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Abstract
Background: Initiation of ventilation using high tidal volumes in preterm lambs causes lung injury
and inflammation. Antenatal corticosteroids mature the lungs of preterm infants and postnatal
corticosteroids are used to treat bronchopulmonary dysplasia.

Objective: To test if antenatal or postnatal corticosteroids would decrease resuscitation induced
lung injury.

Methods: 129 d gestational age lambs (n = 5-8/gp; term = 150 d) were operatively delivered and
ventilated after exposure to either 1) no medication, 2) antenatal maternal IM Betamethasone 0.5
mg/kg 24 h prior to delivery, 3) 0.5 mg/kg Dexamethasone IV at delivery or 4) Cortisol 2 mg/kg IV
at delivery. Lambs then were ventilated with no PEEP and escalating tidal volumes (VT) to 15 mL/
kg for 15 min and then given surfactant. The lambs were ventilated with VT 8 mL/kg and PEEP 5
cmH20 for 2 h 45 min.

Results: High VT ventilation caused a deterioration of lung physiology, lung inflammation and
injury. Antenatal betamethasone improved ventilation, decreased inflammatory cytokine mRNA
expression and alveolar protein leak, but did not prevent neutrophil influx. Postnatal
dexamethasone decreased pro-inflammatory cytokine expression, but had no beneficial effect on
ventilation, and postnatal cortisol had no effect. Ventilation increased liver serum amyloid mRNA
expression, which was unaffected by corticosteroids.

Conclusions: Antenatal betamethasone decreased lung injury without decreasing lung
inflammatory cells or systemic acute phase responses. Postnatal dexamethasone or cortisol, at the
doses tested, did not have important effects on lung function or injury, suggesting that
corticosteroids given at birth will not decrease resuscitation mediated injury.
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Introduction
The majority of very low birth weight infants are intu-
bated and receive mechanical ventilation at birth [1]. A
few large tidal volume breaths can inactivate surfactant
[2], and initiation of ventilation with large tidal volumes
activates an inflammatory cascade in the medium and
small airways [3]. In surfactant deficient animals, normal
tidal volume ventilation from birth initiates an inflamma-
tory cascade characterized by inflammatory cell influx
into the lungs, increased alveolar protein, inflammatory
cytokine mRNA induction, and systemic acute phase
inflammatory responses [4]. Mechanical ventilation is
associated with an increased risk of bronchopulmonary
dysplasia (BPD), and alternatives to delivery room intuba-
tion and ventilation tend to decrease BPD [5,6]. Lung
inflammation is a major contributor to the pathophysiol-
ogy of BPD [7].

Antenatal corticosteroids have pleotrophic effects that
include induced lung maturation and decreased neonatal
mortality, respiratory distress syndrome (RDS), intraven-
tricular hemorrhage, and necrotizing enterocolitis, but no
decrease in BPD [8]. Antenatal corticosteroids also
increase the antioxidant defenses of very low birth weight
infants and preterm sheep [9,10]. Antenatal corticoster-
oids are currently recommended for women 24 to 34
weeks gestation at risk for preterm delivery [11]. Postnatal
corticosteroids, primarily dexamethasone, are used to
wean infants from ventilatory support and to decrease
BPD [12]. Although some infants exposed to postnatal
corticosteroids have impaired neurodevelopment, infants
with high risk for BPD benefit from weaning from the ven-
tilator and a decrease in BPD [13]. Hydrocortisone, used
to treat relative adrenal insufficiency in premature infants,
decreased the incidence of BPD in infants exposed to cho-
rioamnionitis [14]. The presumed beneficial effects of cor-
ticosteroids in BPD are to decrease lung inflammation
and microvascular permeability [15].

The initiation of ventilation at birth with large tidal vol-
umes for 15 minutes causes an acute stretch induced lung
injury and a systemic inflammatory response [16]. Venti-
lation of preterm lambs activates Early growth protein 1
(Egr-1) and other pro-inflammatory signaling pathways
[17] that are inhibited by corticosteroids [18]. Corticoster-
oids decrease stretch induced lung injury in adult animals
[19]. Corticosteroids given prior to cardiopulmonary
bypass also decrease systemic inflammation and acute
phase responses [20]. Since different corticosteroids have
different potencies and glucocorticoid effects [21], we
have tested the common corticosteroids used clinically in
preterm infants. We hypothesized that antenatal betame-
thasone or postnatal dexamethasone or cortisol will
decrease lung and systemic injury caused from initiating
ventilation with high VT in preterm sheep.

