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Abstract

Background: Bronchopulmonary dysplasia (BPD) is closely associated with ventilator-induced
lung injury (VILI) in very preterm infants. The greatest risk of VILI may be in the immediate period
after birth, when the lungs are surfactant deficient, still partially filled with liquid and not uniformly
aerated. However, there have been very few studies that have examined this immediate post-birth
period and identified the initial injury-related pathways that are activated. We aimed to determine
if the early response genes; connective tissue growth factor (CTGF), cysteine rich-61 (CYR61) and
early growth response | (EGRI), were rapidly induced by VILI in preterm lambs and whether
ventilation with different tidal volumes caused different inflammatory cytokine and early response
gene expression.

Methods: To identify early markers of VILI, preterm lambs (132 d gestational age; GA, term ~147
d) were resuscitated with an injurious ventilation strategy (V120 mL/kg for 15 min) then gently
ventilated (5 mL/kg) for 15, 30, 60 or 120 min (n = 4 in each). To determine if early response genes
and inflammatory cytokines were differentially regulated by different ventilation strategies, separate
groups of preterm lambs (125 d GA; n = 5 in each) were ventilated from birth with a V; of 5 (VG5)
or 10 mL/kg (VGI0) for 135 minutes. Lung gene expression levels were compared to levels prior
to ventilation in age-matched control fetuses.

Results: CTGF, CYR6! and EGRI lung mRNA levels were increased ~25, 50 and 120-fold
respectively (p < 0.05), within 30 minutes of injurious ventilation. VG5 and VG0 caused significant
increases in CTGF, CYR61, EGRI, ILI-, IL-6 and IL-8 mRNA levels compared to control levels. CTGF,
CYR61, IL-6 and IL-8 expression levels were higher in VG10 than VG5 lambs; although only the IL-6
and CYR6/ mRNA levels reached significance.

Conclusion: CTGF, CYR6/ and EGRI may be novel early markers of lung injury and mechanical
ventilation from birth using relatively low tidal volumes may be less injurious than using higher tidal
volumes.
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Introduction

The lungs of very preterm infants have an immature distal
airway structure, with a thick air/blood barrier and a small
surface area for gas-exchange. They are surfactant deficient
because undifferentiated epithelial cells predominate
with few type II alveolar cells. As a result, very preterm
infants often require respiratory support in the minutes
following birth. Although essential for survival, mechani-
cal ventilation of very preterm infants is closely associated
with a high risk of developing bronchopulmonary dyspla-
sia (BPD). BPD is characterised by a simplification of air-
ways, a cessation of alveolarisation, hypercellularity,
variable fibrosis and capillary dysplasia [1].

Ventilator induced lung injury (VILI) in preterm infants is
associated with many different forms of mechanical ven-
tilation [2-7]. The inflammation that results from VILI is
thought to play an important role in the pathogenesis of
BPD. VILI promotes the recruitment of inflammatory cells
such as neutrophils and macrophages and induces many
pro-inflammatory cytokines, transcription factors and
growth factors leading to abnormal lung development
[8,9]. These factors include interleukin (IL)-1p, IL-6, IL-8,
IL-10, tumour necrosis factor (TNF)-a, transforming
growth factor (TGF)-B;, nuclear factor (NF)-xB and inter-
feron-y [8,10-13]. Although these factors are elevated in
response to VILI, a detectable increase can take many
hours or days [14], making it difficult to define the initial
injury-related pathways involved [9,15]. Identifying the
initial injury pathways is critical as the greatest risk of
injury may be during the period immediately after birth
when the lungs are partially liquid-filled, are surfactant
deficient and are not uniformly aerated [16-18]. However,
itis unclear whether the above factors are reliable markers
of lung injury in studies that are of short duration e.g.
investigations of the neonatal resuscitation period.

One of the histological hallmarks of BPD is hypercellular-
ity of the lung [1] and we have recently demonstrated that
VILI rapidly stimulates lung cell proliferation in the
immature lung [19]. The early response genes connective
tissue growth factor (CTGF), cysteine-rich 61 (CYR61) and
early growth response factor 1 (EGR1) are known to pro-
mote cell proliferation [20,21] and we have recently
shown that they are rapidly activated in response to a fetal
lung growth stimulus [22]. Previous studies have also
demonstrated that these genes are activated in response to
lung injury in adults [23-27], but their role in VILI in the
preterm neonate is unknown. Thus, our first aim was to
investigate whether these early response genes are acti-
vated within 15 min-2 h of an injurious insult to the lungs
of preterm lambs, before pathological changes to the lung
have occurred. To determine their usefulness as early
markers of lung injury, we compared their change in
expression with changes in the expression of the inflam-
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mation genes IL-1, IL-6, IL-8 and TGF- |, TNF-a protein
levels and NF-«B activity, which have previously been
associated with VILI in neonates [8,11,13]. Our second
aim was to determine if the mRNA levels of these genes
could differentiate between ventilation strategies likely to
induce only a mild degree of VILI. To address that aim we
determined the mRNA levels of CTGF, CYR61, EGRI1, IL-
1, IL-6 and IL-8 in preterm lambs resuscitated from birth
using tidal volumes of 5 or 10 mL/kg. Based on the known
roles of CTGF, CYR61 and EGRYI, it is possible that their
aberrant expression contributes to abnormal lung devel-
opment in very preterm infants destined to develop BPD.

