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Abstract
Background  The use of machine learning(ML) methods would improve the diagnosis of small airway 
dysfunction(SAD) in subjects with chronic respiratory symptoms and preserved pulmonary function(PPF). This paper 
evaluated the performance of several ML algorithms associated with the impulse oscillometry(IOS) analysis to aid in 
the diagnostic of respiratory changes in SAD. We also find out the best configuration for this task.

Methods  IOS and spirometry were measured in 280 subjects, including a healthy control group (n = 78), a group with 
normal spirometry (n = 158) and a group with abnormal spirometry (n = 44). Various supervised machine learning (ML) 
algorithms and feature selection strategies were examined, such as Support Vector Machines (SVM), Random Forests 
(RF), Adaptive Boosting (ADABOOST), Navie Bayesian (BAYES), and K-Nearest Neighbors (KNN).

Results  The first experiment of this study demonstrated that the best oscillometric parameter (BOP) was R5, with an 
AUC value of 0.642, when comparing a healthy control group(CG) with patients in the group without lung volume-
defined SAD(PPFN). The AUC value of BOP in the control group was 0.769 compared with patients with spirometry 
defined SAD(PPFA) in the PPF population. In the second experiment, the ML technique was used. In CGvsPPFN, RF 
and ADABOOST had the best diagnostic results (AUC = 0.914, 0.915), with significantly higher accuracy compared to 
BOP (p < 0.01). In CGvsPPFA, RF and ADABOOST had the best diagnostic results (AUC = 0.951, 0.971) and significantly 
higher diagnostic accuracy (p < 0.01). In the third, fourth and fifth experiments, different feature selection techniques 
allowed us to find the best IOS parameters (R5, (R5-R20)/R5 and Fres). The results demonstrate that the performance 
of ADABOOST remained essentially unaltered following the application of the feature selector, whereas the diagnostic 
accuracy of the remaining four classifiers (RF, SVM, BAYES, and KNN) is marginally enhanced.

Conclusions  IOS combined with ML algorithms provide a new method for diagnosing SAD in subjects with chronic 
respiratory symptoms and PPF. The present study’s findings provide evidence that this combination may help in the 
early diagnosis of respiratory changes in these patients.
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Background
Two major chronic respiratory disorders that can affect 
the small airways include asthma and chronic obstruc-
tive pulmonary disease (COPD). Evidence from pro-
spective studies indicates that asthma and COPD may 
occur before small airway dysfunction (SAD) [1–3]. 
Symptoms of COPD and asthma include coughing, pro-
ducing phlegm, dyspnea, and wheezing. The following 
symptoms may indicate SAD in some subjects: negative 
airway hyperresponsiveness (AHR) or bronchial revers-
ibility (BR), which means the subject does not meet 
the pulmonary function criteria for COPD or asthma, 
and preserved pulmonary function (PPF, forced expira-
tory volume in 1  s (FEV1)/forced vital capacity (FVC) 
ratio ≥ 0.70 [4]). According to a large-scale multi-stage 
stratified sampling survey, about 40% of Chinese individ-
uals 20 years of age and older have spirometrically char-
acterized SAD [5]. Owing to the severe impact of SAD, it 
was crucial to identify and treat the condition early.

