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Abstract
Background: Sildenafil, a potent phosphodiesterase type 5 (PDE5) inhibitor, has been proposed as a treatment for pulmonary
arterial hypertension (PAH). The mechanism of its anti-proliferative effect on pulmonary artery smooth muscle cells (PASMC)
is unclear. Nuclear translocation of nuclear factor of activated T-cells (NFAT) is thought to be involved in PASMC proliferation
and PAH. Increase in cytosolic free [Ca2+] ([Ca2+]i) is a prerequisite for NFAT nuclear translocation. Elevated [Ca2+]i in PASMC
of PAH patients has been demonstrated through up-regulation of store-operated Ca2+ channels (SOC) which is encoded by the
transient receptor potential (TRP) channel protein. Thus we investigated if: 1) up-regulation of TRPC1 channel expression which
induces enhancement of SOC-mediated Ca2+ influx and increase in [Ca2+]i is involved in hypoxia-induced PASMC proliferation;
2) hypoxia-induced promotion of [Ca2+]i leads to nuclear translocation of NFAT and regulates PASMC proliferation and TRPC1
expression; 3) the anti-proliferative effect of sildenafil is mediated by inhibition of this SOC/Ca2+/NFAT pathway.

Methods: Human PASMC were cultured under hypoxia (3% O2) with or without sildenafil treatment for 72 h. Cell number and
cell viability were determined with a hemocytometer and MTT assay respectively. [Ca2+]i was measured with a dynamic digital
Ca2+ imaging system by loading PASMC with fura 2-AM. TRPC1 mRNA and protein level were detected by RT-PCR and
Western blotting respectively. Nuclear translocation of NFAT was determined by immunofluoresence microscopy.

Results: Hypoxia induced PASMC proliferation with increases in basal [Ca2+]i and Ca2+ entry via SOC (SOCE). These were
accompanied by up-regulation of TRPC1 gene and protein expression in PASMC. NFAT nuclear translocation was significantly
enhanced by hypoxia, which was dependent on SOCE and sensitive to SOC inhibitor SKF96365 (SKF), as well as cGMP analogue,
8-brom-cGMP. Hypoxia-induced PASMC proliferation and TRPC1 up-regulation were inhibited by SKF and NFAT blocker
(VIVIT and Cyclosporin A). Sildenafil treatment ameliorated hypoxia-induced PASMC proliferation and attenuated hypoxia-
induced enhancement of basal [Ca2+]i, SOCE, up-regulation of TRPC1 expression, and NFAT nuclear translocation.

Conclusion: The SOC/Ca2+/NFAT pathway is, at least in part, a downstream mediator for the anti-proliferative effect of
sildenafil, and may have therapeutic potential for PAH treatment.
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Background
Pulmonary arterial hypertension (PAH) is a progressive
disease characterized by a sustained increase in pulmo-
nary arterial pressure and vascular remodeling. A few
molecular mechanisms such as prostacyclin, nitric oxide
(NO)/cyclic guanosine monophosphate (cGMP) and
endothelin pathways have been shown of pathological
importance and involved in the abnormal proliferation
and contraction of pulmonary artery smooth muscle cells
(PASMC) in PAH patients. Therapies developed towards
these targets, such as prostacyclin analogs, endothelin-1
receptor antagonists and phosphodiesterase type-5
(PDE5) inhibitors [1], have been shown of clinical bene-
fit. One PDE5 inhibitor, sildenafil has been demonstrated
to inhibit pulmonary hypertension secondary to chronic
hypoxia in rats [2]. Long-term adjunctive treatment with
oral sildenafil improved New York Heart Association
Class and 6-min walk distance in PAH patients [3]. Silde-
nafil, through inhibition of cGMP breakdown by PDE5 in
PASMC, exerts its NO-dependent cGMP-mediated pulmo-
nary vasodilatory effects. Recent evidence indicates that
NO/cGMP signaling is not attenuated but up-regulated in
a hypoxic mouse model of PAH, and sildenafil merely acts
as an effective pulmonary vasodilator by further augment-
ing this pathway [4]. Furthermore, the anti-proliferative
properties of sildenafil may operate through other signal-
ing molecules in addition to the NO/cGMP axis by target-
ing PKG/PKA [5].

Nuclear factor of activated T-cells (NFAT) is a signal inte-
grator of Ca2+ signal and other signaling pathways
through induction of a specific genetic program, and it has
been proposed to be involved in PAH pathogenesis. The
Ca2+/NFAT pathway plays an important part in the cell
proliferation including osteoblasts [6], pancreatic beta
cells [7], human myometrial vascular smooth muscle cells
[8], rat aortic myocytes [9], rat cardiac myocytes and
fibroblasts [10], and skeletal muscle reserve cells [11].
Chronic hypoxia induces NFAT transcriptional activity
increase and NFATc3 nuclear translocation in mouse pul-
monary arteries [12]. Increased NFATc2 protein level asso-
ciated with a more nuclear localization, was observed in
PASMC isolated from idiopathic PAH patients, suggesting
enhanced NFAT activation might contribute to vascular
remodeling in this disease [13].