Methods

Animal experiments

Delivery and ventilation of lambs

All experimental procedures on animals were approved by
the Monash University Animal Ethics Committee. Preg-
nant Merino x Border Leicester ewes at 125 or 132 days of
gestational age (GA; term is ~147 d) were anaesthetised
and the fetal head and neck were exposed for catheterisa-
tion and intubation. The fetus was then delivered and ven-
tilated as described below for 135 min. Arterial blood
samples were collected every 5 min for the first 15 min
and then every 10 min until the end of the experiment.
The peak inspiratory pressure (PIP), positive end expira-
tory pressure (PEEP), mean airway pressure (P, ), tidal
volume (V;), inspiratory and expiratory times, ventilation
rate, arterial blood pressure and heart rate were recorded
using a data acquisition system (PowerLab, ADInstru-
ments Pty. Ltd., Castle Hill, NSW, Aust.). The alveolar-
arterial oxygen difference (AaDO,) was calculated using
the equation: (Py,ometic - Przo) x FiO, - (PaCO,/0.8) -
Pa0O,. Control fetuses at the same gestational ages were
used to indicate the levels of gene expression prior to ven-
tilation.

Time-course for the activation of early response genes caused by
injurious ventilation (IV)

Preterm lambs delivered at 132 d gestation (n = 16) were
resuscitated and mechanically ventilated from birth using
a Drdger "Babylog 8000+" (Drager Medical, Lubeck, Ger-
many). For the first 15 min after birth, lambs were venti-
lated with an injurious ventilation (IV) protocol,
consisting of a tidal volume (Vy) of 20 mL/kg in the
absence of a PEEP. After 15 min, lambs were ventilated
using a Vyof 5 mL/kg and 8 cmH,O PEEP for a further 15
(LI 15), 30 (LI 30), 60 (LI 60) or 120 (LI 120) mins (n =
4 for each group).

Affect of tidal volume on the activation of early response genes

Preterm lambs delivered at 125 d GA were resuscitated
and mechanically ventilated using the Driger "Babylog
8000+" set to deliver a guaranteed V; of either 5 (VG5) or
10 (VG10) mL/kg with 8 cmH,O of PEEP for 135 min
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from birth (15 minute resuscitation stabilisation period
followed by 2 h of ventilation; n = 5 in each group). The
ventilation settings and experimental protocol for these
studies have been described previously [28].

Post-mortem examination and tissue collection

At the end of each experiment lambs were humanely
killed with an overdose of sodium pentobarbitone (i.v.).
The lungs were removed, weighed and the left bronchus
was ligated. The left lung was cut into small sections and
snap frozen in liquid nitrogen for analysis of CTGF,
CYR61, EGRI, IL-1, IL-6, IL-8 and TGF- ; mRNA levels,
active NF-kB levels and TNF-o protein concentrations.
The right lung was fixed via the airways, using 4% parafor-
maldehyde at 20 cmH,O for light microscopy.

Tissue analysis

Active NF- B protein levels

NF-xB protein activity was measured in lung tissue using
an electromobility gel-shift assay. Lung nuclear proteins
were extracted [29] from lung tissue and the protein con-
centration was determined using a BioRad DC Protein
Assay kit (Sigma Aldrich, Australia). Nuclear protein (8
pg) was incubated on ice for 20 min with 2 pl binding
buffer (100 mM HEPES, 50 mM MgCl,, 50% glycerol, 10
mM EDTA, 500 mM potassium glutamate), 1 ul DTT, 1 pl
poly dIdC and 1 pl of a double stranded 32P-«xB DNA
probe containing the cognate kB motif (5'-AGTTGAG-
GGGACTTTCC-3'; total volume 20 pl). Samples were then
electrophoresed for 2 h at 110 V at room temperature in a
5% non-denaturing polyacrylamide (19:1 Acryla-
mide:Bis-acrylamide) gel with 0.5x TBE buffer. The gel
was then dried onto Whatmann 3 mm chromatography
paper in a gel drier (Speed Gel SG210D, Savant Instru-
ments, USA) and exposed to a storage phosphor screen for
24 - 48 h at room temperature. The relative levels of active
NF-kB bound to the kB motif were quantified by measur-
ing the total integrated density of each band using Image-
Quant software (Molecular Dynamics, Sunnyvale, CA). To
compare values from different electromobility gel-shift
assays, values from each treatment group were expressed
as a percentage of the mean value obtained from the same
age-matched control fetuses that were run on all blots for
the each experiment.

Table I: Primers used for quantitative real-time PCR
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TNF- protein concentration

The concentration of TNF-a in lung tissue was measured
using a modified antibody-sandwich method of the
enzyme-linked immunosorbent assay [30]. Tissue sam-
ples were homogenised in 1x PBS and centrifuged at
2,500 rpm for 20 min. Supernatant, plasma or standards
(50 pul) were incubated overnight in a 96-well microtitre
plate precoated with 50 ul of TNF-a. mouse ascites mono-
clonal antibody (diluted 1:250 in 3 mM NaNj;, 20 mM
Na,CO;, 30 mM NaHCO,) and blocked with 1% skim
milk powder in PBS. Plates were washed five times in PBS
with 20% Tween 20 (Wash buffer), then incubated for 2 h
with 50 pl of rabbit anti-TNF-a polyclonal antisera (1:500
dilution in 0.001 M PBS/5%BSA). The plates were then
washed with buffer and incubated for 1 h with 50 pl of
sheep anti-rabbit horseradish peroxidase (diluted 1:1000
in 0.01 M PBS/5% BSA). The plates were then washed,
100 pl tetramethyl benzidine/dimethyl sulphoxide was
added and the plates were incubated for 10 — 15 min in
the dark before the colour reaction was stopped using 0.5
M sulphuric acid. An automatic plate reader (Original
Labsystems Multiskan RC, USA) measured the absorbance
(at 450 nm) and the levels of TNFa in each sample were
determined by interpolation of the standard curve.

