
Wu et al. Respiratory Research          (2024) 25:319  
https://doi.org/10.1186/s12931-024-02913-z

REVIEW Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Respiratory Research

Artificial intelligence in COPD CT images: 
identification, staging, and quantitation
Yanan Wu1,2, Shuyue Xia3,4, Zhenyu Liang5, Rongchang Chen5,6 and Shouliang Qi1,2* 

Abstract 

Chronic obstructive pulmonary disease (COPD) stands as a significant global health challenge, with its intricate 
pathophysiological manifestations often demanding advanced diagnostic strategies. The recent applications of arti-
ficial intelligence (AI) within the realm of medical imaging, especially in computed tomography, present a promising 
avenue for transformative changes in COPD diagnosis and management. This review delves deep into the capabilities 
and advancements of AI, particularly focusing on machine learning and deep learning, and their applications in COPD 
identification, staging, and imaging phenotypes. Emphasis is laid on the AI-powered insights into emphysema, airway 
dynamics, and vascular structures. The challenges linked with data intricacies and the integration of AI in the clinical 
landscape are discussed. Lastly, the review casts a forward-looking perspective, highlighting emerging innovations 
in AI for COPD imaging and the potential of interdisciplinary collaborations, hinting at a future where AI doesn’t just 
support but pioneers breakthroughs in COPD care. Through this review, we aim to provide a comprehensive under-
standing of the current state and future potential of AI in shaping the landscape of COPD diagnosis and management.
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Background
The prevalence and impact of COPD
Chronic obstructive pulmonary disease (COPD) remains 
one of the predominant public health challenges of the 
21st century. With a global footprint spanning diverse 

demographic and geographic settings, COPD presents 
a multifaceted clinical picture marked by persistent res-
piratory symptoms and airflow limitations due to airway 
and alveolar abnormalities [1]. Primarily driven by pro-
longed exposure to noxious particles or gases, especially 
those originating from tobacco smoking, the pathological 
underpinnings of COPD are complex and varied, involv-
ing chronic inflammation, structural changes, and repair 
processes that affect both the larger airways and the 
peripheral lung [2].

As of the latest global estimates, over 250 million peo-
ple suffer from COPD worldwide, making it the third 
leading cause of death by 2030 [3]. Economically, the dis-
ease also places a heavy toll on healthcare systems, with 
direct medical costs and productivity losses amounting 
to billions annually [4]. These alarming statistics under-
line the pressing need for early identification, accurate 
staging, and effective management strategies.

This review aims to journey through the convergence 
of COPD imaging from computed tomography (CT) with 
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the capabilities of AI, underscoring the current achieve-
ments, challenges, and the road ahead.

The power of CT imaging in COPD
Medical imaging has proven indispensable in the land-
scape of respiratory medicine [5]. CT imaging, with its 
high resolution and ability to visualize lung structures 
in detail, has provided a platform for in-depth investiga-
tions into the complex manifestations of COPD [6, 7].

Unlike spirometry, which gives a global measure of 
lung function, CT imaging can localize and characterize 
the pathological abnormalities of COPD [8]. It illumi-
nates the heterogeneity inherent in the disease-whether 
it be the bullous formations of emphysema, thickening of 
the bronchial walls, or alterations in the pulmonary ves-
sels [2, 6, 9, 10]. CT imaging is crucial not just for diag-
nosis but also for tailoring patient-specific interventions, 
monitoring disease progression, and evaluating thera-
peutic efficacy [11].

Further, staging of COPD, which is vital for prognos-
tication and management decisions, has traditionally 
leaned heavily on physiological parameters. However, the 
staging paradigm is experiencing a shift. With the advent 
of quantitative CT techniques, objective measurements 
related to airway thickness, lung volume, and parenchy-
mal attenuation are becoming part of the COPD assess-
ment lexicon [12, 13]. These metrics provide a more 
nuanced understanding of disease severity and its spatial 
distribution within the lungs.

As COPD comprises heterogeneous imaging pheno-
types, including emphysema, airway changes, and vessel 
modifications, CT imaging offers a non-invasive win-
dow into the structural abnormalities that define these 
phenotypes [6, 14, 15]. With the surge in technological 
advancements, particularly the integration of artificial 
intelligence (AI) in medical imaging, the landscape of 
COPD diagnosis and management is set for a transform-
ative shift [16, 17].

Yet, the vast potential of CT imaging is not without its 
challenges. The sheer volume of data from high-resolu-
tion scans demands intensive manual scrutiny, making 
the interpretation time-consuming and prone to vari-
ability [18]. Herein lies the promise of AI. By harnessing 
algorithms trained on vast datasets, AI can automate, 
augment, and refine the image analysis process, bringing 
precision and consistency to the forefront [19–21].

AI in medical imaging: an overview
Machine learning vs. deep learning: differentiating the two 
foundational approaches
AI encompasses a spectrum of techniques aimed at 
simulating human-like intelligence. Two standout sub-
domains are machine learning (ML) and deep learning 

(DL), each having distinct attributes and applications in 
medical imaging.

ML employs algorithms that learn from data to make 
predictions. In medical imaging, these algorithms often 
use labeled datasets to discern patterns and offer diag-
nostics [22, 23]. Various types include: supervised learn-
ing: algorithms learn from labeled data, aiding in tasks 
like disease subtype classification [24] and treatment 
response prediction [25]. Unsupervised learning: pat-
terns are identified without labeled data, useful for seg-
menting similar regions in CT images [26].

DL, an advanced subset of ML, operates on multi-lay-
ered neural networks. The star of DL in medical imaging 
is the convolutional neural network (CNN), optimized 
for image processing by detecting features ranging from 
basic edges to complex patterns [27]. Its prowess in 
COPD imaging stems from its ability to discern intricate 
image features, offering detailed classifications [28]. A 
trinity of factors supports DL’s ascendancy in imaging: 
extensive labeled datasets, sophisticated network designs, 
and burgeoning computational power [29].

Figure 1 illustrates two fundamental concepts in deep 
learning: the multi-layer perceptron (MLP) and convo-
lutional operations. Figure  1a depicts a multi-layer per-
ceptron, which is a type of feedforward artificial neural 
network. The MLP consists of an input layer, one or more 
hidden layers, and an output layer. In this specific exam-
ple, the input layer comprises three variables (or fea-
tures), denoted as x1, x2, and x3. These input variables 
are fed into the hidden layers, where each neuron applies 
a nonlinear activation function to the weighted sum of its 
inputs. The activation function introduces non-linearity 
into the network, enabling it to learn complex mappings 
between the input and output spaces. The output layer 
of the MLP produces two values, representing the prob-
abilities of the input belonging to two different classes, 
denoted as p1 and p2. The MLP learns to classify the 
input data by adjusting the weights of the connections 
between neurons during the training process, typically 
using optimization algorithms such as stochastic gradient 
descent.

Figure  1b illustrates the process of convolutional 
operations, which are fundamental building blocks in 
CNN. CNN is particularly effective in processing grid-
like data, such as images or time series. In this exam-
ple, the input is a three-channel tensor, which can be 
thought of as an RGB image. The convolutional opera-
tion involves sliding a set of learnable filters (or ker-
nels) over the input tensor, performing element-wise 
multiplications, and summing up the results to pro-
duce a feature map. The figure shows two convolutional 
kernels being applied to the input tensor, resulting in 
two output channels. Each kernel has a specific set 
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of weights that are learned during the training pro-
cess to extract relevant features from the input. The 
convolutional operation exploits spatial locality and 
parameter sharing, enabling the network to learn trans-
lation-invariant features and capture local patterns 
in the data. By stacking multiple convolutional lay-
ers, CNNs can learn hierarchical representations, with 
lower layers capturing low-level features (e.g., edges 
and textures) and higher layers capturing more abstract 
and semantic information.

The combination of MLPs and convolutional operations 
forms the backbone of many deep learning architectures. 
MLPs are commonly used in the final stages of CNNs 
for classification or regression tasks, while convolutional 
layers are employed to extract spatial features from the 
input data. By leveraging the power of deep neural net-
works and convolutional operations, deep learning has 
achieved remarkable success in various domains, includ-
ing computer vision [30], natural language processing 
[31], and speech recognition. The ability to automatically 
learn hierarchical representations from raw data has rev-
olutionized the field of artificial intelligence and opened 
up new possibilities for solving complex problems.

