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Abstract
Background Pulmonary arterial hypertension (PAH) is a life-threatening chronic cardiopulmonary disease. However, 
there is a paucity of studies that reflect the available biomarkers from separate gene expression profiles in PAH.

Methods The GSE131793 and GSE113439 datasets were combined for subsequent analyses, and batch effects were 
removed. Bioinformatic analysis was then performed to identify differentially expressed genes (DEGs). Weighted gene 
co-expression network analysis (WGCNA) and a protein-protein interaction (PPI) network analysis were then used 
to further filter the hub genes. Functional enrichment analysis of the intersection genes was performed using Gene 
Ontology (GO), Disease Ontology (DO), Kyoto encyclopedia of genes and genomes (KEGG) and gene set enrichment 
analysis (GSEA). The expression level and diagnostic value of hub gene expression in pulmonary arterial hypertension 
(PAH) patients were also analyzed in the validation datasets GSE53408 and GSE22356. In addition, target gene 
expression was validated in the lungs of a monocrotaline (MCT)-induced pulmonary hypertension (PH) rat model and 
in the serum of PAH patients.

Results A total of 914 differentially expressed genes (DEGs) were identified, with 722 upregulated and 192 
downregulated genes. The key module relevant to PAH was selected using WGCNA. By combining the DEGs and 
the key module of WGCNA, 807 genes were selected. Furthermore, protein–protein interaction (PPI) network 
analysis identified HSP90AA1, CD8A, HIF1A, CXCL8, EPRS1, POLR2B, TFRC, and PTGS2 as hub genes. The GSE53408 
and GSE22356 datasets were used to evaluate the expression of TFRC, which also showed robust diagnostic value. 
According to GSEA enrichment analysis, PAH-relevant biological functions and pathways were enriched in patients 
with high TFRC levels. Furthermore, TFRC expression was found to be upregulated in the lung tissues of our 
experimental PH rat model compared to those of the controls, and the same conclusion was reached in the serum of 
the PAH patients.
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Introduction
Pulmonary arterial hypertension (PAH) is a complex and 
progressive disorder characterized by elevated pulmo-
nary arterial pressure leading to right ventricular failure 
[1]. Although numerous targeted therapies for PAH have 
been developed to effectively alleviate symptoms, this 
serious disease remains associated with a poor prognosis. 
The five-year survival rate for newly diagnosed patients 
is only 61.2% [2]. Early diagnosis of PAH is important for 
patients, therefore, there is an urgent need to identify 
the potential mechanism of PAH and to identify related 
biomarkers.

Recent advancements in bioinformatics have enabled 
a more nuanced understanding of the molecular basis 
of PAH [3–5]. Bioinformatic analysis methods can aid 
in identifying candidate genes related to the develop-
ment of PAH, offering valuable guidance for diagnostic 
or prognostic biomarkers and therapeutic targets [6, 7]. 
However, many current studies only make theoretical 
predictions without experimentally validating of their 
reliability [5, 8].

We first merged the PAH microarray data from the 
public Gene Expression Omnibus (GEO) databases 
GSE131793 and GSE113439, to eliminate differences 
between batches. After evaluating the quality of the raw 
data, differentially expressed genes (DEGs) were iden-
tified using the limma package in R software version 
4.3.2(http://www.r-project.org/). The development of co-
expression networks has facilitated the creation of net-
work-based gene screening methods, which can be used 
to identify potential biomarkers and therapeutic targets 
[9]. WGCNA was employed to identify genes that were 
associated with the clinical phenotype. The previously 
mentioned DEGs, which overlap with the key modules 
of WGCNA, were utilized for the purpose of performing 
functional and pathway enrichment analysis through the 
use of GO, DO, KEGG, and GSEA. Subsequently, a pro-
tein-protein interaction (PPI) network was constructed 
using these genes. Subsequently, the hub genes were 
identified through the use of Cytoscape software. The 
PPI network was intersected with the top 20 hub genes 
of the biological network analysis with four algorithms, 
resulting in the selection of 8 genes: HSP90AA1, CD8A, 
HIF1A, CXCL8, EPRS1, POLR2B, TFRC, and PTGS2. 
After the verification of two independent datasets and 
experimental validation, TFRC was identified as a poten-
tial molecular biomarker in PAH. The following section 
outlines the materials and methods used in this study.