Calcineurin, a calcium- and calmodulin-dependent phos-
phatase, is known to be a mediator of NFAT signaling,
which induces NFAT proteins de-phosphorylation and
nuclear translocation [14,15]. Calcineurin phosphatase
activity is critically dependent on [Ca2+]i. Ca2+ influx is the
important determinant of NFAT activity in skeletal muscle
cells and smooth muscle cells [15].

Two main types of calcium channels in the human
PASMC membrane mediate Ca2+ influx: voltage-depend-
ent calcium channels (VDCC) and voltage-independent
calcium channels (VICC). The latter include store-oper-
ated channels (SOC) and receptor-operated channels
(ROC). When humoral factors such as endothelin-1 (ET-
1) bind G-protein-coupled receptors (GPCR) or receptor
tyrosine kinase (RTK), they will activate phospholipase-C
(PLC) to produce inositol 1,4,5-trisphosphate (IP3) and
diacylglycerol (DAG). IP3-induced Ca2+ release from the
endoplasmic reticulum (ER) produces a transient increase
in [Ca2+]i. Subsequently, the depletion of intracellular
Ca2+ stores triggers a sustained Ca2+ flux called capacitive
calcium entry (CCE). Ca2+ entry via SOC (SOCE) in the
membrane caused by ER depletion is the dominated com-
ponent of CCE [16]. Ca2+ influx via SOC appears to be a
determinant in maintaining a sustained increase in [Ca2+]i
and regulation of vascular tone and arterial wall structure
[17]. Elevated influx of Ca2+ via SOC in PASMC had been
observed in animal models and patients of PAH [18,19].

Native SOC are believed to be encoded by a novel family
of transient receptor potential (TRP) channels, a large
superfamily of channels permeable to Ca2+. Members of
canonical transient receptor potential channels (TRPC)
have been identified in PASMC. The involvement of
TRPC1 in SOC in human PASMC has been demonstrated
and it contributes to the development of pulmonary vas-
cular remodeling in PAH patients [17,20,21].

Thus, we hypothesized that hypoxia-induced PASMC pro-
liferation involves up-regulation of TRPC1 expression,
which in turn resulted in the enhancement of SOCE and
elevation of [Ca2+]i. The promoted [Ca2+]i leads to
increased calcineurin phosphatase activity, which induces
nuclear translocation of NFAT. NFAT activation in PASMC
could regulate multiple gene transcriptions including
TRPC1 gene which positively reinforce NFAT activation
and cell proliferation. The SOC/Ca2+/NFAT pathway may
be a downstream mediator for the anti-proliferative effect
of sildenafil.

Methods
Cell culture
Human PASMC from normal human subjects were pur-
chased from Cascade Biologics Incorporated (Portland,
OR, USA). PASMC (Passages 4-8) were cultured in
smooth muscle growth medium (SMGM), which con-
sisted of smooth muscle basal medium (SMBM; M231;
Cascade Biologics) and smooth muscle growth supple-
ment (SMGS; Cascade Biologics). The final concentration
of SMGS contained 4.9% fetal bovine serum (FBS), 2 ng/
mL basic fibroblast growth factor, 0.5 ng/mL epidermal
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growth factor, 5 ng/mL heparin, 5 mg/mL insulin and 0.2
mg/mL bovine serum albumin (BSA). Cells were main-
tained at 37°C in a humidified normoxia (21% O2, 5%
CO2, 74% N2) and passaged after reaching 80-90% con-
fluence. Cell growth was arrested by replacing SMGM with
growth supplement-free SMBM for 24 h under normoxia
[22]. For hypoxia experiments, growth-arrested cells were
incubated with low-serum SMBM (2% FBS) under nor-
moxia and hypoxia for 72 h, respectively.

Determination of cell proliferation
Cell proliferation was quantified by cell counting with a
hemocytometer or methyl thiazolyl tetrazolium (MTT)
assay (Sigma-Aldrich, St. Louis, MO, USA). Briefly,
PASMC were seeded in 24-well microplates at 1 × 104

cells/well. Cell number was determined with a hemocy-
tometer using 0.45% trypan blue (Sigma-Aldrich, St
Louis, MO, USA). For MTT assay, cells were plated into 96-
well microplates at 5 × 103 cells/well and treated with dif-
ferent drugs for 72 h. After incubation, 20 μL of the MTT
reagent was added to each well and the multi-well plates
incubated in a humidified atmosphere for 4 h. The super-
natant was removed and dimethyl sulfoxide (DMSO,
Sigma-Aldrich, Shanghai, China) of 150 μL/well was
added to the plates to solubilize the formazan salt crystals.
Plates were incubated for 10 min on a swing bed at room
temperature. Solubilized formazan products were quanti-
fied by spectrophotometry at 570 nm using an enzyme-
linked immunosorbent assay (ELISA) reader (Bio-Rad,
Japan). Data were expressed as percentage of control.

