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Abstract
Background  Particulate matter with a diameter of < 2.5 μm (PM2.5) influences gene regulation via DNA methylation; 
however, its precise mechanism of action remains unclear. Thus, this study aimed to examine the connection 
between personal PM2.5 exposure and DNA methylation in CpG islands as well as explore the associated gene 
pathways.

Methods  A total of 95 male patients with chronic obstructive pulmonary disease (COPD) were enrolled in this study. 
PM2.5 concentrations were measured for 12 months, with individual exposure recorded for 24 h every 3 months. 
Mean indoor and estimated individual PM2.5 exposure levels were calculated for short-term (7 days), mid-term (35 
days), and long-term (90 days). DNA methylation analysis was performed on the blood samples, which, after PCR 
amplification and hybridization, were finally sequenced using an Illumina NovaSeq 6000 system. Correlation between 
PM2.5 exposure and CpG methylation sites was confirmed via a mixed-effects model. Functional enrichment analysis 
was performed on unique CpG methylation sites associated with PM2.5 exposure to identify the relevant biological 
functions or pathways.

Results  The number of CpG sites showing differential methylation was 36, 381, and 182 for the short-, mid-, and 
long-term indoor models, respectively, and 3, 98, and 28 for the short-, mid-, and long-term estimated exposure 
models, respectively. The representative genes were TMTC2 (p = 1.63 × 10-3, R2 = 0.656), GLRX3 (p = 1.46 × 10-3, 
R2 = 0.623), DCAF15 (p = 2.43 × 10-4, R2 = 0.623), CNOT6L (p = 1.46 × 10-4, R2 = 0.609), BSN (p = 2.21 × 10-5, R2 = 0.606), and 
SENP6 (p = 1.59 × 10-4, R2 = 0.604). Functional enrichment analysis demonstrated that the related genes were mostly 
associated with pathways related to synaptic transmission in neurodegenerative diseases and cancer.

Conclusion  A significant association was observed between PM2.5 exposure and DNA methylation upon short-
term exposure, and the extent of DNA methylation was the highest upon mid-term exposure. Additionally, various 
pathways related to neurodegenerative diseases and cancer were associated with patients with COPD.

ClinicalTrials.gov identifier  NCT04878367.
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Introduction
Ambient air pollution has significant adverse effects on 
human health. Inhalation of particulate matter with a 
diameter of < 2.5  μm (PM2.5) increases the risk of vari-
ous diseases, including respiratory disease, cardiovascu-
lar disease, endocrine disorders, and neurodegenerative 
disease [1, 2]. According to the Global Burden of Disease 
Study 2019, PM2.5 pollution is the leading level-4 risk 
factor for disability-adjusted life years (DALYs) among 
environmental and occupational risks, contributing 
118 million DALYs and 4.14 million deaths in 2019, rank-
ing seventh and sixth among all risk factors for DALYs 
and death, respectively. Therefore, PM2.5 pollution is a 
primary public health concern worldwide [3].

Upon inhalation, particulate matter (PM) poses a pri-
mary health risk. Chronic obstructive pulmonary disease 
(COPD) is a major health issue associated with PM and 
the third leading cause of death worldwide [4, 5]. PM2.5 
significantly impact COPD through various mecha-
nisms including epigenetic modification, exacerbating 
symptoms and influencing disease progression. Epigen-
etic modifications provide an important link between 
the environment and alteration in gene expression. Epi-
genetic changes are genetic modifications that impact 
gene activity without changing the DNA sequence 
through DNA methylation, posttranslational histone 
modification, histone variation, chromatin remodelling, 
or noncoding RNA [6]. DNA methylation is a key epi-
genetic modification involving the covalent addition of 
a methyl group to a cytosine (C) residue, and promoter 
methylation is correlated with gene expression silenc-
ing [7, 8]. Upon exposure to PM2.5, significant methyla-
tion changes in various genes related to inflammation, 
immune response, cell motility, and cell growth as well as 
death have been observed in human bronchial epithelial 
cells [9]. Additionally, a significant relationship has been 
reported between PM2.5 exposure and DNA methylation 
in inflammatory and immune responses among patients 
with COPD [10, 11].