Figure  2 presents an overview of several influential 
CNN architectures. The figures are referred to the pre-
vious study [32]: (a) AlexNet: Developed by Krizhevsky 
et al. in 2012 [33], AlexNet is a pioneering CNN architec-
ture that achieved remarkable performance on the Ima-
geNet classification task. It consists of five convolutional 
layers followed by three fully connected layers. AlexNet 
introduced the use of rectified linear unit (ReLU) acti-
vation functions and employed techniques such as data 
augmentation and dropout regularization to improve 
generalization. (b) ResNet18: ResNet, short for Residual 
Network, is a family of CNN architectures introduced 
by He et al. in 2015 [30]. ResNet18 is a specific instance 
of the ResNet architecture with 18 layers. The key inno-
vation of ResNet is the introduction of residual connec-
tions, which allow the network to learn residual functions 
with reference to the input layer, enabling the training of 
much deeper networks without the vanishing gradient 
problem. (c) MobileNet-v2: MobileNet is a family of effi-
cient CNN architectures designed for mobile and embed-
ded vision applications. MobileNet-v2, proposed by 
Sandler et al. in 2018 [34], builds upon the ideas of depth-
wise separable convolutions and introduces inverted 

Fig. 1 Fundamental concepts of deep learning. a MLP Prediction with 2 outputs. b Convolutional operation
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Fig. 2 Some main CNN architectures referring to [32]. a AlexNet, b ResNet18, c Mobilenet-v2, d ResNet26, and e VGG16
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residual connections. This architecture achieves a good 
balance between accuracy and computational efficiency, 
making it suitable for resource-constrained devices. (d) 
ResNet26: ResNet26 is another variant of the ResNet 
architecture, similar to ResNet18 but with 26 layers [35]. 
It follows the same principles of residual learning, allow-
ing for the training of deeper networks while mitigating 
the vanishing gradient problem. ResNet26 offers a trade-
off between network depth and computational complex-
ity. (e) VGG16: VGG16, introduced by Simonyan and 
Zisserman in 2014 [36], is a CNN architecture known for 
its simplicity and effectiveness. It consists of 16 layers, 
including 13 convolutional layers and 3 fully connected 
layers. VGG16 uses small convolutional filters (3x3) and 
employs a uniform architecture, making it easy to under-
stand and implement. Despite its depth, VGG16 has been 
widely adopted and has served as a foundation for many 
subsequent CNN architectures.

These CNN architectures have been instrumental 
in advancing the field of deep learning and have been 
applied to various computer vision tasks, including image 
classification, object detection, and semantic segmenta-
tion. Each architecture has its own unique characteris-
tics and trade-offs in terms of accuracy, computational 
complexity, and memory requirements. Understanding 
the design principles and performance characteristics of 
these architectures is crucial for selecting the appropri-
ate model for a given task and for developing new CNN 
architectures tailored to specific domain requirements, 
such as medical image analysis for the characterization 
and recognition of COPD using CT scans [37, 38].

In sum, while ML and DL both offer value in medical 
imaging, the selection between them hinges on the spe-
cific demands of the task at hand. Their differentiated 
roles will be further proved as we delve deeper into AI’s 
integration with COPD imaging.

Applications of AI in medical imaging
Radiology, an indispensable branch of medical diagnos-
tics, has always been at the forefront of technological 
integration. The recent embrace of AI within radiology 
signifies a paradigm shift, augmenting the accuracy, 
efficiency, and capabilities of imaging modalities. (1) 
Image analysis and interpretation: AI-powered tools 
have streamlined image analysis, enhancing detection 
sensitivity and reducing manual errors. For instance, 
algorithms can assist radiologists in identifying early 
signs of pathologies like tumors, vascular anomalies, or 
pulmonary conditions that might be subtle or ambigu-
ous in initial scans [39–42]. (2) Workflow optimization: 
Beyond image interpretation, AI facilitates streamlined 
workflows in radiological settings. Tools can prior-
itize reading lists based on urgency, predict no-show 

appointments, or automate documentation processes, 
thus improving clinical efficiency [43, 44]. (3) Radia-
tion dose reduction: One of the concerns in radiologi-
cal procedures is the radiation dose. AI algorithms can 
reconstruct high-quality images from lower-dose scans, 
striking a balance between image clarity and patient 
safety [45, 46]. (4) Predictive analysis: AI’s ability to 
integrate imaging data with electronic health records 
allows for predictive modeling. This offers insights into 
potential disease trajectories, response to treatments, 
or even risks of complications, enabling personalized 
patient care [47, 48]. (5) Advanced imaging techniques: 
AI augments traditional imaging modalities like MRI 
or CT with advanced techniques. For instance, AI-
powered synthetic MRI can generate multiple image 
sequences from a single acquisition, reducing scan 
times [49–51]. As radiology continues its evolutionary 
journey, AI stands as a beacon, promising transforma-
tive changes. Its integration not only amplifies diag-
nostic precision but also heralds a more patient-centric 
approach, where tailored interventions and enhanced 
safety become the norm.

According to our previous studies [32, 52, 53], the fol-
lowing will provide three examples of the application of 
AI, especially deep learning methods, to lung CT images.

Figure 3 introduces the Vision Transformer (ViT) and 
its application in emphysema subtype classification. The 
ViT model, introduced by Dosovitskiy et al. in 2020 [54], 
adapts the Transformer architecture, originally designed 
for natural language processing, to the task of image 
classification. In this specific application, the ViT model 
is employed to classify emphysema subtypes, which are 
important indicators of COPD severity and progression.

The input to the ViT model is a large patch of slice 
in CT scan, which is preprocessed and divided into a 
sequence of fixed-size patches. These patches are linearly 
embedded and augmented with positional embeddings to 
preserve spatial information. The embedded patches are 
then fed into the Transformer encoder, which consists 
of multiple layers of multi-head self-attention and feed-
forward networks. The self-attention mechanism allows 
the model to capture long-range dependencies and learn 
global context, enabling it to effectively capture the spa-
tial patterns and textural characteristics of emphysema 
subtypes.

The output of the Transformer encoder is a sequence of 
feature vectors, which are then aggregated using a clas-
sification token and passed through a MLP to obtain the 
final emphysema subtype predictions. The ViT model is 
trained on a labeled dataset of CT scans with annotated 
emphysema subtypes, using techniques such as data aug-
mentation and transfer learning to improve generaliza-
tion and performance.
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The application of ViT for emphysema subtype classi-
fication offers several advantages. First, the self-attention 
mechanism enables the model to capture long-range 
dependencies and global context, which is crucial for 
accurately identifying the spatial patterns and textural 
characteristics of different emphysema subtypes. Second, 
the ViT architecture is highly scalable and can be trained 
on large datasets, for example, ImageNet, allowing for the 
learning of rich and expressive feature representations. 
Finally, the ViT model has shown promising results in 
various medical image analysis tasks, demonstrating its 
potential for improving the accuracy and efficiency of 
emphysema subtype classification in COPD assessment.

Moreover, as depicted in Fig. 4, The generative adver-
sarial network (GAN) related method was proposed for 
synthesizing contrasted-enhanced or non-contrasted 
CT. The proposed synthesizer’s network architecture 
comprises a generator and a discriminator. The genera-
tor’s purpose is to create synthetic images, while the dis-
criminator’s role is to differentiate between authentic 
and generated images, enabling the generator to learn to 
produce realistic contrasted enhanced (CE) CT or Non-
contrasted (NC) CT images.

The NC CT is input into generator (G1) to gener-
ate SynCECT. The NC CT and SynCECT are then con-
catenated along the channel dimension and fed into the 
discriminator (D1). The discriminator generates a prob-
ability map indicating whether the input image is a Syn-
CECT or a real CE CT. Additionally, the NC CT and 

real CE CT are combined and input into the discrimi-
nator to produce a probability map. The generator and 
discriminator continue to compete until an equilibrium 
is achieved. The backbone of the generator  (Fig.  4) is 
based on the 3D U-Net architecture, which consists of an 
encoder and a decoder section.

Figure  5 depicts the multiple instance earning (MIL) 
for COPD identification using CT scans. MIL is a 
weakly supervised learning paradigm where the train-
ing data consists of labeled bags, each containing multi-
ple instances [55]. In the context of COPD recognition, 
a bag corresponds to a CT scan, and instances within the 
bag represent different regions or patches of the scan. 
The MIL framework is particularly suitable for COPD 
recognition because it can handle the heterogeneous 
nature of the disease, where the presence of COPD may 
be indicated by local patterns or abnormalities in spe-
cific regions of the CT scan. Instead of requiring detailed 
pixel-level annotations, MIL allows for the learning of 
COPD patterns from weakly labeled data, where only the 
overall COPD status of each CT scan is provided.

The MIL-based COPD identification pipeline consists 
of the following steps: (1) Patch extraction: The CT 
scans are divided into multiple slices, which serve as 
instances within the MIL framework. These slices can 
be extracted using techniques such as sliding windows 
or unsupervised segmentation methods.(2) Feature 
extraction: Each patch is transformed into a feature 
representation using a deep learning model, such as a 

Fig. 3 The architecture of Vision Transformer and its application in emphysema subytpe classification [52]
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CNN. The CNN is trained to extract discriminative fea-
tures that capture the local patterns and abnormalities 
associated with COPD. (3) Attention-guided instance-
level prediction: An attention mechanism is introduced 
to assign different weights to the instances based on 
their relevance to the COPD prediction. The atten-
tion mechanism learns to focus on the most informa-
tive slices while suppressing the less relevant ones. This 
is achieved by computing attention scores for each 
instance, which are then used to weigh the instance-
level predictions. The attention scores can be learned 
through a separate attention network or by incorpo-
rating attention layers within the MIL framework. 
(4) Bag-level aggregation: The instance-level predic-
tions are aggregated to obtain a bag-level prediction, 

representing the overall COPD status of the CT scan. 
Common aggregation strategies include max pooling, 
average pooling, or attention-based mechanisms that 
assign different weights to the instances based on their 
relevance to the COPD prediction.