Measurement of [Ca2+]i
[Ca2+]i in a single cell was measured using a Ca2+-sensitive
fluorescent indicator fura 2-AM (Invitrogen, Carlsbad,
CA, USA). Cells were loaded with 3 μM fura 2-AM for 30
min in the dark at room temperature. Fura 2-AM loaded
cells were transferred to glass-bottomed culture dishes
(MatTek Corporation, Ashland, MA, USA), fixed on a
microscope stage, and perfused with physiological salt
solution (PSS) for 30 min to remove extracellular fura 2-
AM and to activate intracellular fura 2-AM into fura 2. The
[Ca2+]i was measured using an xenon lamp (Lambda DG4,
Sutter Instrument Company, Novato, CA, USA) equipped
with a Nikon's Epi-fluorescence microscope (TE2000-U;
Nikon, Tokyo, Japan) and band-pass filters for wave-
lengths of 340 nm and 380 nm. [Ca2+]i was based on the
equation, [Ca2+]i = Kd × (Sf2/Sb2) × (R-Rmin)/(Rmax-R)
[Kd was assumed to be 224 nm, R was the fluorescence
ratio at 340/380 nm, Sf2 and Sb2 were the ratio of free
and bound forms of the dye. Rmin and Rmax were the
340 nm/380 nm ratios of full free and full bound][23].
Resting [Ca2+]i, cyclopiazonic acid (CPA; Sigma-Aldrich,
Rehovot, Israel)-induced ER Ca2+ release and SOCE upon
changing perfusion from Ca2+-free PSS to 1.8 mM Ca2+

PSS were measured in different groups. In most experi-
ments, 5-10 cells were imaged in a single field, and a

selected peripheral cytosolic area from each cell used for
analysis.

Reverse transcriptase-polymerase chain reaction (RT-
PCR)
Total RNA was isolated from PASMC by using TRIzol rea-
gent (Sigma-Aldrich. St. Louis, MO, USA) according to
manufacturer's instructions. RNA was reverse-transcribed
to synthesize first-strand cDNA. The specific primers were
designed from coding regions of human TRPC1 (forward
primer: 5'-CAAGATTTTGGAAAATTTCTTG-3', reverse
primer: 5'-TTTGTCTTCATGATTTGCTAT-3'). The primers
of β-actin (forward primer: 5'-GTGGGGCGCCCCAG-
GCACCA-3', reverse primer: 5'-CTTCCTTAATGTCACG-
CACGATTTC-3') were used as control for RNA integrity.
PCR was done using an Icycler Thermal cycler (Bio-Rad,
Hercules, CA, USA) under conditions described below.
The PCR reaction mixture was denatured at 94°C (0.5
min), annealed at 55°C (0.5 min), and extended at 72°C
(0.5 min) for 30 cycles. This was followed by a final exten-
sion at 72°C (5 min) to ensure complete product exten-
sion. Amplified products were separated by 1.5% agarose
gel electrophoresis and stained with ethidium bromide.
PCR product bands were visualized by ultraviolet light
(Bio-Rad, Milan, Italy). Intensity values were measured by
densitometric analysis with Quantitative One software
(Bio-Rad, Milan, Italy), and normalized to the intensity
values of β-actin for quantitative comparisons. PCR prod-
ucts were sequenced. The amplified production of TRPC1
and β-actin were 372 bp and 539 bp respectively. The ratio
of normoxia group was regarded as 100%.

Protein extraction and Western blotting
TRPC1 protein was detected using a standard Western
blotting protocol. Briefly, adherent PASMC were har-
vested and 40 μg proteins from each sample of different
groups separated by 8% sodium dodecyl sulfate-polyacry-
lamide gel electrophoresis (SDS-PAGE) at 80 V for 0.5 h,
and at 120 V for 1.5 h. They were transferred onto a nitro-
cellulose membrane (Millipore, Billerica, MA, USA) at
100 V for 1.5 h at 4°C onto Western blotting apparatus
(Bio-Rad, Hercules, CA, USA). The blocked membrane
was incubated with primary antibody of TRPC1 (dilution,
1:1000; Alomone Laboratories, Jerusalem, Israel) and β-
actin (dilution, 1:1000; Santa Cruz Biotechnology, Santa
Cruz, CA, USA) overnight at 4°C. After incubation with
horseradish peroxidase-conjugated secondary antibody
(dilution, 1:2000; Beijing Zhongshan Golden Bridge Bio-
logical Technology Company, Beijing, China) for 1 h at
room temperature, immunoblotting signals were visual-
ized using Western Luminescent kit (Vigorous Biotechnol-
ogy, Beijing, China). Results were quantified by
densitometry, and the densities of immunoblotting were
analyzed by scanning X-ray film with Quantitative One
software. The value of the relative density of the TRPC1
band was normalized to the density of the β-actin band to
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represent the amount of TRPC1 protein. The ratio of nor-
moxia group was regarded as 100%.