TGF- | gene expression

TGF- ; mRNA levels in lung tissue were quantified by
Northern Blot analysis as previously described [31]. The
total integrated density of the TGF- ; mRNA transcript was
divided by the total integrated density of the 18S rRNA
band for that sample to account for minor differences in
total RNA loading between lanes. As a result, the band
densities are presented as a ratio of the 18S rRNA band
density and, therefore, have no units.

Quantitative real-time polymerase chain reaction

EGR1, CTGF, CYRG61, IL-1, IL-6 and IL-8 mRNA levels in
lung tissue were measured using quantitative real-time
polymerase chain reaction (qRT-PCR). The primers used
for amplification of these genes, the gene accession num-
bers and the regions amplified are shown in Table 1. Total
RNA was extracted, DNase-treated and 1 pg was reverse
transcribed into ¢cDNA (M-MLV Reverse Transcriptase,
RNase H Minus, Point Mutant Kit; Promega, Madison,

Gene GenBank Accession#  Nucleotides amplified  Upstream primer 5'-3' Downstream primer 5'-3'

EGRI  DQ239634 444-532 AGGGTCACTGTGGAAGGTC GCAGCTGAAGTCAAAGGAA

CTGF  DQ239672 407469 TATAGCTCCAGCGACAGCTC ACGAACTTGACTCAGCCTCA

CYR6! DQ239628 286-354 ATCGTCCAAACAACTTCGTG GGTAACGCGTGTGGAGATAC

IL-1 NM_001009465 353473 CGATGAGCTTCTGTGTGATG CTGTGAGAGGAGGTGGAGAG

IL-6 NM_ 001009392 598-705 CGCAAAGGTTATCATCATCC CCCAGGAACTACCACAATCA

IL-8 NM 001009401 438-520 CCTCAGTAAAGATGCCAATGA TGACAACCCTACACCAGACC

18S X01117 14951673 GTCTGTGATGCCCTTAGATGTC AAGCTTATGACCCGCACTTAC
Page 3 of 15

(page number not for citation purposes)


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ239634
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ239672
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ239628
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001009465
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001009392
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NM_001009401
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=X01117

Respiratory Research 2009, 10:19

WI). qRT-PCR was performed using a Mastercycler® ep gra-
dient S realplex real-time PCR system (Eppendorf, Ger-
many) using 20 pl reactions, containing 1 pl cDNA
template (1.5 pg/ul for IL-6, 1 pg/pl for IL-1, IL-8 and
CTGF, 500 ng/ul for EGR1 and 200 ng/ul for CYR61 and
18S), 1 pl of each forward and reverse primer (10 uM for
IL-1, IL-6, IL-8, CYRG61 and 18S and 4 uM for CTGF and
EGR1), 10 pl SYBR green (Platinum® SYBR® Green qPCR
SuperMix-UDG; Invitrogen Life Technologies, Carlsbad,
CA) and 7 pl of nuclease-free water. The thermal profile
used to amplify the PCR products included an initial 2
min incubation at 95°C, followed by 35-40 cycles of;
denaturation at 95°C for 3 sec, annealing at 59°C (IL-1,
IL-8 and EGR1) or 60°C (IL-6, CTGF and CYR61) for 20
sec and elongation at 72°C for 20 sec. The fluorescence
was recorded after each 72°C step. Dissociation curves
were performed to ensure that a single PCR product had
been amplified for each primer pair. Each sample was
measured in triplicate and a control sample, containing
no template, was included in each run. A threshold value
(Crvalue) for each sample was determined. Minor differ-
ences in the amount of cDNA template added to each
reaction were adjusted by subtracting the Cvalue for 18S
from the Cvalue for the gene of interest (AC;). To enable
comparisons between assays, a calibrator sample (in
quadruplicate) was run in each assay. The average C;value
for the calibrator sample was subtracted from the AC; of
each sample (AAC;). The mRNA levels of genes of interest
were normalized using the equation 2-2ACT and the results
were expressed relative to the mean mRNA levels of the
gene of interest in non-ventilated control fetuses.

