction. This analysis was done
on the 6,474 genes that passed the Affymetrix detection
criterion (labeled " Present") in over 10% of the samples,
and genes were assumed to be significantly up-regulated
or down-regulated if the calculated p-value was < 0.05 and
the fold change was greater than 1.5 up or down. All data
was deposited at the Gene Expression Omnibus site http:/
/www.ncbi.nlm.nih.gov/geo/, a high-throughput gene
expression/molecular abundance data repository curated
by the National Center for Bioinformatics site. The acces-
sion number for the MG-U74Av2 data set is GSE9488.

Confirmation of Microarray Data by Real-time RT-PCR
Messenger RNA levels of CFTR, Cav1, Dhcr7 and Scd2
were confirmed using real-time quantitative RT-PCR,
using gene specific probes (CFTR: Mm00483057_m1,
Cav1: Mm00483057_m1, Dhcr7: Mm00514571_m1, and
Scd2: Mm01208542_m1, Applied Biosystems) on inde-
pendent samples. RNA levels were quantified by real-time
quantitative RT-PCR with fluorescent TaqMan chemistry
using the Ct method, as described above and normal-
ized to GAPDH mRNA. The assays have been carried out
at least three times.

To reconfirm the genotype of cDNA samples from CF and
WT DC, the primers mCF19 (exon10-11, 5'-TGGATCAG-
GAAAGACATCACTC-3') and mCF20 (exon 14, 5'-
TTGGCCATCAATTTACAAACA-3') were used for PCR
amplification. The reaction was amplified for 35 cycles at
94°C/30s (denature), 58°C/30s (annealing), and 72°C/
45s (extension). The GAPDH gene primers were used as
the PCR endogenous control (Applied Biosystem, CA).
The reaction was amplified for 35 cycles at 94°C/30s
(denature), 58°C/30s (annealing), and 72°C/30s (exten-
sion). PCR products were analyzed on 2% Agarose-LE gel
(Applied Biosystems), stained with ethidium bromide
and visualized under UV light.

Cav1 and SREBP Protein Expression
Total cellular fractions were isolated from naive DC and
DC infected with P. aeruginosa from three pair of CF and
WT mice. Cav1 and SREBP were determined by Western
analysis using a rabbit anti-Cav1 antibody (1:200, Santa
Cruz Biotech, Inc.) and a rabbit anti-SREBP antibody
(kindly provided by T. Worgall, Columbia University,
NY), detailed procedures as described above. Cav1 and
SREBP levels were normalized to GAPDH (mouse anti-
GAPDH, 1:5000, Abcam Inc). Cav1 and SREBP protein

levels relative to GAPDH levels were quantified using
Image J software [39]. The assays have been carried out at
least three times.

SRE Activity in CF DC
The transcriptional activity of SRE in CF DC was assessed
using an adenovirus vector expressing the SRE-promoter
of HMG-CoA synthase linked to a luciferase reporter gene
and -galactosidase gene (AdZ-SRE-luc) (kindly provided
by T. Worgall, Columbia University, NY) by luciferase
assay. The CF and WT DC were infected with AdZ-SRE-Luc
for 48 h, and then infected with P. aeruginosa for 4 h. Luci-
ferase and -galactosidase activities were analyzed in the
cell lysates by luminometric luciferase and -galactosidase
assays (both, Stratagene, CA). Luci-ferase activity (RLU)
was quantified by luminometer (Pharmingen) and -
galactosidase levels by microplate luminometer (Bio-Rad
Laboratories). The data is expressed as luciferase activity
(RLU) normalized to -galactosidase activity.

Results
CFTR Expression in DC from WT Mice
First we evaluated the level of CFTR expression in DC
compared to lung tissue known for high expression of
CFTR. CFTR mRNA was detected in DC and whole lung by
real-time RT-PCR (Figure 1A). The CFTR mRNA levels
were 212-fold lower in the DC compared to the whole
lung (p < 0.01). Likewise, CFTR protein was detected by
Western analysis (Figure 1B); the expression level in DC
was 11-fold lower compared to lung (p < 0.01, Figure 1C).

Gene Expression Difference in DC from WT and CF Mice
To determine the role of CFTR in DC, we compared gene
expression in DC from CF and WT mice by microarray
analysis. Nine genes were up-regulated in DC from CF
mice compared to WT mice with more than 1.5- fold
change in expression [see Additional file 1]. Interestingly,
CFTR was expressed at 2.1-fold higher levels in DC from
CF mice compared to WT mice. These higher levels of
CFTR mRNA were also seen using real-time RT-PCR
amplifying a fragment between exon 9 and 10, which is
outside of the mutated region of CFTR gene in the CF
mice, on independent samples (p < 0.05, Figure 2A). The
absence of part of exon 10, the characteristic of the
Cftrtm1UNC mice genotype [40,41], was confirmed by RT-
PCR (Figure 2B). This suggests increased levels of the
mutant CFTR mRNA in the DC of the CF mice.