Materials and methods
Microarray data analysis and identification of differentially 
expressed genes
The gene expression datasets GSE131793 [10], 
GSE113439 [11], GSE53408 [12] and GSE22356 [13] 
were selected for this study. All gene expression micro-
array data were obtained from the GEO database in 
the form of a standardized and quality-controlled gene 
expression matrix (https://www.ncbi.nlm.nih.gov/geo/). 
The GSE131793 dataset included 10 samples each from 
PAH patients and normal controls. The GSE113439 data-
set comprises 15 PAH samples and 11 control samples. 
The GSE53408 and GSE22356 datasets were selected as 
the validation sets, which contain 12 PAH samples and 
11 control samples and 18 PAH samples and 20 control 
samples, respectively. The GSE131793 and GSE113439 
microarray datasets were integrated as training datasets 
after excluding inter-batch variation using the Surrogate 
variable analysis (SVA) package [14]. Two-dimensional 
principal component analysis (PCA) was employed to 
illustrate the disparity between the pre- and post-SVA 
batch groups. Data normalization and background cor-
rection were performed using the robust multiarray 
average (RMA) method. The microarray probes were 
annotated using annotation files, resulting in the removal 
of any gene probes that were not aligned to a specific 
gene. In the event that multiple probes represented the 
same gene symbol, the average value was used as a rep-
resentative measurement. Gene screening for differential 
expression was conducted using the “limma” package, 
applying a significance threshold of P < 0.05 and a |log2 
fold change (FC)|> 0.5. The ggplot2 package [15]was used 
to generate a volcano plot of the DEGs, and the pheat-
map package was utilized to construct a heat map of the 
DEGs.

Modules identified to be related to PAH via WGCNA 
analysis
The WGCNA tool in R was used to construct a weighted 
co-expression network of the merged datasets [9]. To 
build the scale-free network, the pickSoftThreshold 
function was utilized to select soft powers b = 10. An 
adjacency matrix was generated, which was then trans-
formed into a topological overlap matrix (TOM) and the 
corresponding dissimilarity matrix(1-TOM). A hierar-
chical clustering tree diagram of the 1-TOM matrix was 
constructed in order to classify similar gene expressions 
patterns into different gene co-expression modules. To 

Conclusions According to our bioinformatics analysis, the observed increase of TFRC in the lung tissue of human 
PAH patients, as indicated by transcriptomic data, is consistent with the alterations observed in PAH patients and 
rodent models. These data suggest that TFRC may serve as a potential biomarker for PAH.
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identify additional functional modules in the co-expres-
sion network, module-trait associations between mod-
ules and clinical feature information were calculated 
based on previously conducted studies with the inten-
tion of identifying those modules that demonstrated high 
correlation coefficients with clinical features. To identify 
key differentially expressed genes (DEGs), the online tool 
(https://bioinfogp.cnb.csic.es/tools/venny/) was used to 
construct Venn diagrams demonstrating the intersection 
of DEGs and key modules.

Methodology for enrichment analysis
Gene Ontology (GO), disease ontology (DO), gene set 
enrichment analysis (GSEA) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) were used for enrichment 
analysis. The analysis used the ‘clusterProfiler‘ [16] and 
‘DOSE‘ [17] packages to perform GO, KEGG, and DO 
enrichment analyses, with a significance threshold of 
P < 0.05.

Protein-protein Interaction (PPI) Network Construction and 
Analysis
To investigate protein-protein interactions among the 
differentially expressed genes (DEGs) identified in our 
study, we utilized the STRING database (https://string-
db.org/). The network was processed using Cytoscape 
software version 3.8.2 (https://www.cytoscape.org) for 
visualization and analysis. The top 20 hub genes identi-
fied by biological network analysis with four algorithms 
via the CytoHubba Cytoscape plugin.

Establishment of the MCT-induced PH mouse model
This study adhered to the Guide for the Care and Use of 
Laboratory Animals (revised in 1996) of the United States 
National Institutes of Health (publication no. 85–23), 
and it received approval from the Institutional Animal 
Care and Use Committee of Jilin University, Changchun, 
China. The study employed Sprague-Dawley rats, weigh-
ing between 180 and 220 g and six weeks of age. The rats 
were obtained from Vital River Laboratories Co., Ltd., 
Beijing, China. A total of 16 males were housed in a spe-
cific pathogen-free environment with a 12-hour light/
dark cycle, a temperature of 25 ± 2 °C, and a humidity of 
50% ± 5%. The animals were permitted to acclimate for 
two weeks before the experimental commenced. The rats 
were randomly allocated to two groups: a PAH model 
group that received a single subcutaneous injection of 
60 mg/kg MCT (Sigma, St. Louis, MO, USA, n = 8), and 
a control group that was administered saline (n = 8). Fol-
lowing a three-week interval, all rats were weighed and 
anesthetized with a dose of 60  ml/kg chloral hydrate to 
prepare them for the subsequent assessments of the 
development of pulmonary arterial hypertension.