Light microscopy and immunohistochemistry for EGRI and CYR6 |

Each lobe of each right lung was cut into 5 mm slices.
Every second slice was subdivided into 3 sections and 6
sections were chosen at random from each lobe, cut into
~1 cm x 1 cm sections and embedded in paraffin. Paraffin
blocks were randomly selected and 5 pum sections were
incubated at 60°C for 2 h, deparaffinised in xylene, rehy-
drated using graded alcohol washes and washed in PBS
and either stained with Haemotoxylin and Eosin (H&E)
or treated further for immunohistochemistry. Sections
used for immunohistochemistry were then boiled in
sodium citrate (0.01 M, pH 6.0) for 20 mins (in a micro-
wave, on high) to enhance antigen retrieval. Sections were
then washed in PBS (CYR61 2 x 5 min; EGR1 3 x 5 min)
and incubated (CYR61 5 min; EGR1 30 min) in hydrogen
peroxide (3%) to block endogenous peroxidase activity.
They were then rinsed in water (CYRG61 only), washed in
PBS and incubated in blocking/permeabilisation buffer
(10% normal goat serum and 0.1% TritonX-100 in 0.05 M
TrisHCI for CYR61 sections or 25% normal goat serum
and 5% BSA in 0.05 M TrisHCI for EGR1 sections) in a
humidity chamber (CYR61 30 min; EGR1 45 min, at
room temp). The sections were then incubated with the
primary antibodies (CYR61 Cat# sc-13100; EGR1 Cat# sc-
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189, Santa Cruz Biotechnology, California, USA) diluted
in DAKO antibody diluent (CYR61, diluted 1:150; EGR1
diluted 1:200) for either 90 min at room temperature
(CYRG61) or overnight at 4°C (EGR1). Sections were then
washed in PBS (0.1% Tween-20) for 5 mins (x3) and
incubated with a biotinylated secondary antibody (goat
anti-rabbit diluted 1:700; Vector laboratories, Burlin-
game, CA) in PBS/0.1% Tween 20 (CYR61) or Dako anti-
body diluent (EGR1) for 1 hour at room temperature. The
sections were again washed in PBS (0.1% Tween 20) for 5
mins (x3) before the secondary antibody was detected
using the Vectastain ABC detection kit (Vector laborato-
ries). The sections were washed, dehydrated and perma-
nently mounted. Sections that lacked the primary
antibodies or the secondary antibody were also included.

Sections were viewed under a light microscope and
images were captured at a magnification of 1000x using a
digital camera. Analysis was performed on images using
ImagePro Plus (Media Cybernetics, MD) on 5 fields of
view per section using 3 randomly chosen sections (from
different regions of the lungs). For each field of view, the
area of tissue positively stained for EGR1 or CYR61 was
measured and expressed as a percentage of the total area
of tissue. The percentage of stained tissue for each lamb
was then averaged for each experimental group. Analysis
was performed on the alveolar region of the lung, taking
care to avoid areas containing major airways or blood ves-
sels.

Data analysis

Data are expressed as the mean + SEM with the level of sta-
tistical significance set at p < 0.05. PaCO,, pHa, SaO,,
FiO, and PIP were analysed using a 2-way repeated meas-
ures ANOVA. The immunohistochemistry data was ana-
lysed by a nested ANOVA. The relative amounts of active
NF-«B (all three bands summed) and the mRNA levels of
TGF- |, CTGF, CYR61, EGRI1, IL-6, IL-8 and IL-1 were
compared between groups using one-way ANOVA. Signif-
icant differences indicated by ANOVA were subjected to a
least significant difference post-hoc test to identify differ-
ences between individual time points and treatment
groups.

Results

Activation of early response genes following IV

All blood gas and ventilation parameters were similar in
the four groups of lambs exposed to 15 mins of IV imme-
diately after birth (LI 15, LI 30, LI 60, LI 120). Thus, only
data from the lambs ventilated for 2 hrs after the 15 min
IV protocol (LI 120) are presented in Fig 1.

Blood gas parameters

Throughout the 135 min experimental period, the SaO,
remained at or higher than 95% (Fig. 1). The FiO, was ini-
tially reduced from 0.60 + 0.18 to 0.27 + 0.03 at the end
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Figure |

Blood gas parameters following 15 minutes of injurious ventilation. The alveolar-arterial difference in oxygenation
(AaDO,) (A), oxygen saturation (SaO,) (B), fraction of inspired oxygen (FiO,) (C), arterial pH (pHa) (D) and partial pressure
of CO, in arterial blood (PaCO,) (E) in preterm lambs at 132 days of gestation resuscitated at birth using an injurious ventila-
tion strategy then ventilated gently for 120 minutes. Values are mean + SEM. The black bar indicates 15 min of ventilation with
20 mL/kg V+and 0 cmH,O of positive end-expiratory pressure. The asterisks (*) represent values significantly different (p <

0.05) to the initial (5 min) time point.
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of the 15 min IV period (V;20 mL/Kg, 0 cmH,O PEEP),
but it was necessary to gradually increase the FiO, to a
maximum of 0.47 + 0.13 at 70 mins after completion of
the IV period. The AaDO, was significantly reduced from
739.6 + 213.1 mmHg to 285.9 + 38.0 mmHg by the end
of the 15 min IV period and then remained at this level for
the duration of the experiment. During the 15 min IV
period, the PaCO, and pHa remained unchanged at 15 +
1 mmHg and 7.66 + 0.02, respectively. However, during
the remainder of the experimental period, the PaCO,
gradually increased, reaching a maximum of 64 + 6
mmHg, and the pHa gradually decreased, reaching a min-
imum of 7.18 + 0.04 (Fig. 1).

Ventilation parameters

During 15 min of IV, the PIP required to administer a V.
of 20 mL/kg (in the absence of PEEP) decreased (p < 0.02)
from 54 + 2 cmH, 0 at 3 min after birth to 47 + 3 cmH,0
by the end of the 15 min IV period. Within 10 min of
change in ventilation strategy, the PIP required to deliver
a Vyof 5 mL/kg with 8 cmH,O PEEP was reduced (p <
0.001) to 32 + 1 cmH,O. The required PIP did not change
further during the remainder of the 120 min ventilation
period. However, because of the increasing PaCO, and
decreasing pH, it was necessary to gradually increase the
ventilation rate from 36.3 + 6.6 breaths/min at the end of
the 15 min IV period to 87.1 + 18.5 breaths/min at the
completion of the experiment. As a result, the mean air-
way pressure at the end of the 15 min IV period was simi-
lar to that at completion of the experiment (15.2 + 0.5 vs
15.6 + 0.6 cmH,0).