Differentiation and Maturation of DC from WT and CF 
Mice
In order to evaluate if the impaired CFTR expression in CF
DC influences their differentiation profile, bone marrow
cells were analyzed an day 0, 2, 4, 6 and 8 using the differ-
entiation and maturation markers CD40, CD40L, CD80,
CD86, ICAM, MHCI and MHCII. No quantitative or qual-
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CFTR expression in bone marrow derived dendritic cells (DC)Figure 1
CFTR expression in bone marrow derived dendritic cells (DC). RNA and protein were extracted from wild type 
(WT) mouse lung and DC. CFTR expression was measured by real-time RT-PCR and Western analysis. A. Real-time RT-PCR. 
WT mouse lung tissue was used as a positive control and calibration. The y-axis represents CFTR cDNA transcription level in 
terms of relative quantity value (RQ). B. Western analysis of CFTR protein in DC compared to the WT lung tissue. C. Quanti-
fication of CFTR protein by image intensity analysis. Images were scanned and analyzed by software Image J normalized to 
GAPDH loading control. Shown is the mean ± SEM of three pairs of independent samples. **denotes p < 0.01.
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CFTR expression in DC from Cftrtm1UNC miceFigure 2
CFTR expression in DC from Cftrtm1UNC mice. RNA was extracted from WT and Cftrtm1UNC (CF) DC. CFTR expression 
was measured by real-time RT-PCR and reverse-transcription PCR. A. Real-time RT-PCR. Relative expression levels in the 
samples were calculated using the Ct method, using GAPDH as internal normalization control. The y-axis represents CFTR 
cDNA transcription level in terms of relative quantity value (RQ). B. Reverse-transcription PCR of CFTR in DC from WT and 
CF mice. Lung from WT mice were used as positive control. Primers were designed to detect WT CFTR cDNA but not 
mutant CFTR. GAPDH was used as endogenous PCR control. Shown is the mean ± SEM of three different samples. *denotes 
p < 0.05.
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itative differences in the primary CD11c+ bone marrow
population between WT and CF mice were observed (data
not shown). On day 2 there was a delay in the upregula-
tion of CD40, CD80 and CD86 expression in the bone
marrow culture of CF mice (p < 0.05, Figure 3A) whereas
CD40L was increased in CF DC compared to the WT DC.
On day 8, these differences were not observed anymore
and the mature DC from the WT and CF mice expressed
all markers comparably (Figure 3B).

Downregulation of the Lipid Raft Protein Cav1 in DC from 
CF mice
Seven genes were down-regulated in DC from CF mice
with more than 1.5-fold change [see Additional file 2].
The expression level of the membrane lipid raft protein
Cav1 in DC from the CF mice was 4.1-fold decreased com-
pared to the WT mice. This finding was confirmed with
real-time RT-PCR which showed a 50-fold reduction of
the Cav1 mRNA level in the CF DC compared to WT DC
(p < 0.01, Figure 4A). Cav1 protein was almost undetect-
able in CF DC (Figure 4B) and quantification of Cav1 pro-
tein expression level indicated a 6.2-fold lower expression
in CF DC compared to WT DC (p < 0.01, Figure 4C). Cav1

is known to be negatively regulated by sterol regulatory
element binding protein (SREBP) [30-32], therefore we
further compared the expression and activity levels of
SREBP in DC from CF and WT mice. SREBP functions as a
transcription factor that binds and regulates the sterol reg-
ulatory element (SRE) containing promoter. The activa-
tion of SREBP requires the proteolytic cleavage to release
the active form into nucleus and regulate the target genes
[42]. The cleavage of SREBP protein was increased in the
CF DC (Figure 4B) and quantification of the active form
of SREBP demonstrated a 4.3-fold higher expression in
DC of CF mice compared to WT mice (p < 0.05, Figure
4C). The transcriptional activity of SRE was increased in
CF DC infected with AdZ-SRE-luc, an Ad vector expressing
an SRE-promoter linked to a luciferase reporter, compared
to WT controls infected with AdZ-SRE-luc (p < 0.01, Fig-
ure 4D), suggesting that SREBP activity was increased in
the CF DC.

Gene Expression Difference in DC from WT and CF Mice 
following P. aeruginosa Infection
To evaluate for differences in global gene expression
between DC from WT and CF mice in response to P. aeru-

Differentiation and maturation of DC from CF miceFigure 3
Differentiation and maturation of DC from CF mice. Differentiation and maturation of DC (CD11c+) from WT (gray) 
and CF (black) mice were monitored over time analyzing the surface expression of CD40, CD40L, CD80, CD86, MHCI, 
MHCII and ICAM. The y-axis represents the percentage expression of each marker in the CD11c population. Data from day 2 
(A) and day 8 (B) are presented. Shown is the mean ± SEM of three different samples. *denotes p < 0.05.
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Cav1 and SREBP expression in DC from WT and CF miceFigure 4
Cav1 and SREBP expression in DC from WT and CF mice. A. RNA was extracted from DC from WT and CF mice 
and Cav1 gene expression was measured by Real-time RT-PCR. Relative expression levels in the samples were calculated using 
the Ct method, with GAPDH as internal normalization control. The y-axis represents Cav1 cDNA transcription level in 
terms of relative quantity value (RQ). B. Western analysis of Cav1 and SREBP in DC from WT and CF mice and corresponding 
GAPDH expression. C. Quantification of Cav1 and SREBP expression by image intensity analysis normalized to GAPDH. D. 
Luciferase assay of SRE transcriptional activity in CF and WT DC. DC were infected with AdZ-SRE-luc for 48 h and harvested 
for luci-ferase assay and -galactosidase assay. Data is shown luciferase activity (RLU) normalized to -galactosidase. Shown is 
the mean ± SEM of three of independent samples. *denotes p < 0.05, ** denotes p < 0.01.
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ginosa, DC from WT and CF mice were infected with P. aer-
uginosa for 4 h, and gene expression profiles were
evaluated by microarray analysis. Stimulation with P. aer-
uginosa induced changes in the expression of genes
involved in inflammation and chemotaxis, signaling, cell
cycling and apoptosis (Supplemental Tables 1 and 2).
Especially, inflammation related genes were up-regulated
upon the P. aeruginosa infection in both WT and CF mice,
including 27 interferon-stimulated genes. Interestingly,
26 of 27 interferon-induced genes had higher fold
changes of expression level in WT mice compared to the
CF mice.