Materials and methods
The animal studies were performed in Perth, Western Aus-
tralia after approval from the animal care and use commit-
tees at Cincinnati Children's Hospital and the University
of Western Australia.

Treatment Groups
Time-mated 129 d gestational age preterm lambs (term
~150 d) were operatively delivered, a tracheostomy per-
formed, and lung fluid removed [4]. An external jugular
catheter was placed prior to clamping the umbilical cord.
Lambs were randomly assigned to 5 experimental groups:
1) No steroids (Injury), 2) Maternal betamethasone 0.5
mg/kg IM to the ewe 24 h before delivery (Injury + Beta),
3) dexamethasone 0.5 mg/kg IV following cord clamping
and prior to ventilation (Injury + Dex), 4) cortisol 2 mg/
kg IV following cord clamping and prior to ventilation
(Injury + Cortisol), or 5) non-ventilated fetal controls.
The maternal betamethasone dose was the effective dose
for lung maturation in sheep [22] and is similar to the
dose given to pregnant women at risk for preterm birth.
The 0.5 mg/kg Dex dose is the high dose used clinically for
treating infants with BPD [12]. The cortisol dose (2 mg/
kg) is higher than used in clinical trials [14], but equiva-
lent to dose given over 24 h for hypotension in preterm
infants [23]. The higher doses of postnatal corticosteroids
were chosen to evaluate their anti-inflammatory effects.

Lung Injury for 15 Minutes
Ventilation was initiated (rate 40 breaths/min, inspiratory
time 0.7 s, FiO2 0.40) with a Drager BL8000+ ventilator
(Drager, Lubeck, Germany) using a time-cycled, volume-
guarantee mode and 8 L/min flow with heated and
humidified gas and no positive end expiratory pressure
(PEEP). Tidal volumes (VT) were escalated to achieve the
target VT of 8-10 mL/kg at 5 minutes, 12-15 mL/kg by 10
minutes and 15 mL/kg at 15 minutes to injure the lungs
[16]. Lambs were treated with 100 mg/kg porcine sur-
factant at 15 min of age (Curosurf®, kindly provided by
Chiesi Pharmaceuticals, Italy). The umbilical artery was
catheterized for blood gas sampling. An umbilical vein
catheters were placed for continuous infusion of Remifen-
tanil (0.05 μg/kg/h; Ultiva, Glaxo Smith Kline, Victoria,
Australia) and Propofol (0.1 mg/kg/h; Repose, Norbrook
Laboratories, Victoria, Australia).

Subsequent Ventilation
Following surfactant treatment at 15 min of age, the vol-
ume guarantee ventilation mode was decreased to 7 mL/
kg and lambs were ventilated for the remaining study
period (2 h 45 min) with a heated and humidified oxygen
and air mixture (40 breaths/min, PEEP 5 cmH20, inspira-
tory time 0.7 s, Fi02 0.40). A PaCO2 of 50 mmHg was tar-
geted by adjusting the volume guarantee. FiO2 was
adjusted to maintain a oxygen saturation on pulse oxime-
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try of greater than 90%. Blood-gas status and ventilation
variables were recorded every 15 minutes for first hour,
then every 30 minutes. Ventilation Efficiency index (VEI)
was calculated as 3800/((PIP-PEEP) ventilator rate •
PaCO2). Oxygenation Index (OI) was calculated as FiO2 •
Mean Airway Pressure • 100/PaO2. Lambs were killed
with a lethal intravenous dose of pentobarbital (100 mg/
kg, Valabarb, Jurox, Rutherford, NSW, Australia) 3 h after
delivery.