Immunofluorescence microscopy
The human PASMC after 24 h starvation were cultured in
2% FBS under normoxia, hypoxia or hypoxia plus sildena-
fil or other drugs for 72 h respectively. After treatment,
cells were fixed for 30 min at room temperature in 4% for-
maldehyde in Dulbecco's Phosphate-Buffered Saline (D-
PBS), blocked with blocking solution (2% BSA in D-PBS)
for 15 min and incubated with 0.2% Triton X-100 in
blocking buffer for 30 min at room temperature. Cells
were incubated with primary antibodies (NFATc3, sc-
8321 Santa Cruz Biotechnology, Santa Cruz, CA, USA) for
1 h at room temperature and then fluorescent-conjugated
secondary antibodies [Rhodamine (TRITC)-conjugated
AffiniPure Goat Anti-mouse IgG, Beijing Zhongshan
Golden Bridge Biological Technology Company, Beijing,
China] for 30 min at room temperature. The nucleus was
stained with Hoechest33258 (Sigma-Aldrich. St. Louis,
MO, USA). Fluorescence was examined using a Leica laser
scanning confocal microscope (TCS SP5, Leica, Wetzlar,
Germany).

Drugs and Reagents
PSS contained (in mM): 141 NaCl, 4.7 KCl, 1.8 CaCl2, 1.2
MgCl2, 10 HEPES, and 10 glucose, (pH 7.4). For Ca2+-free
PSS, CaCl2 was replaced by equimolar MgCl2 and 1 mM
EGTA added to chelate residual Ca2+ [21]. CPA, fura 2-AM,
SKF96365 (SKF; Sigma-Aldrich. St. Louis, MO, USA) and
nifedipine (Sigma-Aldrich. St. Louis, MO, USA) were dis-
solved in DMSO to make stock solutions. Gadolinium
chloride (GdCl3, Sigma-Aldrich. St. Louis, MO, USA),
VIVIT (480401, Calbiochem, Darmstadt, Germany) and
8-brom-cGMP (Sigma-Aldrich. St. Louis, MO, USA) were
dissolved in deionized water to form the stock solution.
Cyclosporine A (1101, MBL International, Woburn, MA)
was dissolved in ethanol to form the stock solution. MTT
was dissolved in PBS to form stock solution. Sildenafil
(Pfizer, Sandwich, Kent, UK) was dissolved in distilled
water (pH 5.3) to make a stock solution of 1 mM.

Statistical analysis
Data are mean ± SEM. At least six independent PASMC
cultures were used. Comparison between groups of data
was evaluated using the Student's unpaired t-test. For mul-
tiple comparisons, one-way analysis of variance (ANOVA)
was used with a Bonferroni post hoc test (P < 0.05 was con-
sidered significant).

Results
Sildenafil inhibits hypoxia-induced human PASMC 
proliferation
Firstly, the mitogenic effect of hypoxia on human PASMC
was tested. Cell proliferation was quantified by MTT

assay. Hypoxia (3% O2) improved cell proliferation sig-
nificantly (Fig. 1A and 1B). The effect of SOC/[Ca2+]i in
this process was studied to clarify the mechanism of
hypoxia-induced PASMC proliferation. Blocking SOC by
SKF (7.5 μM) and GdCl3 (1 μM, a non-selective cation
channel blocker) blocked hypoxia-induced PASMC prolif-
eration. Though SK(7.5 μM) also inhibit cell proliferation
under normoxia, the inhibitory efficiency on hypoxia
group was significantly greater than that on normoxia
group. Nifedipine (1 μM, blocker of VDCC) had no effect
on hypoxia-induced cell proliferation. These data sug-
gested that sustained entry of extracellular Ca2+ via SOC is
the main pathway of maintaining the high [Ca2+]i in
PASMC. Solvents (DMSO and ethanol) had no obvious
effect on cell growth (data not shown).

We studied the anti-proliferative effect of sildenafil on
hypoxia-induced PASMC proliferation. Sildenafil inhib-
ited the hypoxia-induced increases in cell viability in a
dose-dependent manner (Fig. 2A). Sildenafil at 100 nM
inhibited the hypoxia-induced increase in PASMC (viabil-
ity approximately to the control level). This concentration
was therefore subsequently used as the inhibitory dose
subsequently as previously described [5,24].