The expression levels of 30 lipid metabolism related genes
were changed by more than 1.5-fold [see Additional file 3
and 4]. Among the genes with increased expression levels
in WT and CF DC, Cav1 was upregulated 3.3-fold upon P.
aeruginosa infection in WT mice (p < 0.05) and 2.6-fold in
CF mice (p > 0.05). Among the genes which were down-
regulated upon P. aeruginosa infection (Supplemental
Table 2), 7-dehydrocholesterol reductase (Dhcr7) was
decreased 7.2-fold upon infection in WT mice (p < 0.05)
but only 3.2-fold in CF mice (p > 0.05); the gene stearoyl-
CoA desaturase 2 (Scd2) was downregulated 5.6-fold
upon infection in WT mice (p < 0.05) but only 3.0-fold in
CF mice (p > 0.05).

In order to confirm the microarray data, mRNA levels of
these three genes were assessed by real-time RT-PCR of DC
from independent experiments (Figure 5). Although basal
expression level of Cav1 was lower in CF DC (p < 0.01)
compared to WT DC, both groups responded to P. aerugi-
nosa infection with a upregulation of Cav1 (p < 0.05, Fig-
ure 5A) resulting in similar fold change in the expression
level after P. aeruginosa infection compared to the control
(7.0-fold and 6.0-fold, Figure 5B). In contrast, the basal
expression levels of Dhcr7 were comparable between CF
and WT DC (Figure 5C) and decreased upon P. aeruginosa
infection in both groups (p < 0.05). This resulted in 76-
fold reduction upon exposure to P. aeruginosa in WT DC
compared to 20-fold in CF DC leading to a difference in
the fold change between two groups (p < 0.05, Figure 5D).
The base line expression of Scd2 was also comparable
between CF and WT DC, but only the WT DC showed a
decreased response in Scd2 expression upon P. aeruginosa
infection (p < 0.05, Figure 5E) resulting in a 21.2-fold
decrease upon exposure to P. aeruginosa in WT DC com-
pared to only 4.5-fold decrease in CF DC, elucidating a
fold change difference of Scd2 expression between CF and
WT mice (p < 0.05, Figure 5F).

Further we addressed the question if the infection of P.
aeruginosa in DC also leads to differences in the Cav1 and
SREBP protein levels. As seen at the RNA level, Cav1 was
upregulated in the presence of P. aeruginosa both in WT

and CF DC, but expression levels were general higher in
the WT mice (Figure 6A). The same tendency was
observed in the SREBP protein level, but with a higher
baseline expression level in the CF mice (Figure 6B). The
transcriptional activity of SRE was also higher in CF DC
followed P. aeruginosa infection than the WT controls (p <
0.01, Figure 6C). These data suggested a strong correlation
between the presence of CFTR and expression of lipid
metabolism related genes that are differently expressed in
the CF DC in response to the P. aeruginosa infection com-
pared to the WT DC.

Discussion
Lung disease in CF is characterized by an exaggerated
inflammatory state and chronic infection with P. aerugi-
nosa [38]. As the responses of the immune system are not
adequate to eradicate P. aeruginosa from the lung in CF,
the present study evaluates the general role of CFTR in
DC, the most critical antigen presenting cells in initiating
and regulating antigen specific immune responses [26-
29].

CFTR was expressed in DC, and bone marrow cells from
CF mice showed a delay in the differentiation into DC
compared to the WT mice. DC derived from CF mice
showed relatively few differences in basal gene expression
compared to WT DC, including a lipid raft gene Cav1 with
lower expression in CF DC. Consistently, expression and
activity of the sterol regulatory element binding protein
(SREBP), a negative regulator of Cav1 expression, was
increased in CF DC. Following infection with P. aeruginosa
gene expression between CF and WT DC differed for a
number of genes. Of these, Dhcr7 and Scd2, two members
of the lipid metabolism enzymes that are also regulated by
SREBP, were found to be differently regulated.

CFTR in DC
Expression of CFTR in DC has so far not been reported.
DC play an important part in antigen presentation and
stimulation of T cells and are present in the lung in a net-
work [26,27,43]. The CFTR expression levels in the DC
were lower compared to the whole lung.

The levels of the non-mutated part of CFTR mRNA were
increased in the CF DC. This is in contrast to previous
studies using the same microarray chip on RNA from
lung, pancreas and small intestine tissue of CF mice with
the identical CFTR mutation (Cftrtm1UNC) [44-48]. The
Cftrtm1UNC mouse has an insertion of a premature termina-
tion condon into exon 10 of CFTR gene [40,41], and this
mutation has been reported to activate an alternative
splicing and result in a in-frame deletion, indicating that
the cells may produce a CFTR protein with impaired func-
tion [49]. The murine CFTR transcripts were detected in
tracheal tissue from Cftrtm1UNC mouse with similar level
Page 9 of 15
(page number not for citation purposes)



Respiratory Research 2009, 10:26 http://respiratory-research.com/content/10/1/26

Page 10 of 15
(page number not for citation purposes)