Hemodynamic measurement, tissue collection, and 
histopathological analysis
To assess the right ventricular systolic pressure (RVSP) 
in rats, a polyethylene catheter was carefully inserted 
into the right ventricle via the right jugular vein and con-
nected to a force transducer for accurate measurements. 
Following these measurements, the rats were euthanized, 
and their hearts and lungs were promptly collected for 
further analysis. Right ventricular hypertrophy (RVH) 
was quantified as the ratio of the weight of the right ven-
tricle to the combined weight of the left ventricle and 
septum (RV/LV + S). Additionally, the right lung was 
immediately snap-frozen in liquid nitrogen for biochemi-
cal and molecular analysis. A portion of the harvested 
lungs was fixed in 4% paraformaldehyde, embedded in 
paraffin, and sectioned into 4-µm-thick slices. Selected 
sections were then stained with hematoxylin and eosin 
(H&E) and elastin van gieson (EVG) following estab-
lished protocols to assess morphological changes. The 
external and internal diameters of the pulmonary arteries 
were meticulously measured using Image-Pro Plus soft-
ware (Media Cybernetics, USA). Arterial wall thickness 
was calculated using the following formula: percentage 
wall thickness = [(external diameter − internal diameter)/
external diameter] × 100. This metric provides a quantifi-
able measure of vascular remodeling, a key pathological 
feature in PAH.

Quantitative PCR (qRT-PCR) analysis
The mRNA expression levels were quantitatively ana-
lyzed by the ABI Prism Fast 7500 system using the 
SYBR Green real-time quantitative PCR kit (SYBR; 
TOYOBO, Japan). The △△Ct method was used to cal-
culate gene expression relative to the that of housekeep-
ing gene. Primer sequences for RT-PCR were as follows: 
TFRC, forward primer:  G G A T C A A G C C A G A T C A G C 
A T; reverse primer:  C T C A T C T G C A G C C A G T T T C A; 
GAPDH, forward primer:  A A G C C C A T C A C C A T C T T C 
C A; reverse primer:  A T G G C A T G G A C T G T G G T C A T.

Protein extraction and western blot analysis
Tissue samples were processed after the specified treat-
ment time using radioimmunoprecipitation assay (RIPA) 
lysis buffer from Applygen (Beijing, China) supplemented 
with a complete protease inhibitor cocktail and a phos-
phatase inhibitor cocktail (both from Roche, Basel, Swit-
zerland) and loading buffer (Applygen, Beijing, China). 
Lysates were then frozen at -80 °C until further use. For 
protein analysis, cell lysates containing 20  µg of total 
protein were subjected to reducing SDS-polyacrylamide 
gel electrophoresis (PAGE). After electrophoresis, the 
proteins were transferred to polyvinylidene fluoride 
(PVDF) membranes. These membranes were blocked to 
prevent nonspecific binding and then probed overnight 
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at 4 °C with rabbit monoclonal antibodies against TFRC 
(Abcam, ab269513, at a dilution of 1:1000) or to glyceral-
dehyde-3-phosphate dehydrogenase (GAPDH) (Abcam, 
ab181602, at a dilution of 1:5000). The membranes were 
washed three times with TBST and incubated with horse-
radish peroxidase-conjugated secondary antibody for one 
hour at room temperature. After rinsing, the membranes 
were developed with enhanced chemiluminescent sub-
strate (No. WBKLS0500, Millipore). ImageJ was used to 
analyze band intensities.

Human subjects
Informed consent was obtained from all subjects before 
the study began. All research procedures were conducted 
in accordance with the tenets of the Declaration of Hel-
sinki. Ethical approval for research involving human 
subjects was also obtained from the Ethics Committee 
of the China-Japan Union Hospital of Jilin University. 
Fifteen treatment-naive IPAH patients were enrolled 
at the China-Japan Union Hospital of Jilin University 
from June 2020 to January 2022. The diagnosis of IPAH 
was confirmed by right heart catheterization accord-
ing to the guidelines [18]. Fifteen age- and sex-matched 
healthy subjects were enrolled as control subjects. Clini-
cal characteristics included age, body mass index (BMI), 
6-minute walk distance (6MWD), N-terminal pro-B-
type natriuretic peptide (NT-proBNP), mean pulmonary 
arterial pressure (mPAP), and pulmonary vascular resis-
tance (PVR). Blood was collected from the cubital vein 
in the morning under fasting conditions. Blood samples 
were collected in EDTA VACUETTE and centrifuged 
at 6,000  rpm for 10  min at 4  °C. Plasma was separated 
immediately and stored in liquid nitrogen at -80 °C until 
use.