Indicators of lung injury

The level of active NF-«kB within lung tissue did not signif-
icantly change for up to 2 h following 15 min of IV; the
levels were similar at 15 (78.2 + 7.9%), 30 (93.2 +
27.0%), 60 (109.9 = 22%) and 120 (70.4 + 23.3%) min
after IV compared with values prior to ventilation meas-
ured in age-matched control fetuses (100.0 + 5.8%). Sim-
ilarly, TGF-B; mRNA levels in lung tissue were similar at
15 (96.4 = 2.0%), 30 (99.7 + 4.2%), 60 (98.3 + 14.1%)
and 120 (99.1 + 13.6%) minutes after [V, compared with
the levels before ventilation in age-matched control
fetuses (100.0 + 3.8%). TNF-a protein levels could not be
detected in plasma or tissue homogenates in ventilated
lambs or in unventilated age-matched control fetuses.

IV induced a large and sustained increase in IL-1 , IL-6 and
IL-8 mRNA levels; 28.3 + 16.6,25.6 + 13.9and 74.1 + 20.4
fold increase respectively (p < 0.05), compared with pre-
ventilation control values, within 15 mins of completing
IV (Fig 2). Although IL-1 mRNA levels had returned to
control levels at 120 mins after completion of the IV
period, IL-6 and IL-8 mRNA levels remained significantly
elevated (p < 0.05) at 11.0 + 3.2 and 42.8 + 11.3 fold,
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respectively, above pre-ventilation control values at this
time (Fig 2).

IV also induced a time-dependent increase in mRNA lev-
els for CTGF, EGR1 and CYRG1. The expression levels of
all three genes were significantly higher (p < 0.05) at every
time point after IV, than the pre-ventilation mRNA levels
in age-matched control fetuses. CTGF mRNA levels
increased 15.5 + 3.8 fold at 15 mins and increased further
to 24.4 + 2.1 fold the control values at 30 mins after the
IV period. CTGF mRNA levels in lung tissue then declined
to 10.9 + 2.7 fold at 60 mins and to 7.8 + 1.5 fold of the
control values at 120 mins after the IV period (Fig. 3A).
Compared with the values prior to ventilation in age-
matched control fetuses, EGR1 and CYR61 mRNA levels
increased by 123.7 + 7.0 and 51.3 + 11.4 fold, respec-
tively, at 15 mins after the IV period. EGRI and CYR61
mRNA levels in lung tissue then declined to 43.9 + 8.8 and
29.1 + 4.3 fold above control values at 30 mins, to 13.8 +
4.1 and 13.7 + 3.5 fold at 60 mins, and to 11.1 + 2.7 and
5.6 + 1.5 fold, respectively, at 120 mins after the IV period
(Fig. 3A).

The increase in CYR61 and EGRI1 gene expression was
reflected by a gradual, but marked, increase in the percent-
age of lung tissue stained positive for these proteins (Fig
3B); representative histological sections immunostained
for CYR61 and EGR1 are shown in Figure 4. The percent-
age of lung tissue labelled positive for the CYR61 and
EGR1 proteins increased from 3.0 + 1.4 and 11.2 + 1.2%
before ventilation in control fetuses to 16.8 + 2.9 and 31.1
+ 1.6%, respectively (p < 0.05), at 2 hours after IV (Fig.
3B). Sections of lung tissue that lacked the primary anti-
bodies or the secondary antibody showed no evidence of
staining. CTGF protein levels could not be determined as
none of the commercial antibodies tested recognised
ovine CTGF.

Affect of tidal volume on the activation of early response
genes

Blood gas and ventilation parameters and indices of lung injury
The blood gas and ventilation parameters for these studies
have been presented in detail previously [28]. The co-effi-
cient of variation of the delivered V;was 6.5 + 0.3%. The
PIP and P, delivered to VG10 lambs was significantly
higher (p < 0.05) than the PIP and P, delivered to VG5
lambs throughout the 15 minute resuscitation and 2 h
ventilation period (Fig 5). PaCO, values were significantly
lower (p < 0.05) in the VG10 group than the VG5 group
throughout the 15 minute resuscitation period and 2 h
ventilation period. pHa values were significantly higher (p
< 0.05) in lambs ventilated at 10 mlL/kg compared with
lambs ventilated at 5 ml/kg during the resuscitation
period but were not different from the 5 mL/kg lambs dur-
ing the 2 hour ventilation period. The SaO, and AaDO,
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Figure 2

IL-1, -6 and -8 mRNA levels following injurious venti-
lation. IL-1 , IL-6 and IL-8 mRNA levels (mean + SEM) in pre-
term lamb lungs at 132 days of gestation resuscitated at birth
using an injurious ventilation (IV) strategy for 15 minutes,
then ventilated gently for 15—120 minutes. Values are
expressed as a fold change relative to values in unventilated
age-matched control fetuses (T = 0 values). IL-6 and IL-8
mRNA levels were significantly higher than the levels in
unventilated control fetuses (p < 0.05) at all timepoints after
the IV period. IL-] mRNA levels were significantly higher
than the levels in unventilated control fetuses at |15, 30 and
60 minutes after the IV period.