Confirmation of microarray results by real-time RT-PCRFigure 5
Confirmation of microarray results by real-time RT-PCR. DC from WT and CF mice were infected in vitro with P. aer-
uginosa for 4 h. RNA levels for three genes were measured by quantitative real-time RT-PCR. Relative expression levels in the 
samples were calculated using the Ct method, with GAPDH as internal normalization control. A, C and E. The y-axis rep-
resents the relative gene expression level for Cav1, Dhcr7 and Scd2 in the uninfected control DC (gray) and P. aeruginosa 
infected DC (black). B, D, and F. The y-axis represents fold change of Cav1, Dhcr7 and Scd2 expression upon P. aeruginosa 
infection compared to the control in both groups. Shown are the means ± SEM of three pairs of DC samples from WT and CF 
mice with or without P. aeruginosa infection. *denotes p < 0.05.
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Cav1 and SREBP expression in DC from WT and CF mice infected with P. aeruginosaFigure 6
Cav1 and SREBP expression in DC from WT and CF mice infected with P. aeruginosa. DC from WT and CF mice 
were infected in vitro with P. aeruginosa for 4 h, and uninfected cells served as the control (Co). A. Western analysis of Cav1 
and corresponding GAPDH. B. Western analysis of SREBP and corresponding GAPDH. C. Luciferase assay of SRE transcrip-
tional activity of CF and WT DC infected with P. aeruginosa. DC were infected with AdZ-SRE-luc for 48 h, and then infected 
with P. aeruginosa for 4 h. DC were harvested for luciferase assay and -galactosidase assay. Data is shown luciferase activity 
(RLU) normalized to -galactosidase. Shown is the mean ± SEM of three of independent samples. **denotes p < 0.01.
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compared to the WT mice [50], and the presence of CFTR
protein was also reported in mesenchymal connective tis-
sue from Cftrtm1UNC mice [51]. This could suggest that the
regulation of CFTR mRNA expression in Cftrtm1UNC may
vary in different tissue or cell types. The increased mRNA
levels of CFTR in CF DC could be due to increased tran-
scription or stability of the mRNA in the DC background.

Differentiation of Bone Marrow-derived DC from CF Mice
Bone marrow cells from CF mice showed a delay in the
early phase of differentiation into DC compared to the WT
mice, with lower expression of co-stimulatory molecules.
Maturation and differentiation of DC are crucial in initia-
tion and regulation of immune response, such as T cells
activation and cytokine secretion [26-28]. In CF infants,
CFTR mutation itself could produce an inflammatory
milieu in the airway even in absence of pathogen infec-
tion, suggesting dysfunctional immune regulation [19].
Slowed differentiation of DC could lead to reduced inhib-
itory regulation of inflammatory mediators, and it could
be direct effect of deficient CFTR expression. Perez et al
created a CF cell model by using CFTR specific inhibitor
CFTRinh-172 in normal bronchial epithelial cells, indicat-
ing that CFTR inhibition alone is sufficient to produce an
exaggerated inflammatory response [52].

Basal Gene Expression Differences in CFTR-deficient DC
Few changes in basal gene expression were seen compar-
ing DC derived from CF and WT mice. The previous stud-
ies analyzing gene expression in tissues affected by CF in
mice, including lung, pancreas and small intestine, found
different expression for a larger number of genes [44-48].
As the RNA in these studies was derived from tissues con-
taining a variety of cell types, a direct comparison with the
results of the present study is difficult. It is possible that
cultured cells respond differently compared to the cells in
vivo, as the DC are cultured in enhanced medium with
supplemented cytokines. However our gene profile study
could still provide an insight in the influence of CFTR on
function of DC.

Cav1 mRNA and protein were decreased in the CF DC
compared to the WT DC. Caveolin is the principal compo-
nent of caveolae, lipid domains characterized by a flask-
shaped invaginated morphology, which play a role in
endocytosis, signal transuction and the cellular transport
of cholesterol [53,54]. Cav1 has not been previously
reported to be directly affected in CF. However, CFTR was
found to localize to lipid rafts membrane fractions charac-
terized by an enrichment of Cav1 [25]. The co-localiza-
tion of CFTR and Cav1 could suggest a potential
interaction between the two proteins. Cav1 expression is
negatively regulated by SREBP, a critical factor in cellular
lipid [30-32]. Activation of SREBP, using a promoter
reporter assay, has been reported in CF cells [55]. The ele-

vated expression and activity of SREBP could be the
underlying factor for the decreased Cav1 expression.

P. aeruginoasa Induced Gene Expression Changes in CF 
DC
Changes in the expression level of 912 genes were induced
by P. aeruginosa infection. Most genes belonged to the
functional categories of inflammation, signaling, metabo-
lism and transcription etc. The majority of up-regulated
genes were immune response related genes (112 of 465),
which presents the typical character of DC upon pathogen
infection. A multiple correction is one strategey to con-
front the problem of false positives in microarray study.
However our study and other similar studies cannot count
with sample size sufficiently large to afford a multiple test
comparison. As physiological effect are often small in
magnitude and rather than missing potentially important
observation, we chose to forgo the use of multiple com-
parison in favor of confirmation by an independent
method (TaqMan RT-PCR), of those observations that are
most biologically relevant for our study system. The
results that are not confirmed by RT-PCR could be tenta-
tive.

The magnitudes of gene expression changes were mostly
larger in WT mice than CF mice (782 of 912); especially
27 interferon/interleukin induced genes. This suggests
that defective CFTR may affect the proper immune
response of DC against the P. aeruginosa infection. This
observation is in agreement with the fact that the presence
of WT CFTR in human bronchial epithelial cell positively
influenced cytokines of innate immunity in response to P.
aeruginosa such as interleukin-8 (IL-8), IL-6, CXCL1, indi-
cating CFTR plays a role in resistance to P. aeruginosa [56].

The expression levels of 30 lipid metabolism related genes
were changed by more than 1.5-fold (13 up-regulated
genes and 17 down-regulated genes). Cav1, which was vir-
tually absent in non-infected CF DC, was increased upon
the P. aeruginosa infection with similar fold change in WT
and CF mice. The LPS stimulation in endothelial cells
induces the expression of Cav1 in a NF-B-dependent
manner [57]. It might serve as an underlying mechanism
of upregulation of Cav1 expression in DC followed with
P. aeruginosa infection.