Enzyme-linked immunosorbent assay (ELISA) of clinical 
blood samples
Serum levels were determined using a human TFRC 
ELISA kit (ab272469; Abcam) according to the manufac-
turer’s protocol.

Statistical analysis
Statistical analysis of the data was performed using R 
software (version 3.6.3) and GraphPad Prism software 
(version 8.0.0). The receiver operating curve (ROC) was 
used to assess the efficacy of the model, and the area 
under the curve (AUC) was used to assess the efficacy 
of the model. Statistical analysis of anatomical structure 
measurements and gene expression at the mRNA or pro-
tein level was performed using GraphPad Prism software. 
Student’s t-test and one-way ANOVA were used to com-
pare two and multiple groups, respectively. A value of 
P < 0.05 was considered to indicate statistical significance. 
All the data are expressed as the mean ± SEM.

Results
DEG-recognition results
A two-dimensional PCA clustering plot was generated 
to illustrate the distinctions between the batches before 
and after the introduction of GSE131793 and GSE113439 
(Fig.  1A and B). The analysis revealed marked cluster-
ing of the two samples once batch discrepancies were 
resolved. In total, 914 differentially expressed genes 
(DEGs), comprising 722 upregulated and 192 downreg-
ulated genes were identified, as depicted in the volcano 
plot (Fig.  1C) and heatmap (Fig.  1D), respectively. The 
complete list of DEGs is available in the supplementary 
materials (Table S1).

Weighted correlation network analysis
Pearson’s correlation coefficient was used to cluster the 
samples, and a sample clustering tree was constructed 
accordingly (Fig. 2A). A final power of 10 was chosen as 
the soft-thresholding parameter to ensure that the net-
work was scale-free (Fig. 2B). Next, the adjacency matrix 
was constructed and the TOM was constructed. Finally, 
10 modules were identified based on average hierarchi-
cal clustering and dynamic tree clipping. The correla-
tion between each module and two clinical features 
was evaluated and visualized by a heatmap of module-
trait relationships (Fig.  2C), which showed that the tur-
quoise module had high correlations with PAH (r = 0.68, 
P < 0.001). Therefore, it was selected as the clinically 
important module for follow-up analysis. The turquoise 
module contained 3208 genes (Table S2). Venn diagrams 
showed that 807 genes could be obtained from the DEGs 
and WGCNA (Fig. 2D, Table S3).

Conclusion of the functional enrichment analysis
Our GO enrichment analysis revealed that the genes were 
enriched in biological processes (BP) such as ribosome 
biogenesis and muscle contraction, cellular response to 
heat, response to manganese ion, positive regulation of 
rRNA processing. The enrichment in cell component 
(CC) included nuclear speck, cell leading edge, centri-
ole, centriolar satellite, and preribosome. Furthermore, 
the molecular function (MF) category showed significant 
enrichment in functions such as ATP hydrolysis activ-
ity, GTPase binding, catalytic activity acting on DNA, 
helicase activity, and ATP-dependent activity acting on 
DNA, marking the top five differentially enriched genes 
in this segment (Fig.  3A). Kyoto encyclopedia of genes 
and genomes (KEGG) revealed a significant enrichment 
in gene sets associated with proteoglycans in cancer, reg-
ulation of actin cytoskeleton, lipid and atherosclerosis, 
focal adhesion and NOD-like receptor signaling pathway 
(Fig. 3B). In addition, our comparative enrichment analy-
sis between the disease group and the control group sug-
gested that pulmonary arterial hypertension (PAH) may 
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Fig. 1 Differential genes and batch-to-batch differences. (A) PCA before and (B) after correction. (C) Volcano map showing the differential gene. Red 
and blue represent up- and downregulated genes, and gray represents no significant difference. (D) Heat map showing the 914 up- and downregulated 
genes. The two colors represent different trends; the darker the color, the more prominent the trend
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Fig. 2 Weighted gene correlation network analysis. (A) Genes with similar expression patterns were clustered, different colors represent different gene 
clusters, gray modules represent genes not assigned to any of the modules. (B) Optimal soft threshold power. (C) Heat map of module-trait correlations. 
The color red indicates a positive correlation with the phenotype, while the color blue indicates a negative correlation. (D) Venn diagrams between DEGs 
and turquoise module
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contribute to disorders within the cardiovascular system 
and systemic diseases, such as myocardial infraction, ath-
erosclerotic cardiovascular disease, pulmonary hyperten-
sion, atherosclerosis (Fig. 3C).