The “quiet zone” is made up of small airways (with an 
inner diameter of less than 2  mm), which had a huge 
cross-sectional area and contribute very little to the total 
airway resistance. [6] In clinical practice, spirometry was 
the most widely used technique to assess small-airway 
function. The parameters that were employed include 
FVC50% (FEF50%), FVC75% at expiration (FEF75%), 
and forced expiratory flow between 25% and 75% of 
FVC (FEF25–75%). At least two of the three small air-
way markers (FEF25–75%, FEF50%, and FEF75%) had a 
projected value of less than 65%, which was the definition 
of spirometry SAD [5]. However, spirometry requires 
good cooperation of subjects, and the great variability 
of values makes its reliability not universally accepted 
[7, 8]. An approach to measuring respiratory imped-
ance based on the forced oscillation technique (FOT) is 
called impulse oscillometry (IOS). All that is needed for 
the IOS measurement is quiet tidal breathing, which is 
easy to do, appropriate for a broad spectrum of individu-
als, and yields a variety of respiratory physiological data. 
IOS is able to measure the respiratory mechanics during 
quiet tidal breathing, which sets it apart from spirome-
try. Because of externally overlaid oscillatory signals, it is 
independent of subject effort, unlike spirometry [9]. Fur-
thermore, it appears to correlate better with small airway 
features and may be more sensitive in identifying SAD 
[10–12]. Since IOS can reflect the viscosity of the respi-
ratory system through electrical resistance (RRS) and the 
elastic and inertial properties of the respiratory system 
through reactance (XRS), it can be combined with spi-
rometry to gain more insight into individual pathological 
changes.

IOS was not currently frequently utilized in pulmonary 
function assessment, though. This approach’s drawback 
stems from the fact that it relied on electrical engineering 

ideas, which might be challenging to interpret in a clini-
cal context. Another important consideration is the 
expensive inspection apparatus. Therefore, even though 
the IOS test is straightforward, a busy, inexperienced pul-
monary function technician or primary care physician 
would find it challenging to interpret the resistance and 
reactance curves, as well as the derived values, without 
proper training and expertise. Furthermore, the analysis 
is challenging due to the findings for the IOS test values 
being dispersed. Consequently, machine learning (ML)-
based computer-aided decision systems can enhance the 
functionality of IOS and support physicians in strength-
ening the diagnosis, monitoring, and treatment of 
chronic respiratory disorders, such as asthma and COPD.

In this context, we hypothesized that the use of ML 
methods in combination with IOS test would improve 
the diagnosis of small airway function in PPF popula-
tions. This study aims to evaluate the performance of 
several ML algorithms in diagnosing SAD in PPF popula-
tion, and to find the best configuration.

Materials and methods
Study population
This was a single-centered, observational study in the 
Pulmonary Function Laboratory of West China Hospital, 
Sichuan University. Subjects were recruited and tested 
from May 1st to September 1st, 2020.

Included were adult patients undergoing pulmonary 
function tests as a result of persistent respiratory com-
plaints. In addition, participants must meet the PPF 
requirements (FEV1/FVC ≥ 0.70) [4]. The following con-
ditions had to be met in order to be excluded: restric-
tive pulmonary diseases (FVC < 80% predicted), asthma, 
interstitial lung diseases, lung cancer, respiratory infec-
tion within two weeks, myocardial ischemia, history of 
pulmonary surgery, and incomplete IOS due to tongue 
position errors, vocal cord closures, or swallowing. As 
healthy controls, we also enrolled never-smokers (those 
with ≤ 1 pack-year of tobacco smoking history) with a 
normal chest radiograph, no active pulmonary condi-
tions, and no unstable cardiovascular disorders. Basic 
demographic data was gathered, such as height, weight, 
age, sex, and body mass index (BMI). Subjects received 
IOS, spirometry, and completed a questionnaire cover-
ing qualitative and quantitative evaluation of symptoms. 
Also, bronchial provocation tests or bronchodilator 
tests were performed to exclude asthma. The study was 
approved by the ethics committee of West China Hos-
pital, Sichuan University, and all participants signed an 
informed consent before the procedure.

Impulse oscillometry and parameters
In accordance with ERS guidelines, the respiratory resis-
tance and reactance were measured using IOS equipment 
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(MS-IOS Jaeger) [9]. Because forced expiration may alter 
airway tone, IOS was performed prior to spirometry [13]. 
Pressure oscillations generated by a loudspeaker were 
superimposed onto normal tidal breathing through a 
mouthpiece for 30 to 45 s, which ranged from 5 to 35 Hz 
in frequency. Sitting upright, subjects were asked to wear 
a nasal clip and exert manual compression on their faces 
to minimize the influence of cheek vibration and air leak.