Lung Processing and BAL Analysis
The lungs were weighed, and bronchoalveolar lavage
(BAL) was recovered by saline lavage of the left lung[24].
Tissues from the left lung were snap frozen for RNA anal-
ysis. The right upper lobe was inflation fixed with 10%
formalin [24]. Injury was scored on blinded H&E stained
tissue. Ten random high power fields were scored on a 0
to 2 scale for thickness of mesenchyme, hemorrhage,
inflammation, and epithelial sloughing (total 8
points)[3]. Cytospins of BAL were used for differential cell
counts of neutrophils, monocytes, or epithelial cells [25].

Immunohistochemistry
Immunostaining protocols were used as reported[25,26].
Paraffin sections (5 μm) of formalin fixed tissue were pre-
treated with 3% hydrogen peroxide to inactivate endog-
enous peroxidases. The sections were incubated with anti-
human Egr-1 1:250 dilution (Santa Cruz, USA) in 4% nor-
mal goat serum overnight, followed by biotin labeled sec-
ondary antibody. Immunostaining was visualized by
Vectastain ABC peroxidase Elite kit to detect the anti-
gen:antibody complexes (Vector Laboratories Inc). The
antigen detection was enhanced with nickel-DAB, fol-
lowed by TRIS-cobalt and the nuclei were counterstained
with eosin.

RNase protection assays
Total RNA was isolated using a modified Chomzynski
method [27], and 10 μg of total lung RNA was used for
RNase protection assays using sheep-specific riboprobes
for IL-1β, IL-6, MCP-1, HSP70, Egr-1, and L32 [28-30].
Solution hybridization was performed in 80% deionized
formamide, 0.4 M NaCl, 2 mM EDTA, and 0.04 M PIPES,
pH 6.6, using a molar excess of [32P]UTP-labeled probes
for 16 h at 56°C. Single-stranded RNA was digested with
RNase A/T1 (Pharmingen, San Diego, CA). RNase was
inactivated, and the protected RNA was precipitated using
RNAse inactivation buffer (Ambion, Austin, TX). L32
(ribosomal protein mRNA) was used as an internal con-
trol for loading[30]. The protected fragments were
resolved on 6% polyacrylamide 8 mol/L urea gels, visual-
ized by autoradiography, and quantified on a Phospho
Imager using ImageQuant version 1.2 software (Molecu-
lar Dynamics, Sunnyvale, CA).

In situ hybridization
Digoxigenin-labeled riboprobes for In situ localization
(sense and anti-sense) were synthesized from cDNA tem-
plates using DIG RNA labeling kits (Roche, USA) and
diluted in hybridization buffer to a final concentration of
1 ug/mL. The sections were pre-treated with 4% parafor-
maldehyde, proteinase K treated, and hybridized with the
probe overnight at 49°C. Sections were washed with for-
mamide then treated with RNase A (100 μg/mL), washed
and blocked with 10% horse serum. Following incubation
overnight at 4°C with anti-Digoxigenin antibody (Roche,
USA) and then washing, the slides were developed with
NBT-BCIP (Roche, USA) in dark cases. The slides were
monitored for color development, then stopped with Tris
EDTA buffer. Controls for specificity of ribo-probe bind-
ing included use of the homologous (sense) probe.

Statistics
All values are expressed as means ± SD or individual val-
ues plus mean. Comparisons between intervention
groups were made with two-tailed Mann-Whitney non-
parametric tests, Welch t-tests, or ANOVA where appropri-
ate. Significance was accepted at p < 0.05.

Results
The lambs had similar birth weights, tidal volumes, and
peak inspiratory pressures at 15 minutes (Table 1).
Although the Injury + Beta animals were the only group to
achieve the target VT of 15 mL/kg, the lambs exposed to
antenatal betamethasone tolerated injurious ventilation
better than lambs receiving no steroids. The betametha-
sone exposed lambs had more stable PaCO2, oxygenation
index and ventilation efficiency index values throughout
the 2 h 45 min ventilation period than did the other
groups (Figure 1). Neither postnatal dexamethasone nor
cortisol prevented increases in PaCO2, decreased oxygen-
ation and overall deterioration of ventilation, despite rel-
atively stable compliance values (Figure 1).