PPI network establishment and central genes identification
The database facilitates the analysis of both physical and 
functional gene interactions. A protein-protein inter-
action (PPI) network was constructed by integrating 
807 overlapping genes. The CytoNCA plug-in was used 
to analyze the topology of the network and to identify 

Fig. 3 Results of enrichment analysis of the intersection genes. (A) Gene ontology (GO) enrichment analysis. (B) Enrichment analysis results of KEGG. (C) 
Disease ontology (DO) enrichment analysis
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central genes within it. To obtain a more reliable results, 
four algorithms were used to calculate the degree of 
connectivity of the overlapping genes. We selected the 
top 20 genes in each algorithm, such as those related to 
degree centrality, (Fig.  4A), betweenness centrality (Fig. 
4B),  bottleneck centrality (Fig. 4C), and stress central-
ity (Fig. 4D). The results of the 4 algorithms were then 
intersected. Eight hub genes (HSP90AA1, CD8A, HIF1A, 
CXCL8, EPRS1, POLR2B, TFRC, and PTGS2 were iden-
tified (Fig. 4E).

Verification of Hub gene expression
The expression levels of the hub genes were further eval-
uated in the validation set. The box plots showed that the 
expression levels of the hub genes were different in the 
training set (Fig.  5A) and the validation sets GSE53408 
and GSE22356 (Fig.  5B and C). HSP90AA1, HIF1A, 
CXCL8, EPRS1, POLR2B, TFRC, and PTGS2 were genes 
that showed significantly higher expression, and CD8A 
was significantly lower in the PAH group than in the 
control group in the training set and the validation set 
GSE53408. While transferrin receptor (TFRC) was then 
the only gene still differentially highly expressed in the 
GSE22356 validation set, considering that we selected 
TFRC as the key gene for further analysis.

Enrichment in the high-TFRC group and its validation
GSEA (Fig. 6A-B) revealed that the majority of genes in 
PAH samples with high TFRC levels were enriched in 
the following biological processes: cell cycle checkpoint 
signaling, chromosome separation, templated DNA 
replication, mitotic sister chromatid segregation, and 
nuclear chromosome segregation. Additionally, path-
ways involved in cell cycle, ferroptosis, NF-κB signaling, 
NOD-like receptor signaling, nucleocytoplasmic trans-
port, ribosome biogenesis in eukaryotes, and TNF sig-
naling were also enriched in the high-TFRC PAH group. 
Since cell proliferation and inflammatory infiltration are 
hallmarks of PAH pathogenesis, both functional and 
pathway enrichment analyses suggest a potential role for 
TFRC in the setting of PAH. We also used the ROC in the 
validation dataset to further verify the diagnostic efficacy 
of the target gene shown in the figures in the validation 
cohorts, TFRC was obtained and examined in GSE53408 
and GSE22356, which TFRC was also upregulated, and 
the AUC reached 0.8788 (Fig. 6C) and 0.7056 (Fig. 6D), 
respectively. This finding suggested that the expression of 
TFRC could discriminate PAH patients from controls.

Increased TFRC expression in the experimental PH model
We successfully established a PAH rodent model, with 
a significantly greater right ventricular systolic pres-
sure (RVSP) (38.41 ± 4.75 mmHg vs. 20.86 ± 4.61 mmHg) 
in the PAH group than in the control group (p < 0.001) 

(Fig. 7A). In additional, there was a significant increase in 
right ventricular hypertrophy (RVH), as evidenced by the 
RV/LV + S ratio, which was 32.97% ± 6.48% in the MCT-
treated rats versus 22.36% ± 5.01% in the control group 
(p < 0.05) (Fig. 7B). In addition, the media wall of pulmo-
nary arteries in PH mice was significantly greater than 
that in control mice (Fig. 7C-D).