were similar in both groups (Fig 5). Two of the VG10
lambs developed pneumothoraces and the experiments
were terminated (just prior to the planned end of the ven-
tilation period). Subpleural air leaks were also observed in
three of the VG10 lambs. None of the VG5 lambs devel-
oped pneumothoraces and only one developed a subpleu-
ral air leak. At least three H&E stained tissue sections from
three different regions of the lung from each lamb were
closely examined under the light microscope for evidence
of lung injury. All lung tissue sections from lambs venti-
lated with 10 mL/kg showed substantial and consistent
evidence of hyaline membranes, cellular debris and epi-
thelial cell detachment in the bronchioles and terminal
airspaces of the lungs (Fig 6). In contrast, there was sub-
stantial variation within and between the lungs of the
lambs ventilated with 5 mL/kg. Hyaline membranes in
VG5 lambs were rare and minor in comparison to VG10
lambs and while epithelial cell detachment was a com-
mon finding (Fig 6) in all VG5 lambs, there was substan-
tial regional variation. Hyaline membranes and epithelial
cell detachment were not observed in lungs from control
fetuses.

Indicators of lung inflammation
TNFa protein levels were not detectable and active NF-xB
levels and TGF-  mRNA levels within lung tissue were not

http://respiratory-research.com/content/10/1/19

altered by either of the ventilation procedures (data not
shown).

The mRNA levels for IL-1, IL-6 and IL-8 in lung tissue
were significantly increased in both groups of ventilated
lambs, compared to the levels prior to ventilation meas-
ured in age-matched control fetuses (p < 0.001; Fig 7). The
increase in IL-1 mRNA levels was similar in VG5 (35.1 +
12.0 fold) and VG10 (31.5 + 9.9 fold) lambs and were
greater than control levels (1.0 + 0.3; p < 0.001). However,
the increase in IL-6 was significantly greater in VG10
(116.9 + 44.6 fold) lambs compared to VG5 lambs (28.9
+ 4.8 fold, p < 0.05), both of which were significantly
higher than the levels before ventilation in control fetuses
(1.0 £ 0.3; p < 0.001). The increase in IL-8 mRNA levels
was also greater in the VG10 lambs (92.2 + 52.4 fold) than
in the VG5 lambs (32.8 + 8.7 fold) and both groups were
significantly higher than control levels (1.0 + 0.4; p <
0.001), however, due to the large degree of variation
between lambs the differences between the two ventilated
groups were not statistically significant.

The lung mRNA levels of EGR1, CYR61 and CTGF were
also significantly increased (p < 0.01) in both ventilated
groups of lambs, compared to the levels before ventilation
in age-matched control fetuses (Fig 7). The fold increase
in EGR1 mRNA levels relative to control levels (1.0 + 0.2;
p <0.001) was similar in VG5 (14.8 + 2.6 fold) and VG10
(14.6 + 2.5 fold) lambs. The fold increase in CYRGI
mRNA levels was greater in the VG10 (21.2 + 4.9 fold; p <
0.01) lambs than in the VGS5 treated lambs (8.8 + 1.4 fold)
and both were significantly greater than the levels prior to
ventilation in control fetuses (1.0 + 0.1; p < 0.01). The
increase in mRNA levels for CTGF was also greater in the
VG10 (11.8 + 4.1 fold) lambs than in the VG5 treated
lambs (6.5 + 1.1 fold) but the difference between the ven-
tilated groups failed to reach statistical significance. Both
groups of ventilated fetuses had significantly higher CTGF
mRNA levels than the control fetuses (1.0 + 0.4; p <
0.001).

Discussion

Ventilator-induced lung injury (VILI) is closely associated
with BPD in very preterm infants [1] and is thought to
trigger an inflammatory response which results in abnor-
mal lung development. However, the specific mecha-
nisms by which mechanical ventilation causes lung injury
in very preterm infants are largely unknown, as are the
pathways resulting in the abnormal lung development
that characterise BPD. We have recently demonstrated
that VILI in the immature lung induces a rapid increase in
distal lung cell proliferation [19] which is consistent with
the fibroblast proliferation seen in infants with BPD [1]
We have also identified a number of early response genes
(CTGF, EGR1 and CYR61) that regulate cell proliferation
and are thought to play a role in normal lung develop-
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Figure 3

CTGF, CYR61 and EGRI mRNA levels following injurious ventilation. (A) CTGF, CYR6/ and EGR/ lung mRNA levels
and (B) the percentage of tissue staining positive for CYR6| and EGR| protein in preterm lambs at 132 days of gestation
resuscitated at birth using an injurious ventilation (IV) strategy for 15 minutes, then ventilated gently for 15-120 minutes. All
values are mean + SEM and expressed as a fold change relative to values in unventilated age-matched control fetuses (T = 0 val-
ues). The mRNA levels of CTGF, CYR61 and EGR/ were significantly higher (p < 0.05) than the levels prior to ventilation (T = 0),
at all time points after IV. The asterisks (*) indicate protein levels of CYR6/ and EGRI that were significantly higher (p < 0.05)
than the levels before ventilation measured in age-matched control fetuses.
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Figure 4

EGRI and CYR6I protein levels in lung tissue follow-
ing injurious ventilation. Lung tissue sections stained for
EGRI and CYR6I proteins using immunohistochemical tech-
niques. The lung tissue sections shown are representative of
the sections from unventilated age-matched control fetuses
and preterm lambs at 2 hours after a |5 minute period of
injurious ventilation (IV). The brown stain represents lung
tissue containing the EGRI or CYR61 protein. Slides incu-
bated without the primary or secondary antibodies did not
show any evidence of brown staining (data not shown).