However, previous studies have considered only small 
populations or targeted methylation changes only in spe-
cific genes. These studies relied on fixed outdoor moni-
toring stations with limited spatial resolution to estimate 
PM2.5 exposure and did not investigate variable exposure 
durations. Moreover, the exact mechanism by which 
PM2.5 exposure affects the human body, especially the 
respiratory system, is not yet fully understood. Therefore, 
this study aimed to determine the relationship between 
personal PM2.5 exposure and DNA methylation in known 
CpG islands (CGIs) and explore the functional pathways 
related to the relevant genes.

Methods
Study population
DNA methylation profiling was conducted on patients 
selected from a multicenter trial that assessed PM2.5 
exposure in patients with COPD (ClinicalTrials.gov iden-
tifier: NCT04878367) [5, 12]. Briefly, the study included 
patients aged 40–79 years with a forced expiratory vol-
ume in 1  s (FEV1) < 80% of the predicted value, FEV1 / 
forced vital capacity (FVC) < 0.7, and respiratory symp-
toms. Indoor and outdoor PM2.5 levels were measured for 
1 year, and the patients were followed up every 3 months. 
Blood samples were collected during the last visit. Only 
male patients were included in our analysis owing to the 
small number of female patients.

Environmental measurements
PM2.5 exposure was measured in two ways, as described 
in previous studies [5]. Both outdoor and indoor PM2.5 
concentrations were continuously monitored using 
‘internet-of-things’-based devices (CP-16-A5; Aircok, 
Seoul, Republic of Korea) installed inside and outside of 
all participants’ houses. Additionally, gravimetric and 
light-scattering methods were employed to obtain more 
accurate indoor PM measurements. A mini-volume air 
sampler (model: KMS-4100; KEMIK, Seongnam, Repub-
lic of Korea), MicroPEM™ (RTI International, Research 
Triangle Park, NC, USA), and dust spectrometer (11-
D; GRIMM Aerosol Technik Ainring GmbH & Co. KG, 
Ainring, Germany) were installed at the houses of par-
ticipants for 24 h every 3 months to ensure comprehen-
sive data collection. Moreover, participants maintained 
a time–activity diary documenting their time spent 
indoors and outdoors and carried a portable PM2.5-mea-
suring device (Airbeam2; HabitatMap, Brooklyn, NY, 
USA) for 24 h before each follow-up visit every 3 months. 
Based on these data, individual PM2.5 exposure levels 
were estimated for each participant. The detailed esti-
mation methods used are described in the Supplemen-
tary Material. In this analysis, we used both indoor PM2.5 
concentrations and estimated individual PM2.5 exposure 
level. The average PM2.5 concentration was categorized 
according to three different time periods before the last 
visit when the blood sample was obtained. The time peri-
ods are as follows: short-term (7 days), mid-term (35 
days), and long-term (90 days).

DNA methylation profiling
Sampling and library construction
DNA methylation analysis was performed using the 
blood samples obtained after 1 year of follow-up. The 
fragmented genomic DNA was repaired and SureSelect 
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Methyl-Seq Methylated Adapters (Agilent, Santa Clara, 
CA, USA) were ligated to the fragments. The adapter-
ligated product was then PCR amplified, following which 
the final purified product was quantified and qualified. 
Target capture for DNA library was prepared according 
to the standard SureSelect Methyl-Seq Target Enrich-
ment protocol (Agilent). Upon hybridization of the 
capture baits, the SureSelect Human Methyl-Seq kit (Agi-
lent) captured 84.4  Mb of the human genome. Hybrids 
were captured on streptavidin beads and the captured 
genomic DNA was eluted. Unmethylated C residues 
were modified via bisulfite conversion, using the EZ DNA 
Methylation Gold kit (Zymo Research). The final libraries 
were sequenced using an Illumina NovaSeq 6000 System.