The application of MIL for COPD identification offers 
several advantages. First, it allows for the learning of 
COPD patterns from weakly labeled data, reducing the 
need for detailed pixel-level annotations. Second, MIL 
can handle the heterogeneous nature of COPD, capturing 
local patterns and abnormalities that may be indicative of 
the disease. Third, the MIL framework is flexible and can 
be combined with various deep learning architectures 
and aggregation strategies to improve the accuracy and 
robustness of COPD recognition.

Fig. 4 The generative adversarial network (GAN) for synthesizing contrasted-enhanced or non-contrasted CT [53]. The proposed Synthesizer based 
on GAN and consists the generator and the discriminator
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Literature search and review
To compile the necessary literature for this study, two 
separate reviewers independently scoured Google 
Scholar, Web of Science, and PubMed for articles apply-
ing AI/ML methodologies in COPD-related research, 
from their inception through November 2023.

A targeted search was conducted on Google Scholar, 
a well-regarded bibliographic retrieval database, using 
[“Artificial Intelligence” AND COPD], [“Machine Learn-
ing” AND COPD], [“Deep Learning” AND COPD], 
[“Convolutional Neural Networks” AND COPD], 
[“Detection” AND COPD], [“Classification” AND 
COPD], [“Airway” AND COPD], [“Vessel” AND COPD], 
[“Classification” AND “emphysema”], [“Segmentation” 
AND “emphysema”], [“Classification” AND “Airway”], 
[“Segmentation” AND “Airway”], [“Classification” AND 
“Vessel”], [“Segmentation” AND “Vessel”], [“Segmenta-
tion” AND “artery-vein”]. as the main search terms. The 
same search strings are employed to search on Web of 
Science and PubMed.

The articles gathered from the three databases were 
aggregated, and duplicate entries were eliminated. We 
retained only original research articles written in English. 
The remaining articles underwent a review process to 
ensure that only those pertinent to the study were kept.

Upon finalization, we had a collection of 126 articles. 
These were classified into four key categories based on 
their content and objectives: (1) COPD identification 
and staging (2) emphysema subtype classification and 

segmentation, (3) airway segmentation and quantifica-
tion in COPD, and (4) vessel segmentation and quanti-
fication in COPD. The step-by-step process is illustrated 
in Fig. 6.

AI techniques for COPD identification, staging, 
and imaging phenotype
Some articles have reviewed the progress of AI tech-
niques in COPD [56–58]. Exarchos et  al. reviewed the 
general adoption of AI in COPD research, categoriz-
ing the studies into ‘COPD diagnosis’, ‘COPD prognosis’, 
‘Patient classification’, and ‘COPD management’. It iden-
tified an acceleration of AI use in COPD research and 
calls for broader adoption due to the large and complex 
data involved [57]. The article published by Nikolaou 
et al. focused on the use of machine learning algorithms, 
specifically cluster analysis, to better characterize COPD 
through integration of patient characteristics like symp-
toms, comorbidities, biomarkers, and genomic infor-
mation. It reviewed the progress of research in the past 
decade using cluster analysis for COPD phenotypes [56]. 
Estépar’s article provided an introduction to AI and deep 
learning, discussing their role in understanding the evo-
lution and divergent trajectories of COPD. It highlighted 
the successes of AI in clinical decision making, radiologi-
cal interpretation, prognostication, and presents oppor-
tunities, challenges, and limitations of AI in COPD [58].

Our review article, compared to the others, provides 
a more in-depth focus on machine learning and deep 

Fig. 5 The attention-guided MIL for COPD identification using CT images [32]
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learning techniques for COPD identification, staging, and 
imaging phenotypes, emphasizing the roles of emphy-
sema, airway dynamics, and vascular structures. While 
all articles discuss AI’s role in COPD, we have delved 
deeper into the specifics of AI-powered insights and the 
complexities of integrating AI into the clinical landscape. 
Unlike the other articles, we also provide a comprehen-
sive understanding of the current state and future poten-
tial of AI in shaping COPD diagnosis and management.

COPD remains a prevalent respiratory condition, with 
imaging playing a pivotal role in its diagnosis and man-
agement. Figure  7 shows emphysematous destruction, 
airway, and vascular structure variability in two COPD 
subjects with different stages obtained with our previous 
studies [59, 60]. In the following section, we will review 
the AI in COPD Imaging from four aspects: COPD Iden-
tification and Staging, emphysema subtyping, airway 
analysis, and vascular changes.

COPD identification and staging with AI
Understanding COPD through radiomics: advanced features 
extracted from CT images
All of the papers related to COPD identification and stag-
ing with AI  are summarized in Table  1.  Radiomics, an 
emerging field in medical imaging, involves the extrac-
tion of a large number of quantitative features from radi-
ographic images [62]. In the context of COPD, radiomics 
can provide numerous features from CT scans, capturing 
detailed information about lung morphology and texture 
that can indicate disease presence and severity [63]. For 
example, first order features describe the distribution of 
voxel intensities within the image through basic metrics 
such as mean, variance, skewness, and kurtosis. Shape 
features provide information about the 3D shape of the 
lung and its irregularities. Matrix-based features like 
the gray level co-occurrence matrix (GLCM), gray level 
size zone matrix (GLSZM), gray level run length matrix 

Fig. 6 Literature search and analysis. The PRISMA flowchart for this review
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(GLRLM), neighboring gray tone difference matrix 
(NGTDM), and gray level dependence matrix (GLDM) 
describe more complex characteristics. The GLCM quan-
tifies the texture by examining the spatial distribution of 
voxels. GLSZM captures the size zones of different gray 
levels, while GLRLM gives information about the lengths 
of consecutive voxels with the same gray level. NGTDM 
measures the difference between a voxel and its neighbor, 
and GLDM quantifies the dependencies of gray level val-
ues in the image.

Cheplygina and his colleagues demonstrated that 
machine learning methods could effectively utilize radi-
omics features to classify and detect COPD in chest CT 
images [67]. The proposed method had validated on 
multi-dataset and achieved a moderate area under the 
curve (AUC) (DLCST:0.684, COPDGene: 0.962, and 
Frederikshavn: 0.969). Li et  al. showed that lung radi-
omics features, when combined with a support vector 
machine (SVM) model, could accurately classify different 
stages of COPD, outperforming conventional methods, 
achieving 0.970 of AUC in identification and 0.799 AUC 
in staging [76]. According to the study, machine learn-
ing methods, coupled with radiomics features, accurately 
classified the stages of COPD and outperformed clas-
sical CNN [77]. Yang et  al. explored how a multi-layer 

perceptron classifier, coupled with selected lung radi-
omics features, can effectively characterize and classify 
COPD stages [80]. Moreover, he proposed a novel lung 
radiomics combination vector and an auto-metric graph 
neural network with a meta-learning strategy for effec-
tive COPD stage classification [81]. Amudala’s study 
suggested that a combination of radiomics features, 
representing parenchymal texture and lung and airway 
shape of CT images, could be used to accurately detect 
COPD [86]. The proposed method gain tremendous clas-
sification potential in inspiratory low-dose (AUC=0.88) 
and standard-dose CT scans (AUC=0.90) .

Deep learning and COPD: unveiling disease markers from CT 
images
Deep learning techniques, especially CNNs, have shown 
remarkable success in image analysis tasks. CNNs have 
the capability of automatically learning hierarchical fea-
tures from raw CT images, which can capture both prim-
itive (edges, textures) and more abstract features (shapes, 
structures) in the data. In the context of COPD, CNNs 
can be trained to identify structural changes in the lung 
indicative of the disease, including emphysema, air-
way thickening, and the presence of mucus plugs. They 
can also be used to quantify the extent of these changes, 

Fig. 7 Coronal computed tomography (CT) view, emphysema region(in red), airway and vascular morphology in two COPD subjects with different 
stages. (Top) Male, Age = 51, BMI = 28.52, GOLD 1, FEV1 = 3.29, FVC = 4.75. (Bottom) Male, Age = 81, BMI = 25.49, GOLD 2, FEV1 = 1.71, FVC = 3.77. 
Emphysema index was calculated using a threshold of -950 HU in inspiratory CT scan [61]. The lung airway was extracted using the method in [59]. 
And lung vessel was segmented by [60]. BMI: body mass index; COPD: chronic obstructive pulmonary disease; FEV1: forced expiratory volume 
in one second; FVC: Forced Vital Capacity; GOLD: Global Initiative for Chronic Obstructive Lung Disease
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providing a measure of disease severity. The advantage of 
deep learning lies in its ability to learn from large-scale 
data, capturing subtle changes and complex patterns that 
might be overlooked by human experts or traditional 
image processing techniques.