All lambs had increased BAL protein compared to unven-
tilated controls (Table 2). Antenatal betamethasone
decreased protein in BAL, but had no effect on the number
of inflammatory cells recovered by BAL. Postnatal dexam-
ethasone or cortisol did not change BAL protein or
inflammatory cells relative to ventilated controls. Injury
scores of betamethasone and dexamethasone exposed
lungs showed decreased injury compared to Injury group
(Table 2). The betamethasone group, compared to Injury
animals, had decreased inflammatory cells and airway
thickness of mesenchyme on Injury scoring.

Lung Cytokines and Acute Phase Reactants
The initial stretch injury increased IL-1β, IL-6, monocyte
chemotactic protein 1 (MCP-1), and early response pro-
tein 1 (Egr-1) mRNA in the lungs at 3 h (Figure 2). Con-
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sistent with the lower lung injury score, betamethasone
treatment reduced cytokine production compared to the
injury animals. Postnatal dexamethasone decreased lung
IL-1β and MCP-1mRNA, but not IL-6 or Egr-1. Cortisol
had no effect on lung cytokine mRNA.

Lung Egr-1 mRNA increased about 2 fold in injury group
and cortisol groups, but did not change with betametha-
sone or dexamethasone. Egr-1 protein expression was
increased in the cells surrounding the smaller airways in
the animals exposed to ventilation (Figure 3). Similar

Pulmonary outcomesFigure 1
Pulmonary outcomes. There were no differences between Injury, Dexamethasone (Dex), and Cortisol groups. (A) PaCO2 
decreased similarly in all groups at 15 min after the initial high VT stretch injury, then increased with continued ventilation. 
PaCO2 was lower after 120 min in the betamethasone group (Beta) relative to the injury group. (B) Ventilation efficiency index 
(VEI) decreased with time of ventilation, indicating progressive injury, with less decrease in the Beta group. (C) Dynamic com-
pliance decreased following the stretch injury, with less decrease at 60 min for the Beta group. (D) Oxygenation index 
increased (indicating deterioration in oxygenation) with ventilation in all groups except the Beta group. t p < 0.05 vs Injury 
group.
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staining patterns were seen in dexamethasone and cortisol
groups. Betamethasone exposed animals had fewer Egr-1
positive cells (Figure 3F).

Heat Shock protein 70 (HSP70) mRNA is normally
expressed by the airway epithelium and some parenchy-
mal cells in fetal sheep [3] (Figure 4). The mRNA
decreased in all ventilated groups. The HSP70 mRNA sig-
nal was lost from bronchial epithelium with ventilation
and induced in the smooth muscle surrounding the larger
airways. The Betamethasone group also lost the bronchial
epithelium mRNA but there was no induction in the
smooth muscle.

Systemic response to ventilation
All ventilation groups had increased mRNA for the acute
phase reactant Serum Amyloid A3 (SAA3) in the liver
(Table 2). Antenatal or postnatal steroids did not affect
liver acute phase response to initiation of ventilation with
large tidal volumes.

Discussion
Ventilation of preterm lambs, in the alveolar stage of lung
development, with escalating VT to about 15 mL/kg by 15
min causes activation of a pro-inflammatory cascade in
the lung, with both airway and tissue involvement
[16,31]. Antenatal treatment with betamethasone
decreased the injury score, protein leak, and pro-inflam-
matory cytokines compared to animals receiving no treat-
ment (Injury), and tended to decrease neutrophils in the
BAL. Betamethasone treatment improved lung function
after large tidal volume injury and surfactant treatment.
Postnatal dexamethasone had variable effects on the pro-
inflammatory cytokine production, with a decreased IL-
1β and MCP-1 production, but did not prevent the deteri-
oration in lung function by 3 h. The postnatal cortisol
treatment had minimal effects under these experimental
conditions. The induction of the acute phase reactant
Serum Amyloid A3 in the liver was not affected by any of
the steroid treatments.