Methylation calling and data preprocessing
Figure S1 in the Supplementary Material shows the ana-
lytical methods and workflow. After sequencing, the raw 
sequence reads were trimmed and aligned to the Homo 
sapiens hg19 reference genome using BSMAP (version 
2.90). After the mapped reads were sorted and indexed, 
the PCR duplicates were removed. The methylation ratio 
at each cytosine position within the target region was 
subsequently extracted from the mapping results. The 
coverage profiles were calculated as C counts/effective 
CT counts for each cytosine in CpG, CHH, and CHG. 
Each cytosine locus in CpG, CHH, and CHG was anno-
tated in terms of the functional location of each gene 
(promoter regions, exons, and introns), transcript ID, 
gene ID, strand, or CGI.

For data preprocessing, we selected only CpG sites with 
at least 10 CT counts at each site to obtain a more reliable 
methylation ratio. The methylation ratio data were nor-
malized using the median scaling normalization method 
to reduce technical bias and better comparisons between 
the data samples.

Model selection
We randomly selected 500 CpG sites and checked all the 
assumptions of the linear regression model in each case 
as shown in Supplementary Material (linearity between 
the independent and dependent variables, independence 
of observations, homoscedasticity (constant variance 
of residuals), and normality of residuals). To test these 
assumptions, we used the studentized Breusch-Pagan 
test for homoscedasticity and the Shapiro-Wilk normal-
ity test for normality on a randomly selected 500 CpGs. 
The data exhibited heteroscedasticity and non-normal 
residuals. Additionally, our data includes repeated mea-
surements of fine particulate concentrations (indoor 
concentration and estimated individual exposure) over 
7, 35, and 90 days. To account for these repeated mea-
sures and individual-level variations such as asthma his-
tory, history of coronavirus disease 2019 (COVID-19) 

infection status, and smoking history, we considered a 
mixed-effects model. The initial model specified a vari-
ance function for the repeated measures and included 
fixed effects for PM values, age, BMI, asthma history, 
and FEV1 predicted %, COVID-19 infection as a random 
effect. We found that specifying the variance function by 
asthma history rather than repeated measures resulted 
in a lower Alaike information criterion value, indicating 
a better model fit. Therefore, in the final model excluded 
the repeated measures variable and included short, mid, 
and long-term PM concentrations as fixed effects, with 
the variance function defined by asthma status.

Identification of DNA methylation associated with PM 
exposure
We used mixed-effects models with generalized least 
squares model (‘gls’ function in R package ‘nlme’) to eval-
uate the associations between PM exposure and DNA 
methylation. The fixed effects of the model were age, 
BMI, asthma history, and FEV1 predicted %. The variance 
covariates were repeated-measure days (7, 14, 21, 35, and 
90 days) or asthma history. The history of the COVID-
19 infection was considered a random effect. We set a 
threshold of Benjamini–Hochberg false discovery rate-
adjusted p value < 0.05 for assessing the genome-wide 
statistical significance of the fixed effect of PM exposure.

Enrichment analysis
To further explore the biological function, cellular com-
ponent, and molecular function of unique CpG meth-
ylation sites related to PM exposure, we conducted a 
gene set enrichment test based on Gene Ontology (GO), 
using gProfiler [13]. Additionally, pathway analysis was 
performed using the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database [14]. Adjusted p-values 
reported in the gProfiler result were derived using a one-
sided hypergeometric test and corrected using the Ben-
jamini–Hochberg method. Adjusted p-values from the 
KEGG results were derived using a two-sided modified 
Fisher’s exact test and corrected using the Benjamini–
Hochberg method. Results from each enrichment test 
were considered significant when the adjusted p-values 
were < 0.05.