In COPD identification, Sathiya et al. presented a com-
puter-aided diagnosis system for COPD that employed 
CNN to classify CT images, with a process encompass-
ing preprocessing, feature extraction, segmentation, and 
classification, aiming to enhance the accuracy of COPD 
diagnosis under noisy conditions [68]. Tang and his col-
leagues demonstrated the effectiveness of deep residual 
networks for the automated detection of COPD using 
low-dose CT scans, achieving an AUC of 0.889 in Pan-
CAN and 0.886 in ECLIPSE [72]. Li et  al. presented a 
novel method for early COPD detection using a graph 
convolution network model applied on small and weakly 
labeled chest CT images [79]. It gained robust classifi-
cation performance (AUC:0.81). Moreover, deep CNN 
transferred Multiple Instance Learning (DCT-MIL) 
approach [32, 70, 84] and self-supervised learning [82, 
87] were employed to identify COPD from CT images. 
In COPD staging, Ying et  al. utilized a deep belief net-
work to develop a highly accurate automatic classifier for 
COPD severity, demonstrating its effectiveness as a tool 
for exacerbation risk assessment in COPD patients (accu-
racy (ACC)=97.2%) [65]. While another study developed 
a deep learning-based algorithm to stage COPD severity 
through quantification of emphysema and air trapping 
from CT images, showing that automated CT algo-
rithms can facilitate COPD severity staging and provided 
prognostic value [74]. The proposed method achieved 
remarkable discriminative capacity in COPD staging with 
a sensitivity (SEN) of 88.25%, a specificity (SPE) of 74.5%, 
and an AUC of 0.905.

Some works propose deep learning methods for both 
identification and staging. Gonzalez et al. demonstrated 
that the several layers’ CNN could effectively detect and 
stage COPD, predict acute respiratory disease events 
and mortality in smokers using only CT imaging data, 
suggesting that CNN analysis could be a powerful tool 
for risk assessment at a population level [66]. Singla 
and his colleagues developed a deep learning model to 
extract informative regional image features from HRCT 
of COPD patients, demonstrating strong predictive capa-
bilities for spirometric obstruction, emphysema severity, 
exacerbation risk, and mortality, and potentially improv-
ing both research and clinical practice [69]. Moreover, 
the CNN models which were trained using images of lung 
parenchyma and bronchial wall [78] and weakly super-
vised deep learning [38] to diagnose and grade COPD.

In the deep learning methods for COPD identification 
and staging, researchers have employed various neural 

network architectures, numbers of layers, and activation 
functions. Based on the information provided in Table 2, 
the following three points can be summarized: CNNs are 
the most commonly used neural network architecture in 
COPD identification and staging. Researchers have uti-
lized various classic CNN architectures, such as AlexNet, 
ResNet, DenseNet, and VGG, as well as some self-
designed CNN architectures. These architectures typi-
cally consist of multiple convolutional layers and pooling 
layers to extract features from the images. The number of 
layers in the neural networks varies considerably, ranging 
from as few as 3 layers to as many as 201 layers. Some 
studies have used shallower networks, such as González 
et al. [66] and Ho et al. [73], who employed CNNs with 
3 convolutional and pooling layers. In contrast, other 
studies have utilized deeper networks, such as Zhang 
et al. [78] with DenseNet-201 (201 layers) and Tang et al. 
[72] with ResNet-152 (152 layers). The Rectified Linear 
Unit (ReLU) is the most frequently used activation func-
tion in these deep learning models for COPD identifica-
tion and staging. Most of the studies listed in the table 
have employed ReLU as their activation function, with 
the exception of Du et al. [71] who used Leaky ReLU and 
Yu et al. [87] who used Sigmoid. The choice of activation 
function can impact the model’s ability to learn complex 
patterns and generate meaningful representations of the 
input data.

In the preprocessing, feature extraction, and feature 
selection methods employed in deep learning approaches 
for COPD identification and staging, researchers have 
utilized various techniques to enhance the performance 
of their models. Based on the information provided in 
Table  3, the following three points can be summarized: 
(1) Preprocessing techniques, such as segmentation of the 
lung and airways, are commonly used to focus the analy-
sis on the relevant regions of interest in the CT images. 
Several studies, including Mets et al. [64], Xu et al. [70], 
Hasenstab et  al. [74], and Puchakayala et  al. [86], have 
employed lung and airway segmentation as a preproc-
essing step. Other preprocessing methods include join-
ing multiple views into a single montage (González et al. 
[66]), extracting 3D regions of interest (Cheplygina et al. 
[67]), and applying grayscale conversion (Sathiya et  al. 
[68]).(2) Feature extraction methods can be broadly cat-
egorized into two main approaches: (a) using pre-trained 
or self-designed CNN architectures to automatically 
learn relevant features from the preprocessed images, 
and (b) calculating handcrafted features, such as radiom-
ics features or specific quantitative CT biomarkers. Stud-
ies by González et al. [66], Xu et al. [70], and Tang et al. 
[72] have utilized CNN-based feature extraction, while 
others, such as Mets et al. [64], Hasenstab et al. [74], Li 
et al. [76], Yang et al. [80, 81], and Puchakayala et al. [86], 
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have employed handcrafted features. (3) Feature selec-
tion methods are occasionally used to reduce the dimen-
sionality of the extracted features and select the most 
informative ones for COPD identification and staging. 
Some studies, such as Xu et al. [70], have used principal 
component analysis (PCA) for feature selection, while 
others, like Li et  al. [76] and Yang et  al. [80, 81], have 
employed techniques such as variance threshold, Select 
K Best method, least absolute shrinkage and selection 
operator (LASSO), and generalized linear models. How-
ever, not all studies have explicitly mentioned the use of 
feature selection methods, suggesting that the choice of 
feature selection techniques may depend on the specific 
requirements and characteristics of the dataset and the 
model being used.

Beyond traditional methods: unique feature extraction 
from CT images for COPD identification and staging
Other innovative features can be extracted from CT 
images for COPD identification . For instance, the extrac-
tion of the bronchial tree structure provides a unique, 
detailed representation of the airways. Analyzing the 
branching patterns, diameters, and wall thicknesses of 
the bronchial tree can reveal valuable insights into the 
disease [78]. Additionally, A novel method diagnosed 
COPD using deep CNN to assess snapshots of 3D air-
way trees extracted from CT images [71] with an accu-
racy of 88.6%. Moreover, Wu and his colleagues further 
utilized snapshots of 3D airway trees and lung fields for 
COPD identification [37], achieving a higher accuracy of 
94.7%. By combining these diverse features and original 
CT image features, They also created a comprehensive 
representation of the lung that can potentially improve 
the performance of machine learning models in COPD 

identification [32] with the noteworthy classification 
performance (ACC:95.8%, SEN:95.3%, and SPE:96.5%). 
Other study developed a new classification method for 
COPD based on CNN and a parametric-response map-
ping with an accuracy of 89.3% [73]. Future research 
should focus on developing effective feature integration 
strategies and exploring the potential of novel imaging 
features.

Emphysema imaging analysis through AI lenses
Emphysema is characterized by the irreversible destruc-
tion of alveoli, the lung’s air sacs. CT imaging is instru-
mental in its detection and quantification. However, 
with the integration of AI, the landscape of emphysema 
identification, subtyping, and phenotypic visualization is 
undergoing transformative changes [88].

Characteristics and subtypes
In emphysema, alveoli are damaged and enlarged caus-
ing breathlessness. CT scans, particularly high-resolution 
CT (HRCT), play a crucial role in diagnosing and char-
acterizing emphysema. As defined in [10], emphysema 
can be categorized into several subtypes based on the 
distribution and appearance of the disease on CT scans 
(as shown in Fig. 8): centrilobular emphysema (CLE) is 
the most common type of emphysema seen in smokers. It 
typically begins in the center of the secondary pulmonary 
lobule, primarily affecting the bronchioles while sparing 
the peripheral portion. On CT images, it appears as areas 
of low attenuation without visible walls, often in an upper 
lobe predominant distribution. Panlobular emphysema 
(PLE) involves the entire secondary lobule. It is most 
commonly associated with α1-antitrypsin deficiency. On 

Table 2 More details of deep learning method in COPD identification and stage, including neural network architectures, number of 
layers, and activation functions

Team Reference Neural network 
architecture

Number of layers, Activation functions

González et al. [66] CNN Three conv and max pooling Rectified Linear (ReLU)

Xu et al. [70] AlexNet Five conv and three max pooling ReLU

Du et al. [71] Self-designed Some conv and max pooling Leaky ReLU

Tang et al. [72] ResNet 152 152 -

Ho et al. [73] 3D CNN-Naive Three conv and max pooling ReLU

Zhang et al. [78] DenseNet-201 201 ReLU

Wu et al. [37] ResNet-26 26 ReLU

Sun et al. [38] ResNet-18 18 ReLU

Wu et al. [32] VGG-16 16 ReLU

Almeida et al. [82] 3D ResNet-34 34 -

Xue et al. [84] Resnet-50 50 ReLU

Yu et al. [87] Loc-CondConv - Sigmoid
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CT scans, it presents as diffuse, low attenuation areas 
affecting all lung zones, but more severe in the lower 
lobes and anterior lung zones. Paraseptal emphysema 
(PSE) is characterized by the involvement of the distal 
airway structures adjacent to the pleura. It is often found 
in the upper lobes. On CT, it appears as subpleural areas 
of low attenuation, often with visible walls, and may be 
associated with bulla formation. In all these types, the 
degree of emphysema can be quantified on CT through 
densitometric analysis, which measures the lung’s mean 
attenuation and the percentage of the lung volume with 
low attenuation. These quantitative measurements can 
help assess the severity of the disease and monitor its 
progression. Moreover, the severity of emphysema is 
often categorized based on the percentage of the lung 
volume that falls below a certain Hounsfield Unit (HU) 
threshold on CT. It’s important to note these are general 
guidelines and the specific thresholds can vary depending 
on the source [89].