Glucocorticoids mediate their anti-inflammatory effects
by activation of the intercellular glucocorticoid receptor

Table 1: Description of animals

Values during VT injury Values at 3 h

Groups N BW
(Kg)

VT 5 min
(mL/kg)

VT 10 min
(mL/kg)

VT 15 min
(mL/kg)

PIP 15 min
(cmH2 O)

VT
(mL/kg)

PIP
(cmH2 O)

Unventilated controls 8 3.1 ± 0.2 - - - - - -

Injury 8 3.0 ± 0.3 6.9 ± 1.0 9.7 ± 1.5 13.2 ± 1.8 45 ± 8 7.8 ± 1.9 33 ± 9

Injury + Betamethasone 8 3.2 ± 0.4 8.0 ± 0.2 10.8 ± 0.3 15.1 ± 0.2t 41 ± 4 6.9 ± 1.0 24 ± 4t

Injury + Dexamethasone 8 2.9 ± 0.4 7.5 ± 1.0 10.5 ± 0.7 13.3 ± 1.9 48 ± 5 7.4 ± 3.1 32 ± 4

Injury + Cortisol 5 3.2 ± 0.4 7.3 ± 1.3 9.6 ± 1.7 11.8 ± 2.6 46 ± 8 7.8 ± 1.7 39 ± 4

Mean ± SD. t p < 0.05 vs Injury. BW is birth weight, BAL is bronchoalveolar lavage.

Table 2: Markers of Lung and Systemic Injury and Inflammation

Group N BAL Protein
(mg/kg)

Injury Score
(0 ut of 8)

BAL Neutrophils/kg
×106

Liver SAA3
mRNA1

Unventilated Controls 8 25 ± 12 1.5 ± 0.6 0.1 ± 0.3 1.0 ± 0.05

Injury 8 107 ± 24* 5.0 ± 0.9* 23.0 ± 14.9* 3.8 ± 1.4*

Injury + Beta 8 60 ± 16* t 3.4 ± 1.0* t 14.5 ± 17.7* 5.4 ± 1.9*

Injury + Dex 8 119 ± 32* 3.5 ± 1.0* t 22.0 ± 10.9* 7.2 ± 1.8*

Injury + Cortisol 5 97 ± 21* 4.7 ± 0.8* 17.3 ± 11.3* 7.2 ± 1.5*

*p < 0.05 vs Controls, t p < 0.05 vs Injury. BAL is bronchoalveolar lavage. SAA3 is serum amyloid A3. 1. expressed relative to a relative value of 1 
for unventilated controls.
Page 5 of 11
(page number not for citation purposes)



Respiratory Research 2009, 10:124 http://respiratory-research.com/content/10/1/124
(GR). Once activated and released from heat shock pro-
tein 90, the GR can translocate into the nucleus and
decrease activity of NF-κB and activating protein-1
[18,21]. The receptor can also dimerize and block binding
sites for pro-inflammatory transcription factors [18]. A
third action of GR is up-regulation the NF-κB inhibitor
IκB-α [18]. Finally, the GR can increase levels of cell ribo-
nucleases and mRNA-destablizing proteins [18]. Betame-
thasone and dexamethasone are potent synthetic
fluorinated glucocorticoids. Cortisol has weaker glucocor-

ticoid activity but also has mineralocorticoid activity [32].
The cortisol dose of 2 mg/kg is used by clinicians and has
roughly one eighth the anti-inflammatory potency of the
dexamethasone dose (0.5 mg/kg)[21]. The equivalent cor-
ticosteroid activity (12.5 mg/kg) could have different
effects. In our model, both betamethasone and dexameth-
asone decreased the induction of the pro-inflammatory
cytokines MCP-1 and IL-1β. In preterm sheep, the initia-
tion of ventilation leads to IL-1β production from the
inflammatory cells and airway epithelium, whereas MCP-

Cytokines and Early Growth Response Protein 1 mRNA in lung tissueFigure 2
Cytokines and Early Growth Response Protein 1 mRNA in lung tissue. (A) IL-1β mRNA and (B) Monocyte chemo-
tactic protein 1 (MCP-1) mRNA increased with the stretch injury and ventilation in all groups relative to unventilated controls. 
Il-1β and MCP-1 were decreased by Betamethasone (Beta) and Dexamethasone (Dex) compared to the Injury group. (C) The 
increase in IL-6 mRNA with ventilation was suppressed by Beta. (D) Egr-1 mRNA increased in the Injury and Cortisol groups. 
Cytokine mRNA was normalized to L32 mRNA (loading control). All values reported as fold increases compared with control 
animals, normalized to 1. *p < 0.05 vs Controls. t p < 0.05 vs Injury group
Page 6 of 11
(page number not for citation purposes)



Respiratory Research 2009, 10:124 http://respiratory-research.com/content/10/1/124
1 mRNA was localized to the mesenchyme surrounding
the small airways[31]. Although the dexamethasone treat-
ment did not decrease protein in BAL or the inflammatory
cells, the decrease in multiple pro-inflammatory cytokines
suggests it targeted multiple cell types in the lung.