Results
Among the 102 patients who participated in the trial [5, 
12], 95 male patients provided blood samples, which were 
subsequently analyzed in the current study. The baseline 
patient characteristics are presented in Table 1. The mean 
age was 68.2 years, and the mean BMI was 28.3  kg/m2. 
Current and former smokers comprised 18.9% and 77.9% 
of all patients, respectively. Their mean post-bronchodi-
lator FEV1 was 56.8% of the predicted value. The mean 
indoor PM2.5 concentrations were 8.8, 13.3, and 15.8 µg/



Page 4 of 10Ji et al. Respiratory Research          (2024) 25:335 

m3 for the short-, mid-, and long-term periods, respec-
tively. The estimated individual PM2.5 exposure levels 
were 10.0, 13.7, and 16.8 µg/m3 in the short-, mid-, and 
long-term periods, respectively.

The associations between DNA methylation and PM2.5 
exposure were analyzed using a mixed-effects model, 
considering the PM2.5 measurement methods (indoor 
concentration and estimated individual exposure level) 
and periods (short-term, mid-term, and long-term). Age, 
BMI, asthma history, and FEV1 were considered as fixed 
effects and COVID-19 history as a random effect in each 
model. The number of CpG sites that showed significant 
differences in methylation upon PM2.5 exposure was 3, 
98, and 28 in the short-, mid-, and long-term estimated 
individual exposure models, respectively, and 36, 381, 
and 182 in the short-, mid-, and long-term indoor mod-
els, respectively. The CpGs for each model are shown as a 
Manhattan plot in Fig. 1.

We characterized the positions of the differentially 
methylated CpGs relative to the CGI on the chromo-
some and determined their functional genomic distribu-
tion. Notably, 40.1–43.2% of the total CpGs were located 
within the respective CGI. The proportion of functional 
CpGs located within the promoter was 2 (66.7%), 36 
(36.7%), and 6 (21.4%) in the short-, mid-, and long-term 
estimated individual exposure models, respectively, and 
14 (38.9%), 132 (34.6%), and 46 (25.3%) in the short-, 
mid-, and long-term indoor models, respectively (Fig. 2).

The effects of PM exposure on CpG methylation were 
analyzed according to exposure duration (short-, mid-, 
and long-term). When the R-square of the model was 
limited to ≥ 0.5, 16 CpGs showed methylation differences 
(Table 2), all of which were significantly associated with 
mid-term PM2.5 exposure. Other differentially methyl-
ated CpGs (with an R-square between 0.4 and 0.5) are 
described in Table S1. Notably, the number of associa-
tions was the largest for mid-term exposure.

In particular, the R-square value was extremely high 
(> 0.6) in the promoter region that regulates the tran-
scription of SUMO-specific peptidase 6 (SENP6, 
p = 1.59 × 10− 4, R2 = 0.604), glutaredoxin-3 (GLRX3, 
p = 1.46 × 10− 4, R2 = 0.623), transmembrane O-mannosyl-
transferase-targeting cadherins (TMTC2, p = 1.63 × 10− 3, 
R2 = 0.656), and DDB1 and CUL4-associated factor 
(DCAF15, p = 2.43 × 10− 4, R2 = 0.623) genes.

GO-based gene set enrichment analysis was per-
formed to further explore the biological processes, cel-
lular components, and molecular functions related to 
genes that showed methylation differences depending 
on PM exposure duration (Fig.  3). This correlation var-
ied depending on the PM2.5 exposure period. In the bio-
logical process category, genes related to trans-synaptic 
signaling, such as modulation of chemical synaptic trans-
mission and regulation of trans-synaptic signaling, and 