AI‑based severity identification and subtype classification
AI has enhanced the diagnostic horizon for emphysema 
in multiple ways (Table 4):

Enhanced sensitivity with machine learning and 
traditional features: Machine learning models, trained 
on texton features, are proficient in identifying sub-
types of emphysema. Gangeh et  al. introduced a new 
texton-based classification system, coupled with a SVM 
model, for classifying emphysema in CT lung images, 

demonstrating superior accuracy (96.43%) over common 
techniques and slight improvement over recent meth-
ods based on local binary patterns [90]. Other methods 
including local binary patterns and joint intensity histo-
grams [91], ensemble features based on log-Gabor filters, 
mean difference technique, and intensity values [104], 
representation by rotation invariant uniform local ter-
nary pattern with Weber’s law [94], combination of local 
quinary patterns, multifractal features, and intensity his-
tograms [100], was proposed for emphysema subtyping. 
Moreover, Zulueta et  al. explored the use of a manifold 
learning technique with embedded probabilistic PCA 
for classifying different types of emphysema in CT lung 
images, demonstrating competitive performance with 
traditional texture-based and intensity distribution meth-
ods, as well as good visual agreement with actual emphy-
sema types in full lung analysis [92].

Automatically extract features with deep learning: 
CNNs can identify and isolate emphysematous regions 
without the need for manual feature engineering, thus 
capturing the intricate patterns indicative of the disease. 
Karabulut et al. explored a CNN model to automatically 
identify and discriminate between subtypes of emphy-
sema in high-resolution CT lung images, demonstrating 
promising accuracy levels and reduced processing time 
[93]. Peng and his colleagues presented a novel multi-
scale residual network for automated emphysema tissue 
classification, achieving 93.74% accuracy, and introduced 
a new measure of emphysema severity based on the sum 

Table 3 The preprocessing, feature extraction, and feature selection method of deep learning method in COPD identification and 
stage

Team Reference Preprocessing Feature extraction Feature selection

Mets et al. [64] The segmentation of lung and airway Three quantitative CT biomarkers 
(emphysema, air trapping, and bron-
chial wall thickness)

-

González et al. [66] Join four views into a single montage CNN features -

Cheplygina et al. [67] 3D Region of interest (ROI) from CT 
image

Gaussian scale space features -

Sathiya et al. [68] Gray Scale Gray Level Co-occurrence Matrix -

Xu et al. [70] The segmentation of lung from CT 
image

CNN features (AlexNet) Principle component analysis

Tang et al. [72] Lung mask generation, spatial nor-
malisation

CNN features (ResNet-152) -

Hasenstab et al. [74] Co-registration, lung segmentation Emphysema and air trapping feature -

Li et al. [76] Volume of Interest segmentation 
from CT

1395 radiomics features Variance threshold, Select K Best 
method, and least absolute shrinkage 
and selection operator (LASSO)

Yang et al. [80] Lung region segmentation 1316 radiomics features LASSO

Yang et al. [81] Lung parenchyma segmentation 1316 radiomics features Generalized linear model and LASSO

Puchakayala et al. [86] Segmentation of lung and airways Demographics features, emphysema 
feature, lung and airway radiomics 
features

-
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of centrilobular and panlobular emphysema, demon-
strating strong correlation with pulmonary functions 
[98]. As illustrated in the work by Bermejo’s group, the 
Slice-Recovery network (SR-Net) was introduced, which 
was a novel convolutional network architecture that uti-
lizes 3D contextual information for 2D segmentation of 
PSE lesions in CT images with the dice of 0.764 [97]. In 
the study led by Wu, they proposed a vision Transformer 
(ViT) [54] model for the classification of emphysema sub-
types based on CT images, using large patches cropped 
from the images for embedding and classification. Using 
pre-training on ImageNet to overcome data limitations, 
the ViT model achieved an average accuracy of 95.95% 
on a proprietary dataset, outperforming AlexNet [33], 
Inception-V3 [105], MobileNet-V2 [106], ResNet34 [30], 
and ResNet50, as well as a non-pretrained ViT model. 
These results suggested that the proposed ViT model can 
accurately classify emphysema subtypes and had poten-
tial for other medical applications [52].

Automated evaluation the severity of emphysema: 
AI algorithms can categorize the severity of emphysema 
by automatically quantifying the affected lung volume, 
providing a more objective and consistent staging com-
pared to manual densitometry. Bortsova et al. introduced 
an end-to-end deep learning method to estimate the 
extent of emphysema based on the proportion of dis-
eased tissue. It outperforms traditional lung densitom-
etry and other recent methods by a significant margin 
with an AUC of 0.89 [96].

Segmentation using deep learning: Deep learn-
ing, especially CNNs, also has demonstrated a marked 
aptitude for emphysema segmentation in CT scans. 
As reported by Peng and his fellow researchers intro-
duced a new end-to-end semi-supervised framework 
for the semantic segmentation of emphysema in CT 
images using both annotated and unannotated areas. 
It was designed to reduce the workload for radiolo-
gists and annotation workload. The authors also pro-
pose a new loss function, the Fisher loss, to improve 
the model’s discriminative power. Experimental results 

demonstrate that this approach outperforms both the 
baseline supervised approach (which uses only anno-
tated areas) and other state-of-the-art methods for 
emphysema segmentation ACC=82.6% [99].

Derived subtypes: Yang and his team investigated 
the possibility of using texture learning to identify novel 
emphysema specific lung texture patterns (sLTPs), 
which might correspond to previously unrecognized 
emphysema subtypes with distinct clinical traits. They 
employed advanced clustering techniques on emphyse-
matous region textons within the MESA COPD cohort 
49, pinpointing 12 unique sLTPs. A notable feature of 
this method was its incorporation of spatial data, since 
the regional distribution of emphysema is considered a 
significant phenotype 50. While most sLTPs displayed 
a strong correlation with dyspnea and exercise capacity, 
further research is essential to fully grasp their pathologi-
cal significance [107, 108].

In conclusion, the incorporation of AI, particularly 
deep learning, has redefined the paradigms of emphy-
sema detection and analysis. These advancements under-
score the immense potential of AI in tailoring therapeutic 
interventions and prognostic assessments for patients 
with emphysema.

Airway analysis with AI
The airways, comprising bronchi and bronchioles, 
undergo significant structural changes in the face of 
COPD. HRCT imaging captures these alterations. AI’s 
integration with radiology accentuates the precision, 
scale, and depth of airway analysis, amplifying our under-
standing and management of COPD.

From visual cues to machine insights
Traditionally, radiologists discern airway changes by 
identifying bronchial wall thickening, luminal narrowing, 
and mucous plugging in scans [109]. While these visual 
cues remain foundational, they often necessitate expert 
scrutiny and can be subjective. AI bridges this gap by two 
aspects: Enhancing detection: AI models, trained on 

Fig. 8 Examples of different lung tissue patterns are indicated by the red arrow.(a)Normal lung parenchyma (NLP);(b) centrilobular emphysema 
(CLE);(c) panlobular emphysema (PLE); and (d) paraseptal emphysema (PSE)
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diverse datasets, unearth subtle airway alterations, mag-
nifying early detection prospects [110, 111]. Standard-
izing evaluations: Algorithms ensure consistent airway 
analysis, minimizing inter-observer variability that can 
arise from manual evaluations [112, 113].