The IOS parameters selected in this paper and their 
clinical significance are as follows:

(1) Respiratory resistance at 5 Hz (R5): reflects the total 
viscous resistance of the respiratory system, because it 
is mainly airway resistance, also known as total airway 
resistance.

(2) Respiratory resistance at 20 Hz (R20): reflects cen-
tral airway resistance.

(3) The difference between R5 and R20 (R5–R20): 
reflects the frequency dependence of resistance, that is, 
peripheral airway resistance. That is, the change of respi-
ratory system resistance when the oscillation frequency 
is gradually increased.

(4) (R5-R20)/R5(%): the ratio of peripheral airway resis-
tance to total airway resistance.

(5) Reactance at 5  Hz (X5): reflects the total elastic 
resistance of the respiratory system. Because the elas-
tic resistance of the lung and thorax is the main one, it 
is often called peripheral elastic resistance, and also 
includes gas compression in the airway and alveoli. X5 is 
generally negative, with higher negative values indicating 
greater elastic resistance.

(6) Reactance area (AX): The area enclosed by the Xrs 
f frequency curve between 5  Hz and Fres and the hori-
zontal 0 axis. AX is the integration of the low frequency 
reactance.

(7) Resonant frequency (Fres): The inertial resistance 
and elastic resistance are in opposite directions. When 
the two are equal and cancel each other, the reactance of 
the respiratory system is zero.

Spirometry and parameters
Spirometry was performed by a full MasterScreen PFT 
System (Jaeger Corp. Germany) according to the Ameri-
can Thoracic Society (ATS)/European Respiratory Soci-
ety (ERS) guidelines [14]. FEV1, FVC, FEV1/ FVC, 
FEF25–75%, FEF50% and FEF75% were recorded as per-
centages of predicted values. The prediction equations 
are based on a large study of normal spirometry values in 
Chinese aged 4–80 years, which is recommended in the 
spirometry guideline in China [15].

Data sets
The data collection used for the experiments included 
measurements from 280 participant groups. The data set 
contained information from the volunteers’ IOS test and 

lung function in addition to biological data like age, sex, 
height, and weight. The PPF patients without SAD (PPFN 
group) contributed 158 sets, the PPF patients with SAD 
(PPFA group) contributed 44 sets, and the healthy con-
trol group (CG group) contributed 78 sets. Using random 
sampling, the data set is split into training and test sets 
in a 7:3 ratio. All of the given results were from test sets. 
The adjustment of the hyperparameters was obtained by 
manual tuning, taking the hyperparameter with the best 
average result.

The studied classifiers
The discrete data measured by IOS can be thoroughly 
analyzed by ML algorithms to identify potential rela-
tionships. These ML algorithms were assessed in this 
study based on the findings of earlier research and 
pre-experiments:

(1) Random forests: A method of decision tree analy-
sis in which a supervised algorithm works through “bag-
ging” approach to create multiple decision trees with a 
random subset of the data. These decision trees are then 
merged to get a more accurate and stable prediction [16]. 

(2) Support vector machine: A supervised ML algo-
rithm that classifies data points by finding the optimal 
hyperplane that maximally separates different classes in a 
high-dimensional space [17]. 

(3) Naive Bayes: A probabilistic classifier based on 
Bayes’ theorem [18]. 

(4) Adaptive Boosting (ADABOOST): A statistical clas-
sification algorithm that is frequently used with other 
“weaker” ML algorithms (e.g., decision tree) to improve 
their performance. [19]

(5) K-Nearest Neighbor (KNN): A common unsuper-
vised ML method, in which unsupervised algorithms aim 
to group input vectors into k clusters based on k averages 
of points (i.e., centroids) without referring to known, or 
labeled outcomes [20]. 