Table 1  Baseline characteristics of study participants
Baseline characteristics All (n = 95)
Age, years 68.2 ± 6.4
Sex, male 95 (100.0)
Smoking (pack-years) 37.0 ± 16.6
  Current smoker 18 (18.9)
  Former smoker 74 (77.9)
  Never smoker 3 (3.2)
Body-mass index (kg/m2) 23.8 ± 3.8
Underlying asthma 3 (3.2)
Education level
  Middle school 27 (28.4)
  High school 37 (38.9)
  College 24 (25.3)
  Graduate school 7 (7.4)
Monthly income (US dollars)
  ≥ 4,600 8 (8.4)
  3,000–4,599 15 (15.8)
  1,500–2,999 18 (18.9)
  700–1,499 18 (18.9)
  < 700 23 (24.2)
Exacerbation during the past year
  Moderate 23 (24.2)
  Severe 11 (11.6)
  All (moderate-severe) 34 (35.8)
Lung function
  Post-BD FEV1/FVC (%) 54.9 ± 13.0
  Post-BD FEV1 (%pred.) 56.8 ± 14.6
  Post-BD FVC (%pred.) 82.1 ± 13.0
  DLCO (%pred.) 60.9 ± 18.2
Inhaler treatment
  LABA + LAMA 49 (51.6)
  ICS + LABA + LAMA 35 (36.8)
  LABA or LAMA 6 (6.3)
  ICS + LABA 5 (5.3)
SGRQ-C
  Total 36.9 ± 20.6
  Symptom 44.8 ± 21.6
  Activity 48.2 ± 24.5
  Impact 27.4 ± 22.6
CAT score 15.1 ± 8.4
mMRC grade 2.4 ± 1.1
PM2.5 levels (µg/m3)
  Estimated individual: short-term 10.0 ± 3.9
  Indoor: short-term 8.8 ± 4.0
  Estimated individual: mid-term 13.7 ± 4.9
  Indoor: mid-term 13.3 ± 6.5
  Estimated individual: long-term 16.8 ± 5.0
  Indoor: long-term 15.8 ± 6.9
Data are presented as number (%) or mean ± standard deviation, unless 
otherwise indicated.

Abbreviations: BD, bronchodilator; FEV1, forced expiratory volume in 1 s; FVC, 
forced vital capacity; %pred, percent of the predicted value; DLCO, diffusing 
capacity of the lungs for carbon monoxide; LABA, long-acting beta-2 agonist; 
LAMA, long-acting muscarinic antagonist; ICS, inhaled corticosteroid; SGRQ-C, 
St. George’s Respiratory Questionnaire for patients with COPD; CAT, chronic 
obstructive pulmonary disease assessment test; mMRC, modified Medical 
Research Council; PM2.5, particulate matter less than 2.5 μm in diameter
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Fig. 2  Positions of CpGs relative to CGIs and their functional genome distribution. (A) Short-, (B) mid-, and (C) long-term estimated individual exposure 
models. (D) Short-, (E) mid-, and (F) long-term indoor exposure models. CpG, 5′-C-phosphate-G-3′; CGI, CpG island

 

Fig. 1  Manhattan plot indicating the associations between PM2.5exposure and DNA methylation. Every point corresponds to a CpG methylation site. 
The x-axis shows the chromosome of each CpG locus. The horizontal line corresponds to the Bonferroni-corrected threshold. (A) Short-, (B) mid-, and (C) 
long-term estimated individual exposure models. (D) Short-, (E) mid-, and (F) long-term indoor exposure models
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axonogenesis, such as axon and neuron projection guid-
ance, were enriched. In the cell component category, 
genes related to the ubiquitin ligase complex or synapses, 
such as neuron-to-neuron synapses, asymmetric syn-
apses, postsynaptic density, and postsynaptic specializa-
tion were enriched. In the molecular function category, 
genes related to DNA-binding transcription activator 
activity and DNA-binding transcription factor binding 

were enriched. The enrichment analysis identified a total 
of 244 GO terms (Figure S2).

Additionally, we performed pathway analysis based on 
the KEGG database to identify pathways related to genes 
that were differentially methylated in response to PM2.5 
exposure. Unlike previous GO-based functional enrich-
ment analyses, several pathways related to neurodegen-
erative diseases, such as Alzheimer’s disease, Parkinson’s 
disease, and cancer, were identified, regardless of the 

Table 2  Characteristics of differentially methylated CpG associated with PM2.5 exposure in the genome-wide methylation analysis
Chromosome Locus Gene Region CGI type adj. p value Marginal R2 Conditional R2