The mRNA expression of the target gene was then 
examined in the lung tissue of PH rats. TFRC was sig-
nificantly upregulated in the lungs of the PH model 
(Fig.  7E). TFRC was also selected for verification at the 
protein level. The results show that, the protein expres-
sion of TFRC in the lungs of PH rats was approximately 
1.5 times that in the lungs of PH rats. (Fig. 7F).

Validation of TFRC in clinical samples
Based on the above bioinformatics analysis and experi-
mental verification, we found that TFRC was the only 
target gene whose expression was consistently upregu-
lated in the PAH group. Therefore, we selected TFRC for 
further experimental validation. First, we collected blood 
samples from 15 IPAH patients and 15 healthy controls 
to determine the serum TFRC concentration. The clini-
cal characteristics are displayed in Table 1. We found that 
the serum TFRC concentration was much higher in IPAH 
patients than in healthy controls (Fig.  8A). The abil-
ity of TFRC levels to diagnose PAH was evaluated using 
ROC curve analysis, which showed that an AUC value of 
0.7511 demonstrated high predictive efficiency of TFRC 
as a diagnostic biomarker (Fig. 8B).

Discussion
Pulmonary arterial hypertension (PAH) is a severe pul-
monary vascular disease characterized by pulmonary 
vascular proliferation and extracellular matrix remod-
eling, the causes of which are multifactorial [19–22]. 
Although great progress has been made in understand-
ing PAH, there is still a lack of effective ways to diagnose 
and treat it. Fortunately, with the development of high-
throughput technologies, more novel biomarkers and 
therapeutic targets for PAH are emerging [23]. Integrated 
bioinformatics analyses are increasingly being used to 
discover new genes involved in PAH, potential diagnostic 
and prognostic biomarkers, underlying mechanisms and 
therapeutic targets [6, 24, 25].

In this study, 914 DEGs were identified from the PAH 
expression profile obtained from the public GEO data-
base after differential analysis. WGCNA was used to 
identify genes associated with clinical phenotypes. GO, 
KEGG and GSEA revealed significant enrichment of 
DEGs in several pathways associated with PAH. DO 
enrichment analysis more clearly revealed the occurrence 
of cardiovascular diseases, including atherosclerosis, 
arteriosclerotic cardiovascular disease, coronary artery 
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Fig. 4 Establishment of protein-protein interaction (PPI) network and hub genes identification. The top 20 hub genes with the highest degree of cluster-
ing identified by the four algorithms of the cytoHubba analysis. (A) degree centrality, (B) betweenness centrality, (C) bottleneck centrality and (D) stress 
centrality (E) Venn diagram of results from four algorithms
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Fig. 5 The expression levels of the hub genes in the training set (A) and the verification of the data sets (B) GSE53408, (C) GSE22356.
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disease, atherosclerosis and pulmonary artery hyperten-
sion. The TFRC was selected for further investigation 
based on validation in validation datasets and validation 
in animal experiments. Consistent with the predicted 
results, the mRNA and protein expression levels of TFRC 
were found to be elevated not only in PAH rodent models 
but also in the serum of PAH patients.

TFRC is a cell surface receptor that plays a key role in 
the uptake and regulation of iron ions [26]. During cell 
proliferation, the demand for iron typically increases. 
This is due to the necessity of synthesizing more DNA 
and performing other metabolic activities [27]. Iron is 
a cofactor for numerous oxidoreductase enzymes that 
play pivotal roles in DNA replication and repair, as well 

Fig. 6 The functional and pathway enrichment from PAH patients with high TFRC and diagnostic power of TFRC. (A) The GSEA analysis showing biologi-
cal processes enriched in high TFRC group versus low TFRC group in training dataset. (B) The KEGG analysis displaying biological pathways enriched in 
high TFRC group versus low TFRC group in training dataset. (C) The ROC curve of validation cohort in dataset GSE53408, (D) The ROC curve of validation 
cohort in dataset GSE22356.
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as in other cellular metabolic processes [26]. In the 
event of rapid cell proliferation, local or systemic iron 
deficiency can occur if there is an insufficient supply of 
iron in the body or if the cells are unable to absorb and 
utilize iron efficiently [28]. Abnormal TFRC expression 
has been associated with a variety of diseases, includ-
ing iron metabolism disorders, certain types of anemia, 
and cancer [29–31]. TFRC expression is significantly 
greater in many types of cancer cells because these cells 
require more iron to support rapid growth [32–34]. 
TFRC expression is regulated by cellular iron levels to 
maintain a homeostatic balance of iron ions. When intra-
cellular iron levels are low, TFRC expression increases, 

promoting greater iron uptake; conversely, TFRC expres-
sion decreases when iron is abundant [35, 36].