Segmentation and quantification: using AI to segment 
and measure airway changes
Segmenting the intricate airway structure and quantify-
ing its changes is a complex endeavor. AI shines in this 

domain by precise segmentation. As shown in Table  5, 
deep learning algorithms, including CNNs and Trans-
former, can meticulously delineate airway structures from 
adjacent lung parenchyma, ensuring accuracy [114–120]. 
Charbonnier et  al. improved the airway segmentation 
quality by detecting and removing leaks using a convo-
lutional network, and combining multiple segmentations 
to increase the airway tree length (65.4%) in EXACT’09 
while minimizing leaks [121]. A novel 2.5D convolutional 
neural network-based method was proposed for airway 

Table 4 Summary of emphysema subtype classification methods by different teams, NT:normal tissue, CLE: centrilobular emphysema, 
PLE: panlobular emphysema, and PSE: paraseptal emphysema

Team Reference Year Task Method Keypoints Metrics

Gangeh et al. [90] 2010 NT, CLE, and PSE - Texton-based features (k-means) ACC=96.43%, SEN=95.41%, 
SPE=98.31%- KNN and SVM

Sørensen et al. [91] 2010 NT, CLE, and PSE - Local binary pattern ACC=95.2%

- KNN

Zulueta-Coarasa et al. [92] 2013 NT, CLE1, CLE2, CLE3, PLE, and PSE - Embedded probabilistic PCA Precision=0.72, SEN=0.73, SPE=0.95

- Maximum a Posterior

Karabulut et al. [93] 2015 NT, CLE, and PSE - Patches from HRCT ACC=84.25%

- CNN

Peng et al. [94] 2017 NT, CLE, PLE, and PSE - Joint Weber-based rotation 
invariant LBP

ACC=95.83%

- KNN

Bortsova et al. [95] 2018 CLE, PSE - Lung region of CT image SEN=0.65, SPE=0.95, AUC=0.89

- MIL

Bermejo-Peláez et al. [96] 2018 NT, CLE1, CLE2, CLE3, PLE, and PSE - 2.5D CNN (4 convolutional, 3 
max-pooling layers and 3 fully-
connected layers)

SEN=81.78%, SPE=97.34%, 
AUC=97.25%

Bermejo-Peláez et al. [97] 2019 PSE - Volume of 384 × 384 × 8 voxels 
in CT image

Dice similarity coefficient 
(DSC)=0.764

- Slice-Recovery network (3D 
CNN)

Peng et al. [98] 2019 NT, CLE, PLE, and PSE - 2D patch of CT images ACC=93.74%

- Multi-scale CNN (20-layer 
ResNet)

Peng et al [99] 2019 NT, CLE, PLE, and PSE - Semi-supervised learning ACC=82.6%

- CNN

- Fisher Loss

Wu et al. [52] 2021 NT, CLE, PLE, and PSE - 2D patch of CT images ACC=95.95%,SPE=98.85%, 
AUC=0.99

- Vision Transformer Precision=96.38%, Recall=96.58%

Li et al. [100] 2021 NT, CLE, and PSE - Local quinary pattern, fractal 
features and intensity histograms

ACC=92.3%

- Autoencoder, PCA (feature 
selection)

- SVM (classifier)

Ørting et al. [101] 2018 Emphysema detection - MIL AUC=0.82

Humphries et al. [102] 2019 Emphysema severity - CNN-LSTM -

Mondal et al. [103] 2021 Emphysema severity - Weber Local Binary Pattern ACC=93.75%

- CNN
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Table 5 Summary of airway segmentation methods by different teams

Team Reference Year Method Keypoints Datasets Metrics

Charbonnier et al. [121] 2016 - Leak detection 45 scans from COPDGene, 
EXACT’09

COPDGene: ACC=0.97, SPE=0.97, 
SEN= 0.9

- CNN EXACT’09: tree length=65.4% 
FPR=1.68%

Yun et al. [122] 2018 - Three adjacent slices in axial, 
sagittal, and coronal view

Korean obstructive lung disease 
(KOLD) cohort, EXACT’09

KOLD: tree length=92.16% False Posi-
tive Rate (FPR)=7.74%, DSC=0.8997

- 2.5D CNN EXACT’09: tree length=60.1% 
FPR=4.56%

Qin et al. [124] 2019 - Voxel-connectivity aware CNN 30 CT scans DSC=90.2%, TPR=84.7%, FPR=0.008

Nadeem et al. [125] 2020 - Freeze-and-Grow Algorithm CNN SPIROMICS (COPD study) -

Selvan et al. [126] 2020 - Mean-field approximation Danish lung cancer screening trial tree length=81.9% FPR=7.8%, 
Dice=84.8%- GNN

Zheng et al. [116] 2021 - Group supervision EXACT’09, Binary Airway Segmen-
tation Dataset (BAS)

EXACT’09: branch count=80.5%, tree 
length=79.0%, precision=94.2%

- CNN BAS: branch count=88.7%, tree 
length=92.5%, precision=91.4%

- General Union loss

Guo et al. [128] 2021 - Atrous spatial pyramid pooling Private dataset, EXACT’09 Private dataset: DSC=93.5%, Inter-
section over Union (IoU)=87.8%, 
FPR=0.015%, SEN=90.8%

- CNN-based region growing EXACT’09: DSC=95.8%, IoU=91.9%, 
FPR=0.053%, SEN=96.6%

Qin et al. [130] 2021 - Feature recalibration EXACT’09, BAS EXACT’09: branch count=82.0%, tree 
length=79.4%, FPR=9.71%

- Attention distillation BAS: Branch Detected (BD)=82.0%, 
True Detected (TD)=79.4%,

- CNN True Positive Rate (TPR)=93.6%, 
FPR=0.035%, DSC=92.5%

Heitz et al. [129] 2021 - Axial, coronal and sagittal slices 
of CT image

Private dataset Dice=78.5%

- 2.5D U-Net

Cheng et al. [115] 2021 - Tiny atrous convolutional network 
(3D CNN)

Private dataset, EXACT’09 Private dataset: Dice=0.9032, 
BD=86.63%, FPR=1.44%

EXACT’09: BD=84.9%, TD=84.5%, 
FPR=14.29%

Huang et al. [120] 2022 - Adaptive hard region-aware net EXACT’09, LIDC Dice=0.912

- Voxel Feature Extraction (CNN)

- Point voxel graph representation 
(GNN)

Yang et al. [119] 2022 - Patch sampling strategy EXACT’09, BAS, and Private dataset BAS: BD=89.01%, TD=92.71%, 
IoU=0.8738, Precision=0.9187- Channel-specific fuzzy attention

Chen et al. [131] 2022 - 3D U-Net 178 low-dose CT scans Dice=0.81

- Semi-supervised learning

- GAN

Wu et al. [133] 2022 - Two-stage framework 70 clinical chest CT scans BD=90.83%, TD=87.59%, 
DSC=92.95%, FPR=0.03%- CNN

- A long-term slice propagation

Wang et al. [117] 2022 - Bronchiole sensitive loss function EXACT’09, LIDC LIDC: BD=83.3%, TD=90.4%, 
SEN=96.6%, DSC=94.2%, FPR=0.117- A human-vision-inspired iterative 

training strategy

- A semi-supervised learning 
framework

Carmo et al. [123] 2022 - Modified EfficientDet Airway Tree Modelling challenge 
(ATM22)

Dice=93.49
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segmentation in volumetric chest CT scans with the tree 
length of 60.1% and a false positive rate (FPR) of 4.56% 
[122, 123]. Another research introduced AirwayNet, an 
innovative voxel-connectivity aware approach for precise 
airway segmentation in CT scans with a DSC of 90.2%. 
By transforming the conventional binary segmentation 
task into 26 connectivity prediction tasks, AirwayNet 
learns not only the airway structure but also the rela-
tionship between neighboring voxels [124]. Nadeem 
and his colleagues presented a novel multi-parametric 
freeze-and-grow propagation approach for automated 
and accurate segmentation of pulmonary airway trees 
in CT scans for exploring COPD sub-phenotypes. A CT 
intensity-based FG algorithm and a deep learning-based 
version are developed [125]. Graph neural network was 
also employed for extracting airways from chest CT data 
[126, 127]. A coarse-to-fine framework was proposed for 
addressing challenges in small airway branch segmenta-
tion [59, 128, 129]. Moreover, Wu et al. employed a novel 
3D contextual transformer for accurate airway segmen-
tation, extracting significantly more branches and longer 
lengths of the airway tree [59] with the tree length of 
79.6% and a FPR of 8.27% on EXACT’09 dataset . Also, 
multi-task segmentation including airway and vessel was 
finished using CNNs-based methods [129–131]. Moreo-
ver, topology-guided iterative self-learning approach 
[132] and long-term slice propagation method [133] were 
proposed for improving tree length and branch detection.

AI quantifies airway alterations like wall thickness, 
diameter, or cross-sectional area. Such measurements 
facilitate objective assessment of airway disease severity 
and its progression over time. Nardelli et al. introduced 

a convolutional neural regressor trained with a genera-
tive model and Simulated and unsupervised generative 
adversarial network (SimGAN) to accurately characterize 
small pulmonary structures from CT images, overcom-
ing the limitations of traditional methods. The validation 
results, both synthetic and in-vivo, showcase the promise 
of CNNs in providing accurate measurements of airway 
lumen, airway wall thickness, and vessel radius on chest 
CT images, potentially revolutionizing the diagnosis and 
treatment of pulmonary diseases [134].

AI enables airway changes aid in COPD identification
Beyond segmentation and quantification, AI’s prowess 
extends to classifying detected airway changes for diag-
nostic implications. It achieves this by: Pattern recogni-
tion: Algorithms detect specific airway patterns linked to 
COPD subtypes, enhancing diagnostic specificity [135, 
136]. Integration with clinical data: AI models that merge 
imaging data with clinical parameters, such as spirome-
try, amplify the accuracy of COPD diagnosis and staging 
[137, 138]. Proactive predictions: Some models predict 
the risk of exacerbations or disease progression based on 
airway patterns, enabling clinicians to tailor management 
strategies proactively [138–141]. To encapsulate, AI’s role 
in airway analysis is transformative. By refining detec-
tion, segmentation, quantification, and classification 
processes, AI equips clinicians with invaluable insights, 
paving the way for personalized and effective COPD 
management.