1q23.3 chr01-161696583 FCRLB Exonic CGI 1.46 × 10− 4 0.515 0.515
1q43 chr01-241682903 FH Exonic CGI 1.46 × 10− 4 0.516 0.516
2q31.1 chr02-170220972 LRP2, BBS5 Intergenic Shore 1.35 × 10− 4 0.614 0.614
3p21.31 chr03-49708453 BSN UTR3 Shelf 2.21 × 10− 5 0.606 0.606
4q21.1 chr04-78739828 CNOT6L Intronic CGI 1.46 × 10− 4 0.609 0.609
6q14.1 chr06-76311490 SENP6 UTR5 CGI 1.59 × 10− 4 0.604 0.604
8q11.21 chr08-48650995 CEBPD Upstream CGI 8.01 × 10− 3 0.501 0.501
10q26.3 chr10-131934635 GLRX3 Upstream CGI 1.46 × 10− 4 0.623 0.623
12q21.1 chr12-72094870 TMEM19 UTR3 . 9.18 × 10− 4 0.515 0.515
12q21.31 chr12-83081152 TMTC2 UTR5 CGI 1.63 × 10− 3 0.656 0.656
13q34 chr13-115079970 CHAMP1 Upstream CGI 1.37 × 10− 3 0.502 0.502
15q25.2 chr15-82824909 DNM1P38, DNM1P43 Intergenic CGI 2.13 × 10− 4 0.511 0.511
19p13.12 chr19-14063293 DCAF15 UTR5 CGI 2.43 × 10− 4 0.623 0.623
19p13.11 chr19-18403074 RPL39P38, LSM4 Intergenic CGI 6.10 × 10− 6 0.561 0.561
20p12.2 chr20-10654937 JAG1 Upstream CGI 2.43 × 10− 4 0.583 0.583
20p13 chr20-4573410 RPL7AP12, RPS4XP2 Intergenic CGI 1.46 × 10− 4 0.755 0.755
Abbreviations: CpG, 5′-C-phosphate-G-3′; PM2.5, particulate matter less than 2.5 μm in diameter; CGI, CpG island; UTR, untranslated region; ncRNA, non-coding 
ribonucleic acid

Fig. 3  Results of Gene Ontology enrichment analysis. Top 5 Gene Ontology pathways displaying the most significant differences among the groups with 
different durations of estimated individual and indoor exposure to PM2.5. (A) Biological processes, (B) cellular components, and (C) molecular functions
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PM2.5 exposure period (Fig. 4). The enrichment analysis 
identified a total of 68 KEGG pathways (Figure S3).

Discussion
In this study, we used the methyl-capture method to 
explore the association between personal PM2.5 expo-
sure and peripheral blood DNA methylation in patients 
with COPD. We found a positive association (hyper-
methylation) between DNA methylation in the promoter 
regions and PM2.5 exposure. Three different cumulative 
exposure windows were considered namely, 7, 35, and 90 
days, representing short-, mid-, and long-term periods, 
respectively. Notably, the mid-term exposure window 
displayed the highest number of associations. Further, 
functional enrichment analysis revealed that the associ-
ated genes were mainly involved in neurodegenerative 
diseases and cancer pathways. This is the first study to 
investigate the association between PM2.5 exposure and 
DNA methylation in known CGIs in patients with indoor 
exposure throughout the study period and personal 
exposure based on portable measurement devices.

Studies have shown that averaging air pollution mea-
sured over longer time periods often results in stron-
ger associations with DNA methylation changes [15]. 
Among the three different exposure periods, mid-term 
PM2.5 exposure was most frequently associated with dif-
ferentially methylated CpGs in our study. Panni et al. 
investigated the effects of PM2.5 exposure on blood DNA 
methylation over different periods for up to 28 days and 
reported greater effects over a longer time window of 
exposure [16]. One study examined PM2.5 and NOx expo-
sures, averaged over a full year, and their association with 
DNA methylation in circulating monocytes, revealing 
novel associations between long-term ambient air pol-
lution exposure and site-specific DNA methylation [17]. 
The strength of our study is that it demonstrates the asso-
ciation and the relevant loci at three different periods.