In addition, this study conducted feature selection and 
investigated the use of SelectKBest, RFECV, and Select-
FromModel algorithms in this experiment in order to 
find IOS parameters with a better correlation with the 
experimental results and minimize the complexity of the 
experimental data set.

(6) SelectKBest : A feature selection method based on 
statistical tests, which selects K features that are most rel-
evant to the target variable according to some evaluation 
index. [21]

(7) RFECV: A Feature selection method in scikit-learn 
that combines Recursive Feature Elimination (RFE) and 
Cross-Validation (CV) to select the best feature subset 
[22]. 

(8) SelectFromModel: A feature selection method in 
scikit-learn, which selects the most relevant features 
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based on the feature importance of the supervised learn-
ing model. [23]

Experiment design
This study involved the conduct of five experiments.

The first experiment’s goal was to assess each IOS 
parameter’s capacity to identify SAD in patients with 
PPF. The study’s criteria for diagnosing SAD were two 
out of the three small airway measurements (FEF25-
75%, FEF50%, and FEF75%) having a predictive value of 
less than 65% according to spirometry. We examined two 
distinct scenarios: control versus PPF patients without 
SAD (CGvsPPFN) and control versus PPF patients with 
SAD (CGvsPPFA) in order to accurately assess the degree 
of airway blockage in patients with PPF. The two situa-
tions described were likewise assessed in the remaining 
studies.

The second experiment employed the ML algorithm 
and compared it to the results obtained using a single 
IOS parameter to ascertain whether the ML algorithm 
could achieve superior performance. The area under the 
ROC curve (AUC) was then selected as the performance 
evaluation metric. All IOS parameter characteristics for 
this experiment were included in the selection process.

In the third experiment, the effectiveness of Select-
KBest as a feature selector for lowering complexity and 
determining the significance of various IOS parameters 
was evaluated. Five classifiers were used for training once 
SelectKBest had chosen the IOS parameters.

In the fourth and fifth experiments, two model-depen-
dent feature selection algorithms were employed to 
investigate the significance of the 7 IOS feature param-
eters in this study.Recursive Feature Elimination with 
Cross-Validation, or RFECV, was used in Experiment 4. 
RFECV fits a machine learning model to data, ranks fea-
tures according to their weights or importance, recur-
sively removes the least important features, and uses 
cross-validation to assess model performance in each 
iteration. RFECV creates a performance curve by record-
ing the results of varying numbers of features removed in 
each round. Using SelectFromModel, the most pertinent 
characteristics were chosen in Experiment 5 based on 
the significance of the features in a supervised learning 
model. To increase model efficiency and generalization 
while preserving important information, the technique 
selects features over a threshold, computes feature 
importance scores, trains a supervised learning model, 
and then generates a new feature set.

Hypothesis testing is necessary to contrast ML algo-
rithms. A wide variety of parametric tests are available, 
often based on t-tests. The Wilcoxon Rank-Sum Test, the 
Kruskal-Wallis Test, and the Mann-Whitney U Test are a 
few of the most often used nonparametric tests [24–26]. 

We used the permutation test to do hypothesis testing of 
AUCs in this work. [27, 28].

Results
Table  1 displays the individuals’ biological parameters, 
spirometry results, chronic respiratory complaints, and 
IOS data. There was no discernible difference between 
any of the three research groups’ biological character-
istics. There was no discernible difference in symptoms 
between the groups with and without spirometer-defined 
SAD for individuals with persistent respiratory symp-
toms. PPFA patients exhibited considerably lower spi-
rometry parameters (p < 0.05), as Table 1 illustrates.

(The last column describes the comparisons between 
groups, in which the dot means non-significant change, 
while the dash means significant change.)