In adult animal models, ventilation with large tidal vol-
umes leads to pulmonary and systemic responses [33] and
these responses can be attenuated by pretreatment with
corticosteroids [19,34]. Rats exposed to large tidal volume

ventilation had a deterioration in respiratory function,
and pretreatment with dexamethasone 30 minutes prior
to ventilation decreased both physiologic deterioration
and pro-inflammatory cytokines [34]. When ventilated
with large tidal volumes, isolated and perfused rat lungs
produce pro-inflammatory cytokines and chemokines
through a NF-κB pathway that is independent of LPS-
TLR4 signaling, and the inflammatory activation is
blocked by dexamethasone [19]. Our lambs demon-
strated similar increases in cytokines, with partial block-

Early Growth Response Protein 1 increased with stretch injury and ventilationFigure 3
Early Growth Response Protein 1 increased with stretch injury and ventilation. (A) Control animals show minimal 
staining around blood vessels. (B, D, E) The injurious ventilation increased Egr-1 protein surrounding airways, and these 
increases were not affected by Dex or cortisol. (C) The betamethasone group (Beta) had moderate staining around airways. 
(F) Semi-quantitative analysis of positive cells per high powered field demonstrated decreased staining in Beta group compared 
to injurious ventilation. * p < 0.05 vs control, t p < 0.05 vs Injury group.
Page 7 of 11
(page number not for citation purposes)



Respiratory Research 2009, 10:124 http://respiratory-research.com/content/10/1/124
ade by dexamethasone. Another glucocorticoid,
methylprednisolone, decreased neutrophil activation in
rats exposed to large tidal volume ventilation[35]. None
of the corticosteroid treatments had a dramatic effect on
cellular influx in our studies, though neutrophil function
was not tested. The studies in adult animals gave the cor-
ticosteroids at an interval before the ventilation injury,
and that strategy worked for Betamethasone in these pre-
term lambs. A treatment with Dexamethasone shortly
before preterm birth might also be effective. Cortisol does
not cross from the mother to the fetus in sufficient
amounts to have any anticipated benefit [36].

The effects of antenatal betamethasone on lung injury
from ventilation may be due to activation of the glucocor-
ticoid receptor to suppress inflammation or may result
from structural or biochemical changes in the fetal lung
that protect the lung from acute lung injury. Lambs
exposed to antenatal corticosteroids have thinner alveolar
walls, elongation of secondary septa, and an increased
alveolar volume [37]. Changes in lung compliance from
antenatal corticosteroids are due primarily to alterations
in the tissue compartment of the lung rather than the air-
ways [38]. Although lambs given antenatal corticosteroids
between 8 and 15 hours prior to delivery have increased