Nevertheless, how PM translocation from the lungs 
to the blood induces DNA methylation is not yet fully 
understood. According to current knowledge, PM2.5 
can induce oxidative stress and inflammation in cells, 
resulting in the production of reactive oxygen species 
and proinflammatory cytokines. These molecules can 

Fig. 4  Results of Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Top 20 Kyoto Encyclopedia of Genes and Genomes pathways 
related to differentially methylated genes depending on particulate matter exposure

 



Page 8 of 10Ji et al. Respiratory Research          (2024) 25:335 

consequently affect the cellular machinery that regu-
lates DNA methylation [11, 15]. Moreover, PM2.5 might 
directly interact with enzymes that add or remove methyl 
groups from DNA, such as DNA methyltransferases 
or translocation proteins. The altered activity of these 
enzymes can change DNA methylation pattern [18, 19]. 
The process of DNA methylation requires the presence 
of methyl groups derived from molecules such as S-ade-
nosylmethionine. Exposure to PM2.5 may disrupt the 
metabolism of these molecules, thereby indirectly influ-
encing DNA methylation [15].

We identified various hypermethylated genes associ-
ated with PM2.5 exposure, many of which are known to 
be related to human health. TMTC2 has been identified 
as a candidate for causing progressive sensory hearing 
loss in humans [20, 21]. GLRX3 is a major redox buffer 
that uses the reducing power of glutathione to maintain 
and regulate the cellular redox state [22]. It protects the 
lung tissue from oxidative stress, and an altered GLRX3 
is known to affect idiopathic pulmonary fibrosis, asthma, 
and COPD in rodent models or cell-based studies [23]. 
Moreover, levels of GLRX3 are significantly increased 
in lung cancer tissues [22]. CUL4A comprises the mul-
tifunctional ubiquitin ligase E3 complex, where specific 
DDB1 and CUL4-associated factors (DCAFs) determine 
substrate specificity. DCAFs serve as substrate receptors 
that execute the degradation of proteins [24]. Alterations 
encompassing DCAFs are frequently observed in lung 
adenocarcinoma, and DCAF15 has been shown to be fre-
quently lost [25]. Additionally, we identified TMTC2, an 
integral membrane protein associated with the endoplas-
mic reticulum calcium uptake pump; however, complete 
details regarding its function are not yet known.

CCR4-NOT transcription complex subunit 6 like 
(CNOT6L) is a deadenylase subunit belonging to the 
CCR4-NOT complex, a major deadenylase complex in 
eukaryotes [26]. The function of CNOT6L has not been 
elucidated; however, one previous study demonstrated 
a significant copy number loss of CNOT6L in human 
colon adenocarcinoma samples [27]. The expression of 
CNOT6L was reportedly downregulated in samples of 
leukemia cells from patients with acute lymphoblastic 
and myeloid leukemia compared to that in normal blood 
cells [28]. Bassoon (BSN) is a presynaptic scaffolding pro-
tein involved in organizing the presynaptic cytoskeleton. 
This gene is primarily expressed in the neurons of the 
brain. Mutations in BSN have been reported in individu-
als with familial and sporadic progressive supranuclear 
palsy-like syndrome [29]. SENP6 is a ubiquitin-like mol-
ecule that serves as a key factor required throughout the 
cell cycle and controls centromere stability [30]. Genetic 
alterations or instability in SENP6 have been reported 
in lymphomagenesis and diffuse large B-cell lymphoma 
[31]. All these data suggest that epigenetic change can 

be the underlying pathogenic mechanism of PM2.5 expo-
sure-mediated effects.