Figure 1’s bar graphs display the distinct features of the 
IOS parameters for the CG, PPFN, and PPFA groups. The 
majority of IOS parameters were substantially different 
(p < 0.05) across the three groups, according to the analy-
sis of variance (ANOVA). PPF patients showed higher R5 
and R20 when compared to healthy people. PPF patients 
consequently had greater airway resistance. In the mean-
time, patients with SAD in the PPF group showed greater 
values of R5, R5-R20, AXV, and Fres. The three groups’ 
R5-R20/R5 and X5 levels were comparable.

The first experiment: diagnostic accuracy of IOS 
parameters.

Figure  2 presents the findings from Experiment 1. As 
can be observed, R5 was the best IOS parameter (BOP) 
for PPF patient diagnosis, with moderate diagnostic 
accuracy (AUC = 0.642, AUC = 0.769) for CG vs. PPFN 
and CG vs. PPFA scenarios.

The second experiment of the study: diagnostic accu-
racy of the original IOS parameters associated with ML 
techniques.

Figure 3 presents the AUCs of the BOP, ML algorithm, 
and MIL classifier obtained in Experiment 2. It can be 
seen that the ML algorithm improves the AUC with 
high diagnostic accuracy in both cases, CGvsPPFN and 
CGvsPPFA. In the CGvsPPFN scenario, ADABOOST 
(AUC = 0.915) had the best performance, followed by 
RF (AUC = 0.914). Compared with BOP, RF, SVM, ADA-
BOOST and KNN showed statistical differences. In the 
CGvsPPFA scenario, ADABOOST (AUC = 0.971) had 
the best performance, followed by RF (AUC = 0.951). 
Compared with BOP, RF, SVM, ADABOOST and KNN 
showed statistical differences.

The third experiment: diagnostic accuracy of the best 
original IOS parameters associated with ML techniques.

The IOS parameters used for the two cases, CGvsPPFN 
and CGvsPPFA, respectively, utilizing SelectKBest as the 
feature selector, are shown in Table 2.
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Experiments 2 and 3 had superior AUC outcomes, as 
shown by the data in Fig.  4. A similar pattern was seen 
in both cases when SelectKBest was used as the feature 
selector: as the number of features increased, the ML 
algorithm’s performance improved over time. When 
choosing 3/5 IOS feature parameters, the AUC value 
decreased slightly, but overall, the diagnostic perfor-
mance was still better than BOP.

The fourth and fifth experiment: diagnostic accuracy of 
the IOS parameters associated with ML techniques.

The best AUC findings for Experiments 4 and 5 are 
shown in Fig.  5. When compared to the full parameter, 
the IOS feature parameter’s diagnostic performance 
tends to be similar in both situations and to hold onto a 
high diagnostic value following feature selection.

The task configurations for each ML method classi-
fier with the best performance across all experiments 
were summarized in Tables 3 and 4. In the two scenarios 
of CGvsPPFN and CGvsPPFA, among them, RF, SVM, 
ADABOOST, and KNN may increase the AUC, and the 
difference was statistically significant. Furthermore, The 
sensitivity, specificity, positive predictive value (PPV), 
and negative predictive value (NPV) of various individual 
ML classifiers are also reported.

Discussion
For the purpose of early screening and treatment of respi-
ratory disorders, a number of chronic respiratory disease 
guidelines, including GINA 2023 and GOLD 2024, advise 
early monitoring of changes in small airway function. In 
our previous study, we found that IOS is more sensitive 
to detect SAD than spirometry in subjects with chronic 
respiratory symptoms and PPF, and it correlates better 
with symptoms. IOS could be an additional method for 
SAD detection in the early stage of diseases [29]. Other 
similar research has demonstrated the usefulness of small 
airway function monitoring with IOS for clinical diagno-
sis [30–32]. We found only four correlated IOS param-
eters, including R5, R5-R20, AX, and Fres, which had low 
diagnostic efficacy, with none of the AUC values exceed-
ing 0.7.