Table 5 (continued)

Team Reference Year Method Keypoints Datasets Metrics

Wang et al. [132] 2023 - Modified- nnUNet- pseudo-label EXACT’09, BAS, and Private dataset, 
ATM22

BAS: BD=96.4%, TD=91.4%, Preci-
sion=97.7%,

- A tailored self-iterative learning 
scheme

Private dataset: BD=87.1%, 
TD=74.3%, Precision=97.8%

EXACT’09: BD=86.5%, TD=87.1%, 
Precision=91.4%

ATM22: BD=97.9%, TD=97.1%, 
DSC:92.8%, Precision=87.9%

Zhao et al. [118] 2023 - Group Deep Dense Supervision BAS BAS: BD=90.5%, TD=95.8%, 
TPR=98.4%, FPR=0.134%- CNN

Xie et al. [127] 2023 - CNN + GNN COPDGene ACC=91.18%, TD=1.8

Wu et al. [59] 2023 - Two stage framework EXACT’09, BAS, ATM22 BAS: BD=92.4%, TD=94.9%, Preci-
sion=86.9%,

- Contextual Transformer+CNN EXACT’09: BD=81.4%, TD=79.6%, 
FPR=8.27%

ATM22: BD=86.67%, TD=90.97%, 
DSC:94.06%, Precision=93.03%
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Vessel imaging analysis through AI
Vascular changes, both within the pulmonary system 
and potentially extending extrapulmonary, are intricately 
linked with COPD’s pathology. The nuanced visualization 
and interpretation of these vascular dynamics become 
paramount, and this is where the synergy between radiol-
ogy and AI offers promising avenues.

Traditional vs. AI‑enhanced visualization
Historically, radiological evaluations of pulmonary ves-
sels were reliant on the expertise of radiologists to 
discern vessel caliber changes, pruning, or other abnor-
malities from CT scans. While effective, there were 
some limitations. Interpretations could vary between 
experts, especially in borderline cases or early disease 
stages. Some microvascular changes could escape the 
naked eye, potentially delaying interventions. AI’s inte-
gration bridges these gaps. Algorithms ensure a uniform 
approach, reducing discrepancies in vessel interpretation. 
AI tools can potentially identify sub-millimeter vascular 
changes, offering a more comprehensive view of vessel 
dynamics [111, 142].

Segmentation and quantification of pulmonary vessel
As shown in Table 6, the presented studies focus on the 
challenging task of vessel segmentation and artery-vein 
separation in CT images. Various approaches, including 
CNN methods [143–147], generative adversarial net-
works [53], and transformer-based networks [60], were 
proposed to address issues such as the separation of pul-
monary arteries and veins, the synthesis of non-contrast 
and contrast-enhanced CT images, and the segmentation 
of intricate vessel structures. These methods leverage 
advanced architectures, such as 3D contextual trans-
formers and channel-enhanced attention modules, to 
improve accuracy and efficiency. Evaluation on diverse 
datasets demonstrates the effectiveness of the proposed 
techniques, showcasing their potential applications in 
diagnosing and planning treatments for lung diseases. 
Additionally, the studies highlight the importance of 
addressing challenges such as limited annotated data 
and the need for robustness to noise in medical image 
segmentation tasks. Jimenez et al. presented a graph-cut 
methodology and a random forest pre-classifier for the 
segmentation of pulmonary artery-vein (AV) structures 
in CT images with an F1-score of 79.5% [148]. Cui et al. 
proposed an efficient 2.5D segmentation network from 

Table 6 Summary of vessel segmentation and artery-vein separation methods by different teams

Team Reference Year Task Method Keypoints Metrics

Nardelli et al. [143] 2018 Artery-vein separation CNN+Graph cut ACC=93.6%

Xu et al. [144] 2018 Vessel segmentation Lung segmentation, fully convolutional 
network, region growing

ACC=0.998, SEN=0.894

Jimenez-Carretero et al. [148] 2019 Artery-vein separation A random forest, graph-cut F1-score=79.5%

Cui et al. [149] 2019 Vessel segmentation 2.5D CNN Dice=0.9272, Precision=0.9310

Gu et al. [145] 2019 vessel segmentation Two cascade CNN Dice=0.941, Jaccard index=0.890

Guo et al. [146] 2020 Vessel segmentation CNN Dice=0.943

Nam et al. [150] 2021 Vessel segmentation A dual-source CT, 3D UNet AUC=0.977

Qin et al. [130] 2021 Artery-vein separation Feature recalibration, attention distilla-
tion, CNN+graph-cut

ACC=97.2%, TPR=97.1%, FPR=0.015%, 
DSC=97.2%

Wu et al. [151] 2022 Vessel segmentation Multi-scale interactive CNN, attention 
mechanism

DSC=0.7168, SEN=0.7234, Preci-
sion=0.7893

Li et al. [152] 2022 Vessel segmentation CNN, LSTM DSC=0.789, SEN=0.820, SPE=0.991, 
mIoU=0.819

Wang et al. [153] 2023 Vessel segmentation Contrast-enhanced (CE) CT labels, 
image registration, CNN

Dice=0.856

Pan et al. [154] 2023 Artery-vein separation Multi-scale CNN, centerline topology 
connectivity

ACC=98.0%, DSC=81.7%, Precision=80.5

TPR=84.8%, FPR=0.069%

Pang et al. [53] 2023 Vessel segmentation Self-supervised learning, GAN, CNN Dice=0.86

Wu et al. [60] 2023 Vessel segmentation CNN, contextual Transformer, double 
attention

Vessel segmentation:

Dice=0.840 (CE CT)

Dice= 0.867 (Non-contrast (NC) CT)

Artery-vein separation:

Dice=0.758 (CE CT)

Dice=0.602 (NC CT)
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three orthogonal axes, achieving superior performance 
in pulmonary vessel segmentation with a Dice score of 
0.9272 [149]. Gu et  al. introduced two techniques for 
pulmonary vessel suppression, demonstrating improved 
nodule detection for early lung cancer diagnosis [145]. 
Nam et  al. developed a deep learning-based pulmonary 
vessel segmentation algorithm (DLVS), showcasing high 
accuracy (AUC=0.977) and clinical relevance for assess-
ing vascular remodeling in COPD patients [150]. Wu 
et al. addressed the limitations of FCN and U-Net in ves-
sel segmentation, proposing the MSI-U-Net with atten-
tion mechanisms and achieving state-of-the-art results 
(DSC:0.7168, SEN:0.7234, and precision:0.7893) [151]. Li 
et al. presented a novel 3D vessel segmentation network 
guided by edge profiles, demonstrating superior perfor-
mance with a DSC of 0.789, especially in scenarios with 
limited training data [152]. Wang et al. leveraged spatial 
registration for automatic pulmonary vessel segmenta-
tion in NCCT images, achieving high Dice of 0.856 [153]. 
Pan et  al. tackled the challenges of artery-vein separa-
tion, introducing the MSIA-Net with multi-scale fusion 
blocks and achieving remarkable segmentation perfor-
mance DSC:81.7%, precision:80.5%, and FPR:0.069% 
[154]. Pang et al. proposed synthesizers for mutual syn-
thesis of NCCT and CECT images, showcasing their 
effectiveness in pulmonary vessel segmentation [53]. Wu 
et al. contributed a transformer-based network for vessel 
segmentation and artery-vein separation, demonstrating 
high accuracy and applicability in CT images [60]. These 
methods collectively advance the field, offering innova-
tive solutions for accurate and efficient vessel segmenta-
tion in medical imaging.

Understanding vessel alterations requires not only 
meticulous segmentation but also quantification. AI 
quantifies vessel caliber, branching patterns, or other 
structural changes, offering metrics that are pivotal for 
COPD assessments and potential therapeutic responses. 
The quantitative analysis indicators of the vascular tree 
in patients with COPD provide significant insights about 
the disease’s progression and the patient’s overall health. 
These indicators include total blood volume (TBV), sur-
face area, total volume of vessels with a cross-sectional 
area smaller than 5  mm2 (BV5), and BV5/TBV [155].

Extrapulmonary abnormalities & AI
While COPD predominantly affects the lungs, extrapul-
monary manifestations, including cardiovascular impli-
cations, are notable [156, 157]. AI plays a role in the 
following aspects. Algorithms trained on diverse data-
sets can detect subtle extrapulmonary changes, offering 
insights into systemic COPD effects [58, 158]. AI not only 
visualizes but also interprets these manifestations in the 

context of COPD, potentially predicting risks like cardiac 
events or other systemic complications [159]. By merging 
pulmonary and extrapulmonary data, AI offers a holistic 
view of COPD’s impact, guiding comprehensive patient 
management [160, 161].