Sildenafil inhibits hypoxia-mediated enhancement of 
SOC/[Ca2+]i in human PASMC
Hypoxia-induced PASMC proliferation is associated with
extracellular Ca2+ influx through SOC, we investigated if
the anti-proliferative effects of sildenafil was related to the
changes of [Ca2+]i and SOCE evoked by hypoxia. Per-
fusion with Ca2+-free PSS containing 10 μM CPA (blocker
of ER Ca2+-Mg2+ATPase) triggered a transient rise in
[Ca2+]i in human PASMC (Fig. 3A) due to leakage of Ca2+

from the ER to the cytosol. The CPA-induced transient rise
in [Ca2+]i declined back to baseline level after 5-10 min as
the ER Ca2+ was depleted. Under these conditions, subse-
quent restoration of extracellular [Ca2+]i to 1.8 mM (nor-
mal PSS) induced a rise in [Ca2+]i that was obviously due
to SOCE (Fig. 3A). Hypoxia induced a significant increase
in the resting level of [Ca2+]i (from 0.619 ± 0.011 to 0.715
± 0.015, P < 0.001), the CPA-induced [Ca2+]i transient rise
due to Ca2+ release from the SR (from 0.666 ± 0.036 to
0.896 ± 0.040, P < 0.001) and the peak in [Ca2+]i due to
SOCE (from 0.860 ± 0.059 to 1.144 ± 0.054, P < 0.001) in
human PASMC compared with normoxia group (Fig. 3B).
Sildenafil (100 nM) markedly inhibited hypoxia-medi-
ated increase in resting [Ca2+]i, CPA-induced peak [Ca2+]i
and CCE (resting [Ca2+]i from 0.715 ± 0.015 to 0.629 ±
0.015, P < 0.001; CPA-induced peak from 0.896 ± 0.040
to 0.652 ± 0.055, P < 0.001; SOCE from 1.144 ± 0.054 to
0.905 ± 0.075, P < 0.05). These results gave evidence that
sildenafil may exert its anti-proliferative effect by inhibit-
ing the activated SOC/[Ca2+]i pathway under hypoxia
exposure.
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Sildenafil inhibits hypoxia-induced up-regulation of 
TRPC1 expression in human PASMC
TRPC-encoded proteins may be involved in the molecular
identity of SOC [25]. Inhibition of TRPC channel expres-
sion can inhibit PASMC proliferation [26]. TRPC1 protein
is a subunit of SOC in human PASMC, and its activity and
expression can affect SOC-mediated Ca2+ influx [27].

We examined if the anti-proliferation effect of sildenafil is
related to the SOC expression. Sildenafil significantly
inhibited the up-regulated mRNA and protein expression
level of TRPC1 by hypoxia stimulus (Fig. 4). These data
lead us to hypothesize that inhibition of TRPC1 expres-

sion (at the transcription and translation level) and atten-
uation of SOC-mediated Ca2+ influx may be the potential
pathway mechanism involved in the anti-proliferative
effect of sildenafil.

Sildenafil and SKF inhibited hypoxia induced NFATc3 
nuclear translocation
Increased [Ca2+]i activates calcineurin which dephosphor-
ylates cytoplasmic NFAT, allowing its entry to the nucleus
where it forms complexes with other transcription factors
and regulates gene transcriptions [28]. We demonstrated
that [Ca2+]i was significantly increased in hypoxic PASMC.
We assessed if this hypoxia-induced [Ca2+]i increase

Hypoxia-induced human PASMC proliferation and its dependence on SOCFigure 1
Hypoxia-induced human PASMC proliferation and its dependence on SOC. Human PASMC were cultured with 
SMBM (2% FBS) in normoxia or hypoxia for different time. A: Phase contrast image of cultured human PASMC (×200). B: Cell 
viability was determined by MTT. n = 3, **P < 0.01, ΔP < 0.05. C: Cell viability was determined before (Basal) and after 72 h 
incubation under normoxia and hypoxia without (Control) or with different agents: sildenafil (Sil 100 nM), nifedipine (1 μM), 
GdCl3 (1 μM), SKF96365 (7.5 μM), Cyclosporin A (0.03 mg/mL) and EDTA (2 mM), respectively. n = 3, ### P < 0.001 vs. 
hypoxia basal, * P < 0.05 vs. hypoxia control, ***P < 0.001 vs. hypoxia control.
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Inhibitory effect of sildenafil on hypoxia-induced human PASMC proliferationFigure 2
Inhibitory effect of sildenafil on hypoxia-induced human PASMC proliferation. Human PASMC were cultured with 
SMBM (2% FBS) in normoxia or hypoxia in the presence of different concentrations of sildenafil (0 nM, 10 nM, 50 nM, 100 nM) 
for 72 h. A: Cell viability was measured by MTT. n = 5, ## P < 0.01 vs. normoxia, * P < 0.05 vs. hypoxia + 0 nM sildenafil. B: 4',6-
diamidino-2-phenylindole (DAPI) staining of human PASMC under normoxia or hypoxia with sildenafil (100 nM) for 72 h. a: 
Image of DAPI stained human PASMC nuclear. b: Summarized data of DAPI stained cell numbers (the average of 3 high power 
field in every slide).## P < 0.01 vs. normoxia, ** P < 0.01 vs. hypoxia.
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Inhibitory effect of sildenafil on hypoxia-induced enhancement of resting [Ca2+]i, CPA-induced ER release and SOC-mediated Ca2+ influxFigure 3
Inhibitory effect of sildenafil on hypoxia-induced enhancement of resting [Ca2+]i, CPA-induced ER release and 
SOC-mediated Ca2+ influx. A: Representative records of resting [Ca2+]i, cyclopiazonic acid (CPA)-induced ER Ca2+ release 
and SOC-mediated Ca2+ entry upon changing perfusion from Ca2+-free PSS to 1.8 mM Ca2+ PSS were measured in different 
groups. B: The statistic data of resting [Ca2+]i, CPA-inducted ER release, and CCE are expressed as the mean ± SEM. ### P < 
0.001 vs. normoxia, * P < 0.05 vs. hypoxia, *** P < 0.001 vs. hypoxia.