ment [22]. As these genes are also involved in adult lung
injury and disease [24-27], we investigated their activa-
tion following VILI in preterm lambs. We found that
CTGF, EGR1 and CYRG61 expression is rapidly increased in
a time-dependent manner in response to VILI in very pre-
term lambs and that CTGF, CYR61, IL-6 and IL-8 are dif-
ferentially expressed during high and low tidal volume
ventilation strategies. Thus, it is possible that the abnor-
mal lung development that follows VILI, is explained at
least in part by the abnormally high expression of these
genes. Furthermore, the reduction in pneumothoraces
and sub-pleural air-leaks, the histological evidence of lung
injury and our gene expression findings indicate that vol-
ume-controlled mechanical ventilation (with PEEP) from
birth, using a low tidal volume (5 mL/kg) was less injuri-
ous than using a tidal volume of 10 mL/kg.

A primary aim of this study was to determine the degree
and rapidity of increase in expression of CTGF, CYR61
and EGR1 following injurious ventilation, in comparison
to that of inflammatory factors that have previously been
associated with VILI in neonates [8,11,32]. In the present
study TNFa protein was not detectable, while NF-«B activ-
ity and TGF- 1 mRNA levels did not change within 2 hr of
VILI, suggesting that these proteins and genes do not form
part of the very early response to lung injury in very pre-
term lambs. In contrast, the increases in IL-1, IL-6 and IL-

http://respiratory-research.com/content/10/1/19

8 after injurious ventilation support the findings of other
studies that have also found these inflammatory cytokines
are increased at 2-3 h after injurious ventilation from
birth [32,33]. Our study extends those findings to demon-
strate that IL-1, IL-6, IL-8, CTGF, CYR61 and EGR1 all
responded very rapidly (within 15 minutes of an injurious
resuscitation period) and to levels substantially higher
(25-125 fold) than those in unventilated controls. These
data suggest that the cascade of events leading to lung
inflammation and lung remodelling can be rapidly initi-
ated during the immediate resuscitation period after birth.
The abnormally high expression levels of these genes was
not only limited to resuscitation with high tidal volumes
without PEEP, but also occurred in response to ventilation
regimens similar to those commonly used for preterm
infants.

CYR61 and CTGF are members of the CCN protein family
which in mammals consists of 6 proteins (CYR61, CTGF,
nephroblastoma-overexpressed1; NOV1 and the Wnt-
induced secreted proteins; WISP-1, WISP-2 and WISP-3;
[34]). The CCN family are secreted matricellular proteins
that form interactions between the extracellular matrix
and cell adhesion molecules, leading to diverse cellular
responses including cell proliferation, extracellular matrix
production, angiogenesis, adhesion, migration, apoptosis
and growth arrest [34].

CTGF induces lung fibroblast proliferation, myofibroblast
differentiation [35] and the expression of collagen and
other extracellular molecules [34]. CTGF has increased
expression (0.3 fold) in fetal sheep lungs undergoing
accelerated lung growth [22] and CTGF knockout mice die
at birth of respiratory failure due to defects in the rib cage
and pulmonary hypoplasia [36]. Although these data
indicate that CTGF is important for normal lung growth,
abnormally elevated levels of CTGF expression are also
implicated in the pathogenesis of adult human lung dis-
eases such as idiopathic pulmonary fibrosis [24] and
chronic obstructive pulmonary disease [26]. In the adult
mouse, bleomycin-induced pulmonary fibrosis [23] and
hyperoxia-induced lung injury [25], also exhibit elevated
CTGF mRNA levels. As fibroblast proliferation, myofi-
broblast differentiation, hypercellularity and pulmonary
fibrosis are commonly associated with VILI in very pre-
term infants [1] and fetal sheep [19], it is possible that
abnormally high CTGF expression following VILI (~25
fold in the current study) may contribute to the pathogen-
esis of BPD.

CYRG61 is structurally and functionally similar to CTGF
and also acts as an early response gene. CYR61 acts syner-
gistically with other growth factors to potentiate their
mitogenic effects on endothelial, epithelial and fibroblast
cells [20,37] as well as to promote collagen and cartilage
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Figure 5

Blood gas and ventilator parameters during VG5 and VGI10 ventilation strategies. Arterial pH (pHa) (A), partial
pressure of CO, in arterial blood (PaCO,) (B), alveolar-arterial oxygen difference (AaDO,) (C), peak inspiratory pressure
(PIP) (D) and mean airway pressure (P,,) (E) in preterm lambs mechanically ventilated from birth at 125 days of gestation.
Lambs were mechanically ventilated with either 5 (VG5) or 10 (VGI10) mL/kg. Values are mean + SEM and the asterisks repre-
sent values significantly different (p < 0.05) between VG5 and VGIO0.
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Figure 6

Histological evidence of lung injury in lambs ventilated with VG5 and VG10 ventilation strategies. Representative
haematoxylin and eosin stained lung tissue sections in preterm lambs mechanically ventilated from birth at 125 d of gestation
with a tidal volume of 10 mL/kg (A) or 5 mL/kg (B) and unventilated control fetuses (C). Hyaline membranes are shown with
arrows and detached epithelial cells are shown with arrowheads.
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Figure 7