Changes in DNA methylation may be associated with 
the development and exacerbation of lung diseases. In 
Boston, a 28-day average exposure to PM2.5 resulted in 
significantly decreased lung function, measured in terms 
of FEV1 and FVC. These associations were significantly 
stronger among participants with higher methylation 
at CpG sites on the glucocorticoid receptor. Moreover, 
associations of PM2.5 with FVC were significantly stron-
ger among participants with lower methylation at one 
of the five CpG sites in Toll-like receptor 2 [32]. A large 
Dutch population-based cohort study identified dif-
ferential DNA methylation at seven CpG sites with a 
genome-wide significant association with NO2 expo-
sure. Although a genome-wide significant effect of PM2.5 
exposure on DNA methylation related to lung function 
was not found, many CpG sites had suggestive effects in 
response to PM2.5 [33].

The enrichment analysis performed in this study dem-
onstrated a strong association between pathways in 
cancer and progressive neurological diseases, such as 
Parkinson’s and Alzheimer’s diseases, in all three differ-
ent cumulative exposure windows. Among the biologi-
cal and cellular processes, the modulation and regulation 
of synapses were significantly associated with mid-term 
exposure. A relationship between PM2.5-derived hypo-
methylation and Alzheimer’s disease, especially methyla-
tion changes associated with amyloid precursor protein, 
beta-site amyloid precursor protein cleaving enzyme 1, 
and the apolipoprotein E gene, has also been reported 
[34, 35]. Moreover, clinical studies on prolonged expo-
sure to PM2.5 have demonstrated that DNA hypometh-
ylation and abnormal glutathione pathways lead to 
epigenetic changes and trigger neuroinflammation and 
clearance of reactive oxygen species [36]. Compared 
to Alzheimer’s disease, evidence about the association 
between PM2.5-derived methylation and Parkinson’s dis-
ease is limited [37].

Our study has some limitations. First, our results have 
not been validated in other populations. Second, specifi-
cally with respect to COPD, owing to the lack of a con-
trol group, we are not certain whether these results are 
exclusive findings or generalized in the older population. 
Moreover, the results cannot be generalized to women 
with COPD. Third, we did not measure the expression 
levels of the differentially methylated genes. An estima-
tion of the protein or mRNA expression of these genes 
may help elucidate the functional and clinical impact of 
genetic methylation on PM2.5 exposure in the context of 
COPD. Fourth, if we had analyzed the various PM cat-
egories, it could have provided additional information 
about differential DNA methylation. However, among 
the various PM categories, PM2.5 is mostly deposited in 
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small airways and it is closely related to clinical param-
eters in COPD [38, 39]. Moreover, CP-16-A5 (Aircok, 
Seoul, Republic of Korea) was most suitable IoT-based 
device for monitoring as closely and in detail as possi-
ble, which focused on measuring PM2.5. Lastly, we only 
considered effects of PM2.5 on DNA methylation among 
the air pollution components. However, air pollution is 
also composed of black carbon, ozone, nitrogen oxides, 
and polyaromatic hydrocarbons. These constituents are 
known to be associated with changes in DNA methyla-
tion leading to the lung function [15].

Despite these limitations, our study has several 
strengths. We measured personal PM2.5 exposure using 
an individualized portable device, whereas previous stud-
ies estimated PM2.5 exposure using fixed monitoring sta-
tions with low spatial resolution. Such measurements can 
have limitations if the number of monitoring stations is 
limited. Moreover, we analyzed the association between 
DNA methylation and indoor PM2.5 levels over a study 
period of 1 year to minimize seasonal variation. Addi-
tionally, older adults with chronic diseases usually per-
form fewer outdoor activities, and indoor sources might 
be larger contributors to personal exposure in them.

Conclusions
We demonstrated the association between DNA meth-
ylation and PM2.5 exposure in three different cumula-
tive exposure windows. Significant associations were 
observed even in short-term exposure, whereas the 
extent of DNA methylation was highest in mid-term 
exposure. Biologically, synaptic transmission in neuro-
degenerative diseases and various pathways in cancer 
were most affected in patients with COPD. Our study 
provides a better understanding of the effects of PM2.5 
exposure linked to adverse health outcomes in patients 
with COPD. Replication of our findings in further studies 
is necessary to elucidate the role of suggested epigenetic 
changes associated with PM2.5 exposure.
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