In contrast, two other lipid metabolism related genes,
Dhcr7 and Scd2, were strongly decreased in WT DC, but
only to a much lesser extent in CF DC. Dhcr7 converts
dehydrocholesterol (DHC) to cholesterol, and Dhcr7
deficiency in human leads to a syndrome characterized by
immunological changes [58,59]. Stearoyl-CoA desaturase
(SCD) is an enzyme that catalyzes the 9-cis desaturation
of saturated fatty acyl-CoA [60]. Both Dhcr7 and Scd2
genes contain a sterol-regulatory element, the binding site
Page 12 of 15
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for the transcription factor SREBP, in their promoter
regions. In contrast to Cav1, Dhcr7 and Scd2 expressions
are up-regulated by the active form of SREBP [36,37]. P.
aeruginosa infection induces the apoptosis of the host cells
[61], and SREBP is cleaved during programmed cell death
[62]. Sphingolipid storage caused by the haemolytic phos-
pholipase C of P. aeruginosa stimulated the SREBP-1 acti-
vation [63], and induced accumulation of intracellular
cholesterol [64]. As elevated expression and activity of
SREBP were present in CF DC after P. aeruginosa infection
compared to WT DC, it may lead to a compensatory
upregulation of Dhcr7 and Scd2 that results in a more
moderate reduction of these genes.

The present study indicates that, even if expressing at a
low level in immune cells such as DC, CFTR influences
cellular lipid metabolism, possibly through increased lev-
els of active SREBP. It has been shown that the fatty acid
abnormalities in CFTR-deficient tissues positively corre-
late with chronic or acute inflammation, suggesting the
important role of lipid homeostasis in the regulation of
the innate host immune response [16]. The defective
CFTR expression in DC may affect lipid raft composition,
pathogen uptake and clearance, intracellular signaling
events, and give rise to inadequate inflammatory
responses.

Abbreviations
CF: cystic fibrosis; CFTR: cystic fibrosis transmembrane
conductance regulator; DC: dendritic cells; CF mice: CFTR
knockout mice; WT mice: wild type mice; SREBP: sterol
regulatory element binding protein; SRE: sterol regulatory
element; Dhcr7: 3-hydroxysterol-7 reductase; Scd2:
stearoyl-CoA desaturase 2.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
YX carried out part of the experiments, analyzed the data
and wrote the draft of the manuscript. CT carried out part
of the experiments and the microarray analysis. AK partic-
ipated in the flow cytometory analysis. LQ participated
design and analysis of part of the experiment. RC partici-
pated in the design of the study. SW conceived of the
study, and participated in its design and coordination and
helped to draft the manuscript. All authors read and
approved the final manuscript.

Additional material

Acknowledgements
We thank A. Heguy, I. Dolgalev for insightful discussions and excellent tech-
nical assistance; M. Limberis and J. Wilson, University of Pennsylvania, for 
providing some CFTR knockout mice; and N Mohamed for help in prepar-
ing this manuscript. These studies were supported, in part, by R21 
HL077557 and the Cystic Fibrosis Foundation Postdoctoral Research Fel-
lowship XU09F0, Bethesda, MD.

References
1. Dean M: The genetics of ATP-binding cassette transporters.

In Methods in Enzymology Phase II Conjugation Enzymes and Transport
Systems Volume 400. Helmut Sies aLP. Academic Press; 2005:409-429. 

2. Reddy MM, Quinton PM: Control of dynamic CFTR selectivity
by glutamate and ATP in epithelial cells.  Nature 2003,
423:756-760.

3. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak
Z, Zielenski J, Lok S, Plavsic N, Chou JL, et al.: Identification of the
cystic fibrosis gene: cloning and characterization of comple-
mentary DNA.  Science 1989, 245:1066-1073.

4. Vergani P, Lockless SW, Nairn AC, Gadsby DC: CFTR channel
opening by ATP-driven tight dimerization of its nucleotide-
binding domains.  Nature 2005, 433:876-880.

5. Boucher RC: An overview of the pathogenesis of cystic fibrosis
lung disease.  Advanced Drug Delivery Reviews 2002, 54:1359-1371.

Additional file 1
Up-regulated Genes in DC from CF Mice Compared to WT Mice. The 
data provided a table of genes up-regulated in DC from CF mice compared 
to WT mice.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1465-
9921-10-26-S1.pdf]

Additional file 2
Down-regulated Genes in DC from CF Mice Compared to WT Mice. 
the data provided a table of genes down-regulated in DC from CF mice 
compared to WT mice.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1465-
9921-10-26-S2.pdf]

Additional file 3
Up-regulated Lipid Metabolism-related Genes in DC from WT and/or 
CF Mice following P. aeruginosa Infection. The data provided a table 
of lipid metabolism-related genes up-regulated in DC from WT and/or CF 
mice following P. aeruginosa infection.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1465-
9921-10-26-S3.pdf]

Additional file 4
Down-regulated Lipid Metabolism-related Genes in DC from WT 
and/or CF Mice following P. aeruginosa Infection. The data provided 
a table of lipid metabolism-related genes down-regulated in DC from WT 
and/or CF mice following P. aeruginosa infection.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1465-
9921-10-26-S4.pdf]
Page 13 of 15
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1465-9921-10-26-S1.pdf
http://www.biomedcentral.com/content/supplementary/1465-9921-10-26-S2.pdf
http://www.biomedcentral.com/content/supplementary/1465-9921-10-26-S3.pdf
http://www.biomedcentral.com/content/supplementary/1465-9921-10-26-S4.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12802335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12802335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2475911
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2475911
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2475911
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15729345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15729345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15729345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12458149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12458149


Respiratory Research 2009, 10:26 http://respiratory-research.com/content/10/1/26
6. Gibson RL, Burns JL, Ramsey BW: 1Pathophysiology and man-
agement of pulmonary infections in cystic fibrosis.  Am J Respir
Crit Care Med 2003, 168:918-951.