In order to facilitate the diagnosis of respiratory dis-
orders, this study describes the design of a classifier for 
SAD diseases in the PPF population.By using machine 
learning approaches, this work aims to improve the diag-
nostic value of IOS for small airway dysfunction. Addi-
tionally, the best set of parameters and algorithms for this 
task was determined. Compared to a single IOS measure, 
the results show that this approach increases diagnostic 
accuracy and streamlines the clinical assessment of IOS.

Similar to our previous study, we found that R5 had 
the best AUC value, better sensitivity and slightly lower 

Table 1  Characteristics of healthy controls and subjects with and without spirometry-SAD
Control group
n = 78

PPFN group
n = 158

PPFA group
n = 44

Demographics
Age(years) 38.33 ± 10.19 39.72 ± 12.83 42.57 ± 13.03 ns
BMI(kg/m2) 22.98 ± 2.54 22.13 ± 3.07 22.78 ± 3.21 ns
Sex: female/male 39/39 79/79 22/22 ns
Spirometry
FEV1(%predicted) 107.25 ± 11.17 107.01 ± 11.98 95.57 ± 9.35 1.2−3−1
FVC (% predicted) 107.73 ± 12.98 106.03 ± 13.74 107.12 ± 11.05 ns
FEV1/FVC 84.57 ± 5.65 85.50 ± 5.86 75.08 ± 3.17 1.2−3−1
FEF25–75%(%predicted) 92.92 ± 21.46 93.22 ± 18.83 57.01 ± 6.33 1.2−3−1
FEF50% (% predicted) 100.61 ± 22.92 98.42 ± 18.88 60.55 ± 6.13 1.2−3−1
FEF75% (% predicted) 84.77 ± 28.32 87.37 ± 28.21 51.14 ± 10.28 1.2−3−1
IOS
R5 0.28 ± 0.06 0.31 ± 0.06 0.34 ± 0.07 1−2−3−1
R20 0.26 ± 0.06 0.29 ± 0.05 0.31 ± 0.06 1−2.3−1
R5-R20 0.0191 ± 0.0231 0.0216 ± 0.0289 0.0348 ± 0.0319 1.2−3−1
R5-R20/R5 7.51 ± 6.51 7.43 ± 6.89 9.67 ± 7.94 ns
X5 -0.0977 ± 0.0277 -0.0984 ± 0.0275 -0.1059 ± 0.0322 ns
AXV 0.22 ± 0.13 0.26 ± 0.16 0.35 ± 0.20 1.2−3−1
Fres 10.46 ± 2.13 11.19 ± 2.57 12.78 ± 3.28 1.2−3−1
Chronic respiratory symptoms
Cough, n (%) / 124(78.5) 34(77.2)
Sputum, n (%) / 67(42.4) 20(45.4)
Wheeze, n (%) / 61(38.7) 18(40.9)
Dyspnea, n (%) / 48(30.4) 14(31.8)
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specificity among all parameters. After the introduction 
of the machine learning algorithm, the AUC, sensitivity, 
and specificity of the prediction model were very signifi-
cantly improved.The best performance in both CGvsP-
PFN and CGvsPPFA scenarios was achieved by R5, which 
was the single IOS parameter used in the first experi-
ment. The finding supports the presence of elevated 
airway resistance in patients with SAD, as measured by 
various methods including CT scans and bronchoscopy. 
It is important to note that these results are based on 
objective measurements rather than subjective evalua-
tions [33, 34].

In the first case, it was more challenging to differenti-
ate the control group from the patients with PPF who 
had preserved lung function. This was due to the small 
differences in IOS parameters. The AUC value was 0.642, 
indicating low diagnostic accuracy. In the second case, 
the increase in physiological abnormalities resulted in 
a greater difference in measured parameters, enabling 
R5 to easily distinguish between the two groups with an 
AUC of 0.769. These findings suggest that a single IOS 
parameter may not be sufficient to accurately identify the 
SAD situation in the PPF population.