��������

	 
 �	 �
 �	 �
 
	
	��

	��

��	

���

���
	��������

�	� �����
�����������

��������
��������������� 

!����"���#

�
��
��
�"

�	
��
�
$

�	
��
�
#

%&�����

	 
 �	 �
 �	 �
 
	
	��

	��

��	

���

���

!����"���#

�
��
��
�"


�	
��
�
$

�	
��
�
#

%&������'�(

	 
 �	 �
 �	 �
 
	
	��

	��

��	

���

���

!����"���#

�
��
��
�"


�	
��
�
$

�	
��
�
#

����)��*+,�*�����

�������� %&����� %&������'�(
	�	

	�


	��

	�-

���

��


�.��

�.��

�.
-
***

###

�
��
��
�"


�	
��
�
$

�	

��
�
#

������ 

�������� %&����� %&������'�(
	�	

	�


	��

	�-

���

��


�.��
�.��

�.
-
***

###

�
��
��
�"

�	
��
�
$

�	
��
�
#

��������

�������� %&����� %&������'�(
	�	

	�


	��

	�-

���

��


�.��

�.��

�.
-*

###

�
��
��
�"


�	
��
�
$

�	

��
�
#

� /



Respiratory Research 2009, 10:123 http://respiratory-research.com/content/10/1/123
through SOC could mediate NFAT nuclear translocation.
The results show that hypoxia induced significant nuclear
translocation of NFATc3 (Fig. 5A), which was inhibited
not only by the SOC blocker SKF, but also by sildenafil. To
confirm the influence of cGMP on NFATc3 activation, we
observed the effect of 8-brom-cGMP. Similar to sildenafil,
8-brom-cGMP also showed inhibitory effect on NFATc3
nuclear translocation (Fig. 5B). These results suggest that
hypoxia-induced NFAT nuclear translocation is depend-
ent on Ca2+ influx through SOC. The antiproliferative
property of sildenafil on PASMC may related to the

decreased TRPC1 expression which attenuates SOC-medi-
ated Ca2+ influx, calcineurin activity and NFAT nuclear
translocation.

NFAT nuclear translocation is involved in hypoxia-induced 
TRPC1 up-regulation and human PASMC proliferation
The effects of a direct and specific inhibitor of NFAT
(VIVIT) and an indirect inhibitor of NFAT (Cyclosporin A)
on hypoxia-induced TRPC1 up-regulation and human
PASMC proliferation were examined. As shown in Fig. 6
and Fig. 7, VIVIT and Cyclosporin A inhibited hypoxia-

Inhibitory effect of sildenafil on hypoxia-induced TRPC1 up-regulationFigure 4
Inhibitory effect of sildenafil on hypoxia-induced TRPC1 up-regulation. Human PASMC were cultured with SMBM 
(2% FBS) under normoxia or hypoxia in the presence or absence of sildenafil (100 nM) for 72 h. A: RT-PCR results. a: PCR 
amplified products are displayed for TRPC1(372 bp) and β-actin (539 bp). b: Data normalized to the amount of β-actin are 
expressed as mean ± SEM. n = 9, #P < 0.05 vs. normoxia, *P < 0.05 vs. hypoxia. B: Western Blotting results. a: Western bolt-
ting results are displayed for TRPC1 (87 kDa) and β-actin (42 kDa). b: Data normalized to the amount of β-actin are expressed 
as means ± SEM. n = 28, #P < 0.05 vs. normoxia, *P < 0.05 vs. hypoxia.
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Sildenafil inhibits hypoxia-induced nuclear translocation of NFATc3 in cultured human PASMCFigure 5
Sildenafil inhibits hypoxia-induced nuclear translocation of NFATc3 in cultured human PASMC. Human PASMC 
were cultured with SMBM (2% FBS) under nomoxia or hypoxia (3% O2) in the presence of sildenafil (100 nM), 8-brom-cGMP 
(100 μM), SKF96365 (7.5 μM) or VIVIT (4 μM) respectively for 72 h. NFATc3 was determined by confocal microscopy of 
immunofluorescence. The primary antibody of NFATc3 was detected with Rhodamine (TRITC)-conjugated AffiniPure Goat 
Anti-mouse IgG (green). Slides were counterstained with nuclei dye hoechest33258 (blue). A: Immunofluorescence image of 
NFATc3 in human PASMC (×1000). B: The nuclear translocation of NFATc3 was calculated by comparing the ratio of nuclear 
NFATc3 immunofluorescence/total NFATc3 immunofluorescence. n = 20, ### P < 0.001 vs. normoxia, *** P < 0.001 vs. 
hypoxia.
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induced TRPC1 up-regulation, as well as human PASMC
proliferation. No significant influence of solvent control
ethanol on human PASMC proliferation was detected
(data not shown).