In conclusion, AI’s role in illuminating vessel dynam-
ics, both pulmonary and extrapulmonary, revolutionizes 
our grasp of COPD’s vascular implications. This fusion of 
technology and radiology heralds a future where COPD 
management is not just reactive but proactive, under-
pinned by deep, data-driven insights.

Clinical applicability and Challenges in clinical 
implementation of AI for COPD
Clinical applicability of AI methods in COPD management
The clinical applicability of AI methods in COPD man-
agement is a critical consideration when assessing the 
real-world impact of these technologies. While numerous 
studies have demonstrated the promising performance of 
AI algorithms in various tasks, such as COPD identifica-
tion and staging, emphysema region segmentation, and 
quantitative analysis, it is essential to evaluate their effec-
tiveness and feasibility in actual clinical settings.

Several studies have shown that AI-assisted diagnosis 
can improve diagnostic accuracy and efficiency com-
pared to traditional methods. For example, González 
et al. [66] demonstrated that their CNN-based approach 
achieved a high classification accuracy of 77.3% in identi-
fying COPD patients from CT scans. Similarly, Xu et al. 
[70] reported an accuracy of 99.29% in identifying COPD 
using a modified AlexNet architecture. These results sug-
gest that AI algorithms can potentially reduce misdiag-
nosis and improve the early detection of COPD, which is 
crucial for timely intervention and management.

Moreover, automatic measurements provided by AI 
algorithms can significantly enhance clinical workflow 
efficiency. Hasenstab et al. [74] developed an automated 
pipeline for quantifying emphysema and air trapping 
from CT scans, which showed strong correlations with 
manual measurements. Such automated tools can save 
substantial time for radiologists and pulmonologists, 
allowing them to focus on more complex cases and 
patient care.

However, it is important to acknowledge the limitations 
of current studies when considering their clinical applica-
bility. Many of the cited works have relatively small sam-
ple sizes and lack long-term follow-up data, which may 
limit the generalizability of their findings. Supervised 
learning, particularly for segmentation tasks, necessitates 
accurately annotated images. Inconsistencies in labeling 
can mislead the model, compromising its efficacy. Deep 
learning models, especially, hunger for vast data volumes. 
Without enough examples, these models risk overfitting, 
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limiting their generalizability. Balancing data access for 
model training and patient privacy is critical. Moreover, 
ethical considerations regarding data sourcing and utili-
zation can’t be overlooked [162]. Furthermore, the inte-
gration of AI tools into existing clinical workflows and 
the interpretability of AI models remain significant chal-
lenges that need to be addressed for successful clinical 
adoption.

To fully assess the clinical applicability of AI methods 
in COPD management, future research should focus on 
conducting large-scale, prospective studies with diverse 
patient populations and long-term follow-up. Addition-
ally, efforts should be made to develop more interpretable 
AI models and optimize their integration with clinical 
workflows. Real-world application cases and ongoing 
clinical trials, such as the COPDGene study [163], can 
provide valuable insights into the potential benefits and 
challenges of implementing AI tools in COPD care.

Challenges in clinical implementation of AI methods
Harnessing the power of AI in the arena of COPD imag-
ing offers boundless opportunities, but it also comes with 
inherent challenges. These challenges include the inter-
pretability and explainability of AI models, integration 
into existing clinical workflows, and regulatory issues.

Interpretability and explainability are crucial for build-
ing trust and confidence in AI-assisted decision-making. 
Many AI models, particularly deep learning algorithms, 
operate as “black boxes”, making it difficult for clinicians 
to understand how the model arrived at a particular 
decision [164]. This lack of transparency can hinder the 
adoption of AI tools in clinical practice. To address this 
issue, researchers are developing methods to enhance the 
interpretability of AI models, such as Grad-CAM [165] 
and attention rollout [166]. These approaches aim to pro-
vide insights into the features and reasoning behind AI 
predictions, enabling clinicians to validate and trust the 
results.

Integrating AI tools into existing clinical workflows 
is another significant challenge. AI algorithms should 
seamlessly fit into the daily routines of healthcare profes-
sionals without causing disruptions or increasing work-
load [167]. This requires close collaboration between AI 
developers, radiologists, and pulmonologists to design 
user-friendly interfaces and workflows that align with 
clinical needs. Furthermore, the outputs of AI tools 
should be presented in a clear and actionable manner, 
allowing clinicians to easily incorporate the information 
into their decision-making process.

Regulatory issues pose another hurdle in the clinical 
implementation of AI methods. AI algorithms used in 
healthcare are subject to strict regulatory requirements to 
ensure patient safety and data privacy [168]. Compliance 

with these regulations often involves extensive validation, 
documentation, and monitoring, which can be time-
consuming and resource-intensive. Moreover, the rapidly 
evolving nature of AI technologies presents challenges 
for regulatory bodies to keep pace with the latest devel-
opments and establish appropriate guidelines.

To overcome these challenges, a multi-faceted 
approach is necessary. Researchers should prioritize the 
development of interpretable and explainable AI models, 
engaging clinicians in the process to ensure clinical rel-
evance. Collaborative efforts between AI developers and 
healthcare professionals are essential for designing intui-
tive and efficient workflows that integrate AI tools seam-
lessly. Additionally, regulatory bodies need to adapt and 
evolve their guidelines to keep up with the advancements 
in AI technologies while maintaining patient safety and 
data privacy standards.

Future perspectives
Emerging innovations: potential future directions 
and innovations in AI for COPD imaging
Enhanced AI algorithms: As AI research progresses, 
there’s a potential to develop algorithms that can better 
detect early COPD changes or subtypes not identifiable 
with current techniques. This implies a move beyond 
simple identification towards nuanced understanding, 
such as differentiating various pathophysiological pro-
cesses or predicting the likelihood of exacerbations based 
on subtle imaging features. Adaptive learning systems: 
The concept of AI systems that evolve with each scan, 
constantly learning and refining their diagnostic abilities, 
could revolutionize timely and accurate disease detection 
and staging. 3D imaging reconstructions: With advance-
ments in imaging modalities and AI-driven reconstruc-
tions, there’s a possibility of generating dynamic 3D 
models of the lungs. These models could offer real-time 
insights into airway dynamics, vascular changes, and 
tissue alterations, providing a depth of understanding 
previously unattainable. Beyond imaging - integrated 
diagnostic platforms: The future might see platforms that 
merge imaging data with physiological metrics, blood 
biomarkers, and even genomics. Such an integrated 
approach would provide a multi-dimensional perspective 
of COPD, facilitating precision medicine endeavors.

Interdisciplinary collaborations: the fusion of AI with other 
scientific fields for comprehensive COPD management
AI and molecular biology: By integrating AI with molec-
ular research, we could decipher intricate relationships 
between imaging phenotypes and molecular signatures. 
This could aid in identifying potential therapeutic targets 
or understanding the underpinnings of various COPD 
subtypes at a molecular level [169].
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Neuroimaging and COPD: Emerging research hints at 
COPD’s neural implications. Collaborations between AI, 
pulmonology, and neuroimaging could uncover neural 
patterns associated with COPD, potentially opening ave-
nues for novel interventions [170].

Environmental data and AI: By incorporating environ-
mental data, AI models could predict COPD exacerba-
tion risks based on localized air quality metrics, allergen 
levels, or other relevant factors. This integrative approach 
would encompass not just internal but also external fac-
tors influencing COPD dynamics [171].

Collaborations: The fusion of AI with other scientific 
fields for comprehensive COPD care. The potential of AI 
in enhancing the diagnostic and therapeutic landscape 
of COPD is undeniable. Yet, its full potential remains to 
be untapped. As we envisage the future, we recognize a 
trajectory marked by complex innovations and the meld-
ing of diverse disciplines to offer holistic and advanced 
COPD care.

Patient-centric platforms: The blend of AI with user 
experience (UX) design could lead to platforms that not 
only monitor patients but also educate and empower 
them. Such tools would make patients active participants 
in their care, promoting adherence and proactive health 
management [172].

Conclusively, the potential of AI in COPD care tran-
scends mere imaging. Its nexus with diverse disciplines 
and the ensuing innovations could profoundly reshape 
COPD diagnostics, therapeutics, and patient engagement 
in the years to come.

Conclusion
The application of AI, specifically machine learning and 
deep learning techniques, has shown significant potential 
in transforming the diagnosis and management of COPD. 
These technologies are providing unprecedented insights 
into aspects of the disease such as emphysema, airway 
dynamics, and vascular structures, which are critical for 
a holistic understanding and treatment of COPD. Despite 
the challenges posed by the complex ’black-box’ nature 
of AI algorithms and the need for robust model training, 
the future holds promise. The emergence of innovations 
in AI for COPD imaging and the potential for cross-dis-
ciplinary collaborations indicate a future where AI is not 
just an aid, but a leader in significant advancements in 
COPD care. However, to fully leverage AI’s potential, it’s 
imperative to create rich, meticulously annotated data-
sets that will help develop reliable and generalizable AI 
models. By doing so, we can ensure that AI contributes 
more effectively to the refinement of COPD patient care.
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