The diagnostic accuracy was significantly enhanced 
through the utilization of RF, SVM, BAYES, ADABOOST, 

Fig. 1  Comparison of IOS parameters among the three groups. Bar charts represented Mean + SD (M + SD). * indicates that there is a statistically signifi-
cant difference comparing to each IOS parameter for each group. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001
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and KNN algorithms. It is clear that ADABOOST and RF 
produced the most favorable results followed by KNN, 
SVM and BYS.This breakthrough is mainly due to the 
use of ML algorithms.Similar to earlier research [35–38], 
feature selection permits the use of fewer characteris-
tics without appreciably lowering performance. When 
SelectKBest was employed as a feature selector, the 3/5 
relevant features were selected, respectively. Despite the 
final trend indicating that the results are superior when 
more parameters are used, the difference between using 
the least and most parameters is relatively minor. Fur-
thermore, the results are superior when using the least 
parameters than when using BOP alone. This implies 
that feature selection can in fact result in good diagnostic 

value (AUC 0.948 and 0.967, respectively) with fewer 
IOS parameters. The most pertinent features are found 
through feature selection in both the CGvsPPFN and 
CGvsPPFA scenarios. Despite the fact that the approach 
only chose two sets of features, R20 and Fres had a sig-
nificant intersection. This intersection is slightly dif-
ferent from the results of the ability of each single IOS 
parameter to diagnose SAD in patients with PPF, show-
ing better diagnostic ability for R5 when using a single 
parameter. This suggests resonant frequency and central 
airway resistance, in addition to total airway resistance, 
have a significant role in the increased airway blockage 
observed in the PPF population.

Compared to the conventional classifier SelectFrom-
Model, the RFECV method may produce superior results 
and has an efficient selection capability. While it does not 
increase the accuracy of diagnosis, it does display signifi-
cant traits like R5, (R5-R20)/R5, and Fres. Feature selec-
tion was done to make the analysis easier to understand. 
We were able to discriminate between groups with clarity 

Table 2  The best IOS parameters in SelectKBest
CG VS PPFN CG VS PPFA

K = 3 R20 、(R5-R20)/R5 、Fres R5、R20、Fres
K = 5 R5、R20、(R5-R20)/R5、AXV、Fres R5、R20、(R5-R20)/

R5、AXV、Fres

Fig. 3  Results of experiment 2, describing the diagnostic accuracy of Impulse oscillometry with ML algorithms in subjects with chronic respiratory symp-
toms and preserved pulmonary function. Also, * indicates that there a statistically significant difference comparing to BOP (p < 0.05). * P < 0.05, ** P < 0.01. 
More detailed tables and graphs regarding these results are available in the Additional file.(Additional file Figure S2-S3)

 

Fig. 2  Results of experiment 1, describing the diagnostic accuracy of Impulse oscillometry in subjects with chronic respiratory symptoms and preserved 
pulmonary function. More detailed tables and graphs regarding these results are available in the Additional file.(Additional file Figure S1)
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by using these three essential criteria. These results sup-
port the idea of a simple diagnostic model that can help 
explain the suggested medical decision support system’s 
findings and make it easier to apply in clinical settings.

Recent studies have shown that IOS is considered the 
most advanced technique for lung function analysis and 
is one of the most promising emerging techniques in 

the field [29, 39–41]. Despite its advantages in providing 
detailed and direct examination, IOS has not yet been 
widely used. However, because interpreting the met-
rics—which are based on electrical modeling—requires 
knowledge and experience, their application is restricted. 
This study shows how ML algorithms can improve the 

Table 3  The best configuration for CG VS PPFN
IOS parameters AUC Sensitivity

(%)
Specificity
(%)