Discussion
In the present study we demonstrated: (a) Up-regulation
of TRPC1 expression, enhancement of SOC-mediated
Ca2+ influx and increase in [Ca2+]i are involved in hypoxia-
induced human PASMC proliferation. (b) Potentiation of
[Ca2+]i resulting from enhancement of SOC leads to

nuclear translocation of NFATc3. (c) NFATc3 nuclear
translocation is involved in hypoxia-induced human
PASMC proliferation; (d) Inhibiting NFAT nuclear trans-
location reduces TRPC1 expression in human PASMC. (e)
Anti-proliferative effects of sildenafil is related to the
SOC/Ca2+/NFAT pathway. PAH is a disease of progressive
vascular remodeling of the small pulmonary arteries
(<500 μM in diameter), which results in a progressive
increase in pulmonary vascular resistance and, eventually,
right ventricular failure and death [29]. The typical patho-
logical changes include muscularization and thickening
of pre-capillary pulmonary arteries, intimal proliferation,
obliterative lesions, and thrombosis in situ [29]. Pulmo-
nary vascular remodeling is characterized by uncontrolled
and inappropriate proliferation of PASMC [17], which is
closely related to the malfunction of endothelin, NO/
cGMP and prostacyclin pathways.

The NO/cGMP axis is one of the major target for PAH
treatment. PDE5 as a major cGMP-degrading phosphodi-
esterase in the pulmonary vasculature, is up-regulated in
PAH [30-32], and may contribute to the impaired vasodi-
lator responses in the hypoxic lung. Sildenafil is an orally
active, potent and selective inhibitor of PDE5 that can ele-
vate the level of intracellular cGMP level by inhibiting
PDE5 activity and cGMP breakdown. Animal studies have
demonstrated that oral treatment with sildenafil signifi-
cantly reduces neomuscularization in hypoxia and
monocrotaline models of pulmonary hypertension
[2,33]. Several studies concerning the remodeling process
revealed more promising options for therapy in addition
to the NO/cGMP pathway [34-37]. Sildenafil has been
shown recently that it can act through preventing Ras
homolog gene family, member A (RhoA) expression[37].
We have shown in the recent study that sildenafil can
inhibit ET-1 induced PASMC proliferation by decreasing
TRPC1 expression, [Ca2+]i and SOC-mediated Ca2+ influx
[36].

Previous researches suggested that cGMP/PKG pathway
had effect on TRP activity. PKG could directly phosphor-
ylate TRPC3 channels and abolish TRPC3 mediated store-
operated Ca2+ influx[38]. TRPC6 channels can be nega-
tively regulated by the NO/cGMP/PKG pathway in
smooth muscle cells[39]. NO contributes to the vasorelax-
ation by inhibition of La3+-sensitive channels consistent
with TRPC1/C3[40]. In addition, cGMP/PKG was
reported to have a role in the activity of transcription fac-
tors, such as NFAT, which can regulate TRPC gene expres-
sion[41]. Our results suggested that 8-brom-cGMP could
inhibit the translocation of NFAT, and these data pro-
vided evidence that cGMP may be involved in SOC/Ca2+/
NFAT pathway, but the exact mechanism needs further
research.