7. Ratjen F, Doring G: Cystic fibrosis.  The Lancet 2003, 361:681-689.
8. Govan JR, Deretic V: Microbial pathogenesis in cystic fibrosis:

mucoid Pseudomonas aeruginosa and Burkholderia cepacia.
Microbiol Rev 1996, 60:539-574.

9. Rich DP, Anderson MP, Gregory RJ, Cheng SH, Paul S, Jefferson DM,
McCann JD, Klinger KW, Smith AE, Welsh MJ: Expression of cystic
fibrosis transmembrane conductance regulator corrects
defective chloride channel regulation in cystic fibrosis airway
epithelial cells.  Nature 1990, 347:358-363.

10. Shen BQ, Finkbeiner WE, Wine JJ, Mrsny RJ, Widdicombe JH: Calu-
3: a human airway epithelial cell line that shows cAMP-
dependent Cl- secretion.  Am J Physiol 1994, 266:L493-L501.

11. Assef YA, Damiano AE, Zotta E, Ibarra C, Kotsias BA: CFTR in
K562 human leukemic cells.  Am J Physiol Cell Physiol 2003,
285:C480-C488.

12. McDonald TV, Nghiem PT, Gardner P, Martens CL: Human lym-
phocytes transcribe the cystic fibrosis transmembrane con-
ductance regulator gene and exhibit CF-defective cAMP-
regulated chloride current.  Journal of Biological Chemistry 1992,
267:3242-3248.

13. Painter RG, Valentine VG, Lanson NA, Leidal K, Zhang Q, Lombard
G, Thompson C, Viswanathan A, Nauseef WM, Wang G, et al.: CFTR
expression in human neutrophils and the phagolysosomal
chlorination defect in cystic fibrosis.  Biochemistry 2006,
45:10260-10269.

14. Tousson A, Van Tine BA, Naren AP, Shaw GM, Schwiebert LM:
Characterization of CFTR expression and chloride channel
activity in human endothelia.  Am J Physiol.  1998, 275(6
Pt1):C1555-C1564.

15. Di A, Brown ME, Deriy LV, Li C, Szeto FL, Chen Y, Huang P, Tong J,
Naren AP, Bindokas V, et al.: CFTR regulates phagosome acidi-
fication in macrophages and alters bactericidal activity.  Nat
Cell Biol 2006, 8:933-944.

16. Freedman SD, Weinstein D, Blanco PG, Martinez-Clark P, Urman S,
Zaman M, Morrow JD, Alvarez JG: Characterization of LPS-
induced lung inflammation in cftr-/- mice and the effect of
docosahexaenoic acid.  J Appl Physiol 2002, 92:2169-2176.

17. Bruscia EM, Zhang PX, Ferreira E, Caputo C, Emerson JW, Tuck D,
Krause DS, Egan ME: Macrophages directly contribute to the
exaggerated inflammatory response in cftr-/-mice.  American
Journal of Respiratory Cell and Molecular Biology   2008.

18. Bonfield TL, Panuska JR, Konstan MW, Hilliard KA, Hilliard JB,
Ghnaim H, Berger M: Inflammatory cytokines in cystic fibrosis
lungs.  Am J Respir Crit Care Med 1995, 152:2111-2118.

19. Khan TZ, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DW:
Early pulmonary inflammation in infants with cystic fibrosis.
Am J Respir Crit Care Med 1995, 151:1075-1082.

20. Freedman SD, Blanco PG, Zaman MM, Shea JC, Ollero M, Hopper IK,
Weed DA, Gelrud A, Regan MM, Laposata M, et al.: Association of
cystic fibrosis with abnormalities in fatty acid metabolism.  N
Engl J Med 2004, 350:560-569.

21. Gentzsch M, Choudhury A, Chang Xb, Pagano RE, Riordan JR: Mis-
assembled mutant F508 CFTR in the distal secretory path-
way alters cellular lipid trafficking.  J Cell Sci 2007, 120:447-455.

22. Bhura-Bandali FN, Suh M, Man SFP, Clandinin MT: The F508
mutation in the cystic fibrosis transmembrane conductance
regulator alters control of essential fatty acid utilization in
epithelial cells.  J Nutr 2000, 130:2870-2875.

23. Grassme H, Jendrossek V, Riehle A, von Kurthy G, Berger J, Schwarz
H, Weller M, Kolesnick R, Gulbins E: Host defense against Pseu-
domonas aeruginosa requires ceramide-rich membrane
rafts.  Nat Med 2003, 9:322-330.

24. Gulbins E, Dreschers S, Wilker B, Grassme H: Ceramide, mem-
brane rafts and infections.  Journal of Molecular Medicine 2004,
82:357-363.

25. Kowalski MP, Pier GB: Localization of cystic fibrosis transmem-
brane conductance regulator to lipid rafts of epithelial cells
Is required for Pseudomonas aeruginosa-induced cellular
activation.  J Immunol 2004, 172:418-425.

26. Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S: Anti-
gen presentation and T cell stimulation by dendritic cells.
Annual Review of Immunology 2002, 20:621-667.

27. Savina A, Amigorena S: Phagocytosis and antigen presentation
in dendritic cells.  Immunological Reviews 2007, 219:143-156.