NPV PPV

BOP R5 0.642 69.6 50.0 / /
RF R5、R20、(R5-R20)/R5、X5、AXV、Fres 0.922 79.1 89.7 0.6796 0.9398
SVM R5、R20、R5-R20、X5、AXV 0.736 52.5 82.1 0.4604 0.8557
BAYES R5、R20、(R5-R20)/R5、X5、AXV、Fres 0.642 77.9 46.2 0.5070 0.7455
ADABOOST ALL 0.915 87.3 87.2 0.7727 0.9324
KNN R5-R20、X5、AXV 0.811 53.8 89.7 0.4895 0.9140

Fig. 5  Summary of Experiment 4 and Experiment 5—AUCs for the best oscillometric parameter (BOP), for the best ML algorithms in experiments 4 and 
5, and the best ML algorithm with oscillometric parameters. The figure indicates the best ML algorithm in each case. Also, * indicates that there a statisti-
cally significant difference comparing to BOP (p < 0.05). * P < 0.05, ** P < 0.01.More detailed tables and graphs regarding these results are available in the 
Additional file.(Additional file Figure S8-S19)

 

Fig. 4  Summary of Experiment 2 and Experiment 3 (SelectKBest as a feature selector)—AUCs for the best oscillometric parameter (BOP), for the best ML 
algorithms in experiments 3, and the best ML algorithm with oscillometric parameters (ADABOOST). The figure indicates the best ML algorithm in each 
case. Also, * indicates that there a statistically significant difference comparing to BOP (p < 0.05). * P < 0.05, ** P < 0.01. More detailed tables and graphs 
regarding these results are available in the Additional file.(Additional file Figure S4-S7)
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diagnosis of associated diseases and simplify the use of 
IOS, therefore improving healthcare for patients with 
SAD.

Early detection of abnormal respiratory changes in 
SAD can facilitate timely interventions that may limit 
disease progression, alleviate adverse symptoms, improve 
overall health, prevent complications and comorbidities, 
and reduce premature mortality [5, 42]. Since the 1980s, 
lung function analysis has been improved by artificial 
intelligence and machine learning techniques [43–48]. 
The present work expands on previous results by dem-
onstrating that early aberrant respiratory alterations in 
SAD may be suggested by a combination of IOS mea-
sures and a clinical decision support system based on ML 
technology.

The algorithm presented in this work can be applied 
not just to SAD but to a variety of other conditions, 
including asthma, COPD, interstitial lung disease, and 
others. By establishing appropriate models and finding 
the best parameters, the relationship between physiologi-
cal parameters and the development of the disease can be 
explored. This benefits the early screening of other respi-
ratory diseases and the reduction of the disease burden 
on patients.

Clinical technology-wise, more thorough information 
can be obtained by combining IOS with other imaging 
modalities (such as MRI, CT, PET, etc.) and by developing 
real-time imaging technology and dynamic observation 
techniques. More information for clinical diagnosis and 
scientific study will be available with the improvement of 
image contrast and anatomical detail. [49] Concurrently, 
artificial intelligence and machine learning are integrated 
to analyse and interpret multiple data types, enhance the 
accuracy and credibility of clinical examination results, 
and develop automated and intelligent analysis tools. 
Encouraging data sharing and IOS standardization, cre-
ating a platform for data sharing and standardizing data 
formats, facilitating multi-center data comparison and 
analysis, and promoting the field’s progress are all crucial 
in the context of big data [50].

Finally, it is important to consider and clarify some 
significant limitations. Firstly, this study is limited to the 
Chinese population in a specific location. Therefore, it 
is not possible to ensure its generalisability to different 

populations. It is recommended that future studies inves-
tigate multi-centre data to expand the generalisability of 
the findings. The experimental design of this work fol-
lowed globally recognised inclusion and exclusion crite-
ria and was conducted in a typical clinical setting.

Additionally, it is important to note that the PPF popu-
lation in China is relatively small due to low public health 
awareness. Many individuals do not seek medical atten-
tion promptly when experiencing clinical symptoms 
such as cough and chest tightness. Therefore