On the other hand, iron is a key factor in the function 
of many immune cells [37], and TFRC plays an important 
role in regulating iron homeostasis in immune cells. For 
example, TFRC is particularly important for the function 
of macrophages and T cells [38]. Recently, the TFRC has 
been identified as a prognostic biomarker. It is correlated 
with immune infiltration in breast cancer [39]. Further-
more, TFRC expression in induced sputum correlates 
positively with proinflammatory M1 macrophage num-
bers and asthma severity [40]. TFRC in cardiomyocytes 
promotes heart failure by inducing macrophage infiltra-
tion and activation through regulating Ccl2 expression 
mediated by HIF-1α and STAT3 [41]. Macrophages accu-
mulate in large numbers around the pulmonary arteries 
during the early stages of pulmonary hypertension and 
influence the inflammatory state and remodeling of the 
pulmonary vasculature by activating multiple signaling 
pathways and cytokines (e.g., HIF-1, IL-6, etc.) [42, 43]. 
It has been observed in several experimental models that 

Table 1 Clinical characteristics of the study population
Characteristics PAH(n = 15) Control(n = 15) P-value
Age(years) 54.73 (14.09) 46.33 (13.06) 0.102
BMI(kg/m2) 22.04 (2.85) 23.90 (3.20) 0.103
NT-ProBNP(pg/ml) 1806.80 (544.83) - -
6MMW(m) 420.62 (95.74) - -
mPAP(mmHg) 45.40 (17.41) - -
PVR(wood) 9.70 (5.49) - -

Fig. 7 Establishment of MCT induced PH mouse model. (A) RVSP and (B) RV/(LV + S) were assessed in MCT-induced PH rats or control (n = 8/group). (C) 
Representative images of H&E and EVG staining of lung tissues in two group. Black asterisk indicates lumen of pulmonary artery. Scale bar = 30 mm. (D) 
Quantification of media thickness of small pulmonary arterioles (E) The mRNA expression level of TFRC relative to GAPDH were examined in lung tissues 
from MCT-induced PH mice or control. (n = 5/group). (F) Representative Western blots and quantification of TFRC and GAPDH in the lungs of MCT- in-
duced rats and controls. RVSP = right ventricular systematic pressure; RV/(LV + S) = right ventricular/(left ventricular + septum). Data represent mean ± SEM. 
*P < 0.05; **P < 0.01 compared to control, as analyzed by unpaired t test or Mann-Whitney test as appropriate
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altering the M1/M2 ratio of macrophages may have an 
effect on the severity of pulmonary hypertension [44]. 
Whether TFRC is associated with macrophage activation 
in PAH remains to be investigated.

Pulmonary hypertension (PH) is a disease associ-
ated with vascular remodeling and smooth muscle cell 
proliferation [45]. Studies have shown that abnormal 
iron metabolism is common in patients with pulmo-
nary hypertension [46]. Patients may be iron deficient, 
although the underlying mechanism is not fully under-
stood. Iron deficiency may affect cell proliferation and 
vascular remodeling by affecting intracellular oxygen-
sensing pathways, which in turn may affect cell prolif-
eration and vascular remodeling [47]. An imbalance in 
iron homeostasis (both iron deficiency and iron over-
load) can aggravate certain pathologies. For example, 
iron deficiency can affect the ability of cells to transport 
and use oxygen, which in turn affects their metabolic 
state and ability to proliferate [48].Taken together, pul-
monary artery smooth muscle cells may be challenged 
by increased iron requirements during proliferation, 
particularly in diseases such as pulmonary hypertension, 
which involves significant cell proliferation and vascular 
remodeling. Iron deficiency may affect the function of 
these cells and the progression of disease; TFRC activity 
is critical for cell proliferation and differentiation, espe-
cially during periods of high iron demand. Therefore, 
understanding the role of iron metabolism in pulmonary 
hypertension may have important implications for the 
treatment and management of this disease.