NFAT inhibitor, VIVIT inhibits hypoxia-induced TRPC1 mRNA up-regulationFigure 6
NFAT inhibitor, VIVIT inhibits hypoxia-induced 
TRPC1 mRNA up-regulation. Human PASMC were cul-
tured with SMBM (2% FBS) under nomoxia or hypoxia (3% 
O2) in the presence of sildenafil (100 nM), SKF96365 (7.5 
μM) or VIVIT (4 μM) respectively for 72 h. A: PCR amplified 
products are displayed for TRPC1 (372 bp) and β-actin (539 
bp). B: Datanormalized to the amount of β-actin are 
expressed as mean ± SEM. n = 11, #P < 0.05 vs. normoxia, *P 
< 0.05 vs. hypoxia, **P < 0.01 vs. hypoxia.
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NFAT inhibitors, VIVIT and Cyclosporin A inhibitshypoxia-induced human PASMC proliferationFigure 7
NFAT inhibitors, VIVIT and Cyclosporin A inhibitshypoxia-induced human PASMC proliferation. Cell prolifera-
tion wasdetected before (Basal) and after 72 h incubation under normoxia, hypoxia, hypoxia plus VIVIT (4 μM) and hypoxia 
plus Cyclosporin A (0.03 mg/mL) respectively. A: Phase contrast image of cultured human PASMC (×200). B: Image of DAPI 
stained human PASMC. C: Cell number was determined by cell counting. n = 5, ## P < 0.01 vs. normoxia, ** P < 0.01 vs. 
hypoxia.
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Intracellular Ca2+, as an essential factor that participates in
cell cycle and promotes transcription factor binding activ-
ity with mitogenic genes, is intimately involved in cell
proliferation [42]. [Ca2+]i is reported higher in the PASMC
of PAH patients. Hypoxia-induced PASMC proliferation
was accompanied by a significant increase in resting
[Ca2+]i, calcium release from the ER, and SOC-mediated
Ca2+ influx in cytoplasm (Fig. 3). Chelating extracellular
Ca2+ or blockade of Ca2+ influx via SOC inhibited
hypoxia-induced PASMC proliferation, but VDCC played
little part in hypoxia-induced PASMC proliferation (Fig.
1). TRPC1 has been demonstrated to be involved in the
formation of SOC that contributes to the development of
cardiac hypertrophy. Up-regulation of TRPC1 and
increase in SOC-mediated Ca2+ influx were observed in
cardiomyocytes with chronic treatment of G-protein cou-
pled receptors (GPCR) agonists such as ET-1, angiotensin-
II, and phenylephrine [43]. Up-regulated TRPC1 gene
expression in human PASMC would therefore be pre-
dicted to increase the number of functional SOC, enhance
vasoconstrictor and mitogen-mediated increases in
[Ca2+]i, stimulate vasoconstriction, and promote cell
growth. We demonstrated that hypoxia promoted TRPC1
expression on the genetic and protein level which might
be responsible for the enhancement of SOC-mediated
Ca2+ influx.

An important function of Ca2+ is its role in regulation of
gene expression. One mechanism by which the Ca2+ sig-
nal can be translated into a change in gene activity is the
calcineurin-mediated activation of NFAT [44]. NFAT has
been described as a signal integrator of Ca2+ signal and
other signaling pathways with induction of a specific
genetic program. In T-cells, depletion of intracellular Ca2+

stores resulted in persistent Ca2+ influx via SOC, a process
that was necessary to maintain NFAT proteins in the
nucleus [45].

The effect of Ca2+/calcineurin/NFAT pathway has been
extensively investigated in cardiac hypertrophy [10,46]. A
model has been proposed whereby calcineurin transduces
the Ca2+signal generated by sarcomeric dysfunction,
mechanical load, or chemical agonists through dephos-
phorylation and activation of the NFAT transcription fac-
tor. The nuclear NFAT protein would then cooperate with
cardiomyocyte-expressed transcription factors to initiate
the hypertrophic gene expression program [47]. Given the
recurrent theme of NFAT regulation of hypertrophic tissue
responses in the literature, we speculate a similar role for
NFAT in vascular smooth cell hypertrophy and prolifera-
tion associated with PAH. Frutos et al [12] demonstrated
that NFATc3 was expressed in the mouse pulmonary
artery (PA). Chronic hypoxia increased NFATc3 transcrip-
tional activity and nuclear translocation. NFATc3 may
mediate chronic hypoxia-induced PA remodeling with α-

actin up-regulation. Bonnet et al suggested that NFAT acti-
vation contributed significantly to voltage-gated potas-
sium channel 1.5 (Kv1.5) down-regulation, bcl-2 up-
regulation and mitochondrial hyperpolarization, all of
which contributed to remodeling of the pulmonary artery
[13]. The present study further demonstrates that hypoxia
induces NFAT nuclear translocation via the up-regulation
of TRPC1, increase in SOC-mediated Ca2+ influx and ele-
vation of [Ca2+]i. It has been showed that the TRPC1 pro-
moter has one binding sequence with NFAT. Conceivably,
once activated, NFAT might stimulate TRPC1 expression
through a positive feedback mechanism. The results in
this experiment showed that blocking NFAT nuclear trans-
location inhibited hypoxia-induced TRPC1 expression.
These results suggested that the Ca2+/calcineurin/NFAT
pathway especially this positive feedback mechanism
could feasibly stimulate the development of hypoxia-
induced PASMC proliferation.

Our experiments demonstrated that sildenafil not only
attenuated hypoxia-induced elevation of TRPC1 expres-
sion, enhancement of SOC function and increase in
[Ca2+]i, but also inhibited NFAT nuclear translocation.
The results indicated that therapeutic effects (vasodila-
tion/antiproliferation) of sildenafil was involved in inhi-
bition of the SOC/Ca2+/NFAT pathway. Additionally,
activation PKG pathway by sildenafil and 8-brom-cGMP
inhibited NFAT nuclear translocation. We speculate that
the sildenafil effect in PAH therapy may act through mul-
tiple downstream signaling pathways and target the pro-
gression of pulmonary vascular remodeling in PAH.
Novel strategies involving NFAT inhibition can be useful
for PAH treatment.
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