HSP70 mRNA localizationFigure 4
HSP70 mRNA localization. (A) HSP70 mRNA was localized to the bronchial epithelium and parenchyma in unventilated 
controls. (B-E) Ventilation decreased HSP70 mRNA in airway epithelial cells and parenchyma. Injurious ventilation induced 
HSP70 mRNA in the smooth muscle surrounding large airways in all groups except the Beta group (C). (D) RNase protection 
assay for HSP70 mRNA in lung demonstrates decrease in lung mRNA with ventilation in all groups. *p < 0.05 vs controls.
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lung compliance and decreased edema, lambs do not
increase surfactant pools until 4 or more days after mater-
nal treatment [22,39]. Thinning of distal airways were
noted qualitatively on histology examination of the beta-
methasone group. Clearance of airway fluid through acti-
vation of sodium transporter by betamethasone also may
contribute to the decreased the airway injury seen with
initiation of ventilation [40]. Induction of HSP70 mRNA
in smooth muscles is likely due to over-distention of air-
ways during initiation of ventilation. Clearance of lung
fluid prior to ventilation in the betamethasone group may
have resulted in a more even distribution of the tidal vol-
ume and less stress on the airways and their smooth mus-
cle. Although antenatal betamethasone can increase
antioxidant activity in premature infants[10], we did not
evaluate antioxidant effects. The average PaO2 of 30 to 50
mmHG in the lambs throughout ventilation period was
sufficient to maintain a saturation >85%. We have previ-
ously explored the antioxidant effects in fetal sheep
exposed to LPS and only small amounts of oxidants were
released [41]. Near-term lambs exposed to 100% oxygen
for 3 h also had minimal oxidative damage [42,43]. A
recent study showed that betamethasone was as effective
as dexamethasone for weaning premature infants from
ventilators with fewer short term side effects [44]. Since
only a few minutes elapsed between dexamethasone
administration and injurious ventilation, there was insuf-
ficient time for changes in vascular or alveolar structures.
The difference in response to betamethasone and dexam-
ethasone probably resulted from the timing of treatment
relative to delivery. If given antenatally, dexamethasone
may have had similar effects to betamethasone.

Some preterm infants have a decreased ability to produce
cortisol in response to stress and low cortisol levels have
been linked to an increased risk of BPD [45]. In infants
exposed to chorioamnionitis, early treatment with low-
dose hydrocortisone decreased the rate of BPD without an
increase in cerebral palsy [14,46]. A small study of pro-
longed hydrocortisone treatments demonstrated cortisol
was as effective as dexamethasone for decreasing FiO2 and
weaning infants from the ventilator [47]. We did not show
an effect of cortisol on acute lung injury from the initia-
tion of ventilation. One of the limitations of the study is
the short period of ventilation, and beneficial cortisol
effects could appear later.

The use of corticosteroids to treat acute lung inflamma-
tion has been studied in multiple human diseases, includ-
ing cardiopulmonary bypass, ARDS, and bronchiolitis.
Corticosteroids given 30 min before bypass decreased lev-
els of the pro-inflammatory cytokine TNF-α, IL-6, and IL-
8, and increased expression of the anti-inflammatory
cytokine IL-10 [48]. The decrease in pro-inflammatory
cytokines was partially attributed to stabilization of IKβ-α,

thus preventing NF-κB from nuclear translocation [20].
Dexamethasone prior to cardiac bypass decreased C-reac-
tive protein, but did not effect clinical course or alter the
endothelial markers von Willebrand factor antigen or
S100b protein [49]. Dexamethasone has a similar effect
on pro-inflammatory cytokines, Il-1β and MCP-1 in
lambs, without changes in the systemic acute phase reac-
tant SAA3 in the liver. Similar to studies of corticosteroids
prior to cardiac surgery, we found no difference in physi-
ology or degree of inflammation in the lungs. In adults,
corticosteroids may improve survival with ARDS, but
there is an increased risk of ARDS or mortality when cor-
ticosteroids are given in a preventative manner [50]. The
increased pro-inflammatory risk of preventative corticos-
teroids in ARDS may be due to upregulation of cytokine
receptors in response to corticosteroids [51]. In the setting
of moderate to severe RSV bronchiolitis, dexamethasone
treatment did not improve outcomes [52,53]. The routine
use of dexamethasone in the setting of acute lung injury
requires further study.

Conclusions
Initiation of ventilation with large tidal volumes leads to
lung injury and systemic inflammatory responses.
Although antenatal betamethasone treatment decreased
the lung injury and improved ventilation, lung inflamma-
tion and systemic changes in acute phase responses in the
liver still occurred. Our results support the use of antena-
tal corticosteroids treatments to decrease mortality and
morbidity in preterm infants. A better tolerance to the ini-
tiation of ventilation may contribute to the pleiotropic
benefits of this therapy. The use of anti-inflammatory
medications for chronic inflammation merits further
exploration, though short term use in the acute setting
may be of no benefit. Procedures to decrease the use of
mechanical ventilation and to minimize volutrauma in
the delivery room should include antenatal corticoster-
oids, but treatment with corticosteroids at birth is not sup-
ported by our results.
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