Interleukin-1, -6 and -8, EGRI, CYR6] and CTGF mRNA levels in control fetuses and following VG5 and VG 10
ventilation strategies. IL-/ , IL-6 and IL-8 (A) and EGR/, CYR6 ! and CTGF (B) mRNA levels in unventilated age-matched con-
trol fetuses and in preterm lambs mechanically ventilated from birth at 125 days of gestation with either 5 (VG5) or 10 (VGI10)
mL/kg. The values are mean * SEM and expressed as a fold-change relative to the mean levels in unventilated control fetuses.
The asterisks (*) represents values significantly greater (p < 0.001) than values before ventilation measured in age-matched
control fetuses. The hash (#) represents values significantly greater than those in the VG5 lambs (p < 0.05).
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production [34]. Depending on the cellular milieu, the
primary role of CYR61 is thought to be the regulation of
angiogenesis by promoting the proliferation of endothe-
lial cells and the production of angiogenic molecules such
as vascular endothelial growth factor [38,39]. Interest-
ingly, CYR61 also up-regulates the expression of inflam-
matory genes, including IL-1 , as well as modulators of the
extracellular matrix such as proteases and their inhibitors
[40]. Similar to CTGF, CYRG1 expression is also increased
(~0.3 fold) in fetal sheep lungs undergoing accelerated
growth [22] and abnormally high levels of CYR61 have
been implicated in the pathogenesis of chronic obstruc-
tive pulmonary disease [26] in humans as well as lung
injury in adult rodents induced by hyperoxia [25] or
volutrauma [27]. Based on its known roles, the large and
rapid increase in CYR61 expression (~50 fold in the cur-
rent study) may contribute to the abnormal lung pathol-
ogy caused by VILI via several mechanisms. It may
contribute to the hypercellularity and fibrosis by directly
stimulating the proliferation of fibroblasts and epithelial
cells and may upset the normal balance of angiogenic fac-
tors, contributing to dysmorphic capillary growth. It may
also contribute to the sustained inflammation and abnor-
mal tissue repair that can occur in response to VILI and is
an antecedent of BPD in very preterm infants. Our results
indicate that increased CYRG61 expression may play a key
role in initiating the cascade of events caused by VILI, as
CYRG61 protein levels in lung tissue were increased 6-fold
within two hours of VILI.

EGR1 is a transcription factor that is rapidly expressed by
diverse stimuli that induce growth, differentiation and
apoptosis [41]. EGR1 up-regulates the expression of cell
cycle regulatory proteins, growth factors, cytokines such as
IL-1B8, TNFa and TGFB and other transcription factors
including itself and matrix proteins [21,42-45]. EGRI1 is
up-regulated in the fetal sheep during accelerated lung
growth [22] and in hemi-pneumonectomy induced com-
pensatory lung growth in adult mice suggesting that it
may play a role in regulating normal lung growth [46].
However, EGR1 expression is also increased by
volutrauma in the adult rat lung [47] and it plays a pivotal
role in the response to pulmonary ischaemia-reperfusion
injury in the adult mouse [48]. In humans it has been
implicated in the pathogenesis of chronic obstructive pul-
monary disease [26,49] and vascular pathologies where it
can cause vascular lesions, suppress the growth of dam-
aged endothelial cells and modulate vascular tone
[reviewed in [43]]. These roles for EGR1, suggest the high
levels of its expression induced by VILI (~125 fold in the
current study), may contribute to abnormal lung develop-
ment by its ability to induce cell proliferation, impair vas-
cular development, produce matrix proteins and induce
cytokines that promote inflammation.

http://respiratory-research.com/content/10/1/19

Regardless of whether CTGF, CYR61 and EGR1 are critical
mediators of abnormal lung development caused by VILI,
they are likely to be early markers of lung injury. All three
genes were very rapidly elevated in response to the injuri-
ous ventilation strategy. More importantly, when taken
together, the expression levels of IL-6, IL-8, CTGF and
CYR61 appeared to differentiate between ventilation strat-
egies causing different degrees of lung injury. Expression
levels of all four genes were lowest in lambs mechanically
ventilated with a tidal volume of 5 mL/kg and were higher
in lambs mechanically ventilated with 10 mL/kg that
exhibited gross and histological evidence of lung injury.
In contrast, EGR1 and IL-1 appeared not to be sufficiently
sensitive to detect any differences between the ventilation
strategies. Although the 135 minute ventilation period
did not allow time for changes in lung structure to mani-
fest histologically, other evidence indicated that VG10
lambs incurred more lung injury than VG5 lambs. This
evidence included the presence of hyaline membranes,
detached epithelial cells, red blood cells in the distal lung
parenchyma, the presence of blood stained tracheal aspi-
rates, the production of pneumothoraces and subpleural
air leaks, and the high PIP required to achieve the tidal
volume of 10 mL/kg [28].

Conclusion

The current international guidelines for neonatal resusci-
tation (ILCOR) provide little guidance on the most appro-
priate resuscitation techniques that minimise lung injury
in the immediate newborn period when the lungs are par-
tially liquid-filled and not uniformly aerated. Our data
indicate that VILI during the immediate newborn period
can rapidly (within 15 mins) initiate changes in gene
expression which are abnormal and likely to potentiate
inflammation and to promote abnormal lung develop-
ment. Furthermore, our studies indicate that resuscitation
and mechanical ventilation at birth with relatively high
tidal volumes is potentially more injurious than with rel-
atively low tidal volumes. We also conclude that CTGF,
CYR61, EGR1, IL-1B, IL-6 and IL-8 are likely to be useful
biomarkers of VILI in the newborn, particularly in studies
of short duration.
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