28. Moll H: Dendritic cells and host resistance to infection.  Cellular
Microbiology 2003, 5:493-500.

29. Moll H: Antigen delivery by dendritic cells.  International Journal
of Medical Microbiology 2004, 294:337-344.

30. Bist A, Fielding CJ, Fielding PE: p53 regulates caveolin gene tran-
scription, cell cholesterol, and growth by a novel mecha-
nism.  Biochemistry 2000, 39:1966-1972.

31. Bist A, Fielding PE, Fielding CJ: Two sterol regulatory element-
like sequences mediate up-regulation of caveolin gene tran-
scription in response to low density lipoprotein free choles-
terol.  Proceedings of the National Academy of Sciences 1997,
94:10693-10698.

32. Czarny M, Fiucci G, Lavie Y, Banno Y, Nozawa Y, Liscovitch M: Phos-
pholipase D2: functional interaction with caveolin in low-
density membrane microdomains.  FEBS Letters 2000,
467:326-332.

33. Ferno J, Skrede S, Vik-Mo A, Havik B, Steen V: Drug-induced acti-
vation of SREBP-controlled lipogenic gene expression in
CNS-related cell lines: Marked differences between various
antipsychotic drugs.  BMC Neuroscience 2006, 7:69.

34. Horton JD, Goldstein JL, Brown MS: SREBPs: activators of the
complete program of cholesterol and fatty acid synthesis in
the liver.  J Clin Invest 2002, 109:1125-1131.

35. Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown
MS, Goldstein JL: Combined analysis of oligonucleotide micro-
array data from transgenic and knockout mice identifies
direct SREBP target genes.  Proceedings of the National Academy of
Sciences 2003, 100:12027-12032.

36. Kim JH, Lee JN, Paik YK: Cholesterol biosynthesis from lanos-
terol. a concerted role for Sp1 and NF-Y-binding sites for
sterol-mediated regulation of rat 7-dehydrocholesterol
reductase gene expression.  Journal of Biological Chemistry 2001,
276:18153-18160.

37. Tabor DE, Kim JB, Spiegelman BM, Edwards PA: Transcriptional
activation of the Stearoyl-CoA Desaturase 2 gene by sterol
regulatory element-binding protein/adipocyte determina-
tion and differentiation factor 1.  Journal of Biological Chemistry
1998, 273:22052-22058.

38. Worgall S, Martushova K, Busch A, Lande L, Crystal RG: Apoptosis
induced by Pseudomonas aeruginosa in antigen presenting
cells is diminished by genetic modification with CD40 ligand.
Pediatr Res 2002, 52:636-644.

39. Abramoff MD, Magelhaes PJ, Ram SJ: Image processing with
ImageJ.  Biophotonics International 2004, 11:36-42.

40. Koller BH, Kim H, Latour AM, Brigman K, Boucher RC Jr, Scambler
P, Wainwright B, Smithies O: Toward an animal model of cystic
fibrosis: targeted interruption of exon 10 of the cystic fibrosis
transmembrane regulator gene in embryonic stem cells.  Pro-
ceedings of the National Academy of Sciences 1991, 88:10730-10734.

41. Snouwaert JN, Brigman KK, Latour AM, Malouf NN, Boucher RC,
Smithies O: An animal model for cystic fibrosis made by gene
targeting.  Science 1992, 257:1083-1088.

42. Shimano H: Sterol regulatory element-binding proteins
(SREBPs): transcriptional regulators of lipid synthetic genes.
Progress in Lipid Research 2001, 40:439-452.

43. Hazlett LD, McClellan SA, Rudner XL, Barrett RP: The role of lang-
erhans cells in Pseu-domonas aeruginosa infection.  Invest
Ophthalmol Vis Sci 2002, 43:189-197.

44. Guilbault C, Novak JP, Martin P, Boghdady ML, Saeed Z, Guiot MC,
Hudson TJ, Radzioch D: Distinct pattern of lung gene expres-
sion in the Cftr-KO mice developing spontaneous lung dis-
ease compared with their littermate controls.  Physiol Genomics
2006, 25:179-193.

45. Kaur S, Norkina O, Ziemer D, Samuelson LC, De Lisle RC: Acidic
duodenal pH alters gene expression in the cystic fibrosis
mouse pancreas.  Am J Physiol Gastrointest Liver Physiol 2004,
287:G480-G490.

46. Norkina O, Kaur S, Ziemer D, De Lisle RC: Inflammation of the
cystic fibrosis mouse small intestine.  Am J Physiol Gastrointest
Liver Physiol 2004, 286:G1032-G1041.

47. Xu Y, Clark JC, Aronow BJ, Dey CR, Liu C, Wooldridge JL, Whitsett
JA: Transcriptional adaptation to cystic fibrosis transmem-
brane conductance regulator deficiency.  J Biol Chem 2003,
278:7674-7682.
Page 14 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14555458
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14555458
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8840786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8840786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1699126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1699126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1699126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7515578
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7515578
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7515578
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12842835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12842835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1371114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1371114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1371114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16922501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16922501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16922501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843717
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843717
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843717
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16921366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16921366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11960971
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11960971
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11960971
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8520783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8520783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7697234
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7697234
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14762183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14762183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17213331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17213331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11110839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11110839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11110839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12563314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12563314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12563314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15069600
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15069600
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14688350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14688350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14688350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11861614
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11861614
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17850487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17850487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12864809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15532992
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10684646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10684646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10684646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10675563
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10675563
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10675563
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17052361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17052361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17052361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11994399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11994399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11994399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11279217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11279217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11279217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9705348
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9705348
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9705348
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12409507
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12409507
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1380723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1380723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11591434
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11591434
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11773031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11773031
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16418321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16418321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16418321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15064229
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15064229
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15064229
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14739145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14739145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12482874
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12482874


Respiratory Research 2009, 10:26 http://respiratory-research.com/content/10/1/26
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

48. Xu Y, Liu C, Clark JC, Whitsett JA: Functional genomic
responses to cystic fibrosis transmembrane conductance
regulator (CFTR) and CFTR508 in the lung.  Journal of Biolog-
ical Chemistry 2006, 281:11279-11291.

49. Xu Z, Gupta V, Lei D, Holmes A, Carlson EJ, Gruenert DC: In-frame
elimination of exon 10 in Cftrtm1Unc CF mice.  Gene 1998,
211:117-123.

50. Ostrowski LE, Yin W, Diggs PS, Rogers TD, O'Neal WK, Grubb BR:
Expression of CFTR from a ciliated cell-specific promoter is
ineffective at correcting nasal potential difference in CF
mice.  Gene Ther 2007, 14:1492-1501.

51. Borthwick DW, West JD, Keighren MA, Flockhart JH, Innes BA,
Dorin JR: Murine submucosal glands are clonally derived and
show a cystic fibrosis gene-dependent distribution pattern.
Am J Respir Cell Mol Biol 1999, 20:1181-1189.

52. Perez A, Issler AC, Cotton CU, Kelley TJ, Verkman AS, Davis PB:
CFTR inhibition mimics the cystic fibrosis inflammatory pro-
file.  American Journal of Physiol Lung Cell Mol Physiol 2007,
292:L383-l393.

53. Anderson RGW: The caveolae membrane system.  Annual
Review of Biochemistry 1998, 67:199-225.

54. Liu P, Rudick M, Anderson RGW: Multiple functions of caveolin-
1.  J Biol Chem 2002, 277:41295-41298.

55. White NM, Jiang D, Burgess JD, Bederman IR, Previs SF, Kelley TJ:
Altered cholesterol homeostasis in cultured and in vivo
models of cystic fibrosis.  Am J Physiol Lung Cell Mol Physiol 2007,
292:L476-L486.

56. Reiniger N, Ichikawa JK, Pier GB: Influence of cystic fibrosis
transmembrane conductance regulator on gene expression
in response to Pseudomonas aeruginosa infection of human
bronchial epithelial cells.  Infect Immun 2005, 73:6822-6830.

57. Tiruppathi C, Shimizu J, Miyawaki-Shimizu K, Vogel SM, Bair AM, Min-
shall RD, Predescu D, Malik AB: Role of NF-kappaB-dependent
caveolin-1 expression in the mechanism of increased
endothelial permeability induced by lipopolysaccharide.  J Biol
Chem 2008, 283:4210-4218.

58. Nowaczyk MJ, Waye JS, Douketis JD: DHCR7 mutation carrier
rates and prevalence of the RSH/Smith-Lemli-Opitz syn-
drome: where are the patients?  Am J Med Genet A 2006,
140:2057-2062.

59. Yu H, Patel SB: Recent insights into the Smith-Lemli-Opitz
syndrome.  Clin Genet 2005, 68:383-391.

60. Miyazaki M, Ntambi JM: Role of stearoyl-coenzyme A desatu-
rase in lipid metabolism.  Prostaglandins, Leukotrienes and Essential
Fatty Acids 2003, 68:113-121.

61. Kirschnek S, Gulbins E: Phospholipase A2 functions in Pseu-
domonas aeruginosa- induced apoptosis.  Infection and Immunity
2006, 74:850-860.

62. Wang X, Zelenski NG, Yang J, Sakai J, Brown MS, Goldstein JL:
Cleavage of sterol regulatory element binding proteins
(SREBPs) by CPP32 during apoptosis.  EMBO J 1996,
15:1012-1020.

63. Sadikot RT, Blackwell TS, Christman JW, Prince AS: Pathogen-host
interactions in Pseudomonas aeruginosa pneumonia.  Am J
Respir Crit Care Med.  2005, 171(11):1209-1223.

64. Puri V, Jefferson JR, Singh RD, Wheatley CL, Marks DL, Pagano RE:
Sphingolipid storage induces accumulation of intracellular
cholesterol by stimulating SREBP-1 cleavage.  Journal of Biolog-
ical Chemistry 2003, 278:20961-20970.
Page 15 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16455659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9573345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17637798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17637798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17637798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10340937
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10340937
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9759488
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12189159
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12189159
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17085523
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17085523
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17085523
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16177360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16177360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16177360
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18077459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18077459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18077459
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16906538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16906538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16906538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16207203
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16207203
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8605870
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8605870
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8605870
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15695491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15695491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12657626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12657626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12657626
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Introduction
	Materials and methods
	Mice
	Bone marrow-derived dendritic cells (DC)
	DC Infection with P. aeruginosa
	CFTR Expression in DC
	Preparation of RNA for Microarray Analysis and Processing of Microarrays
	Microarray Data Analysis
	Confirmation of Microarray Data by Real-time RT-PCR
	Cav1 and SREBP Protein Expression
	SRE Activity in CF DC

	Results
	CFTR Expression in DC from WT Mice
	Gene Expression Difference in DC from WT and CF Mice
	Differentiation and Maturation of DC from WT and CF Mice
	Downregulation of the Lipid Raft Protein Cav1 in DC from CF mice
	Gene Expression Difference in DC from WT and CF Mice following P. aeruginosa Infection

	Discussion
	CFTR in DC
	Differentiation of Bone Marrow-derived DC from CF Mice
	Basal Gene Expression Differences in CFTR-deficient DC
	P. aeruginoasa Induced Gene Expression Changes in CF DC

	Abbreviations
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References