In our study, GSEA analysis revealed that the majority 
of genes in PAH samples with high TFRC were enriched 
in the following biological processes: cell cycle check-
point signaling, chromosome separation, templated DNA 
replication, mitotic sister chromatid segregation, and 
nuclear chromosome segregation. GSEA analysis also 
showed the pathways involved cell cycle, ferroptosis, NF-
kappa B signaling pathway, the NOD-like receptor sig-
naling pathway, nucleocytoplasmic transport, ribosome 
biogenesis in eukaryotes and the TNF signaling pathway. 
High TFRC gene sets are associate with iron metabolism, 
inflammation and cell proliferation. These are important 
pathological processes in pulmonary hypertension. The 
proliferation and remodeling of cells in the pulmonary 
arteries, driven by disrupted cell cycle and chromosome 
handling, are critical in the progression of PH [49]. Thus, 
targeting these pathways might offer therapeutic avenues 
for managing or treating pulmonary hypertension.

In order to enhance the reliability of our results, we 
utilized two human datasets, GSE53408 and GSE22356 
to validate the hub genes. The results demonstrated that, 
of the eight hub genes, only TFRC exhibited consistently 
robust high expression. It is hypothesized that this out-
come may be related to the specific validation datasets 
that were selected. The GSE22356 dataset comprises gene 
expression profiles derived from peripheral blood mono-
nuclear cells (PBMCs) of patients with PAH, rather than 
lung tissue. TFRC has been well-established as a protein 
expressed on the cell surface, with the primary function 
of facilitating iron uptake [50]. The soluble form of TFRC 

Fig. 8 Validation of TFRC in clinical specimens. (A) TFRC expression in clinical serum samples. (B) Diagnostic performance of serums TFRC in PAH in ROC 
curve analysis. *P < 0.05 compared to control, as analyzed by unpaired t test
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can be detected in the blood, providing an assessment 
of the individual’s iron metabolism [51]. In contrast, the 
other hub genes are typically not detectable in blood. This 
likely explains the lack of differential expression of other 
hub genes observed in the GSE22356 validation cohort. 
However, in the validation cohort GSE53408, which also 
comprises lung samples, the 8 hub genes exhibited same 
expression changes as observed in the training set. Nota-
bly, four of the eight hub genes (HSP90AA1, HIF1A, 
CXCL8 and PTGS2) that were screened in this study 
have already been shown to play important roles in pul-
monary hypertension. HSP90AA1 has been identified as 
a critical biomarker and therapeutic target in PAH [52–
54]. HIF1A plays a critical role in the development and 
progression of pulmonary hypertension (PH) by promot-
ing pulmonary vascular remodeling and right ventricu-
lar hypertrophy under hypoxic conditions. This protein 
regulates various cellular processes, such as angiogenesis, 
metabolism, and inflammatory responses in the lungs, 
which are key factors in the pathophysiology of PH [55–
57].  CXCL8, also known as interleukin-8, plays a signifi-
cant role in pulmonary hypertension (PH) by recruiting 
neutrophils and other immune cells to the lungs, which 
contributes to the inflammation and vascular remodeling 
observed in PH [57, 58]. PTGS2, also known as COX-2, 
is involved in the pathogenesis of pulmonary hyperten-
sion (PH) by mediating inflammation and contributing 
to vascular remodeling and pulmonary vascular smooth 
muscle proliferation. Inhibiting PTGS2 has been shown 
to have a protective effect on vascular proliferative dis-
eases, including PH, and might be an important interven-
tion for the prevention and treatment of this condition 
[59, 60]. These findings demonstrate the feasibility of our 
method for the identification of disease diagnostic mark-
ers and therapeutic targets.

The expression of TFRC was found to be consistent 
among multiple datasets of PAH lungs. This result aligns 
with the TFRC alteration observed in a PH mouse model 
and in PAH patients. The results showed a significant 
increase in the serum TFRC in PAH patients, and the 
ROC curve showed an AUC of 0.751. This finding sug-
gested that TFRC could be used as a molecular target 
for the diagnosis of PAH. This study is the first to dem-
onstrate that TFRC can be used as a clinically predictive 
molecular target in PAH.

Our study has several limitations. (1) The number 
of patients included in the study was limited. Future 
larger prospective studies should be conducted to deter-
mine the significance of TFRC in PAH; (2) this study 
did not elucidate the role and mechanism of TFRC in 
vascular remodeling in PAH; and (3) we only used the 
MCT-induced PAH mouse model. In the future, we will 
establish a hypoxia + SU5416-induced rat PAH model to 
improve the reliability of the results.

In conclusion, the results of this study indicate that 
TFRC may be associated with PAH. Furthermore, tar-
geting TFRC may represent a promising strategy for the 
diagnosis and treatment of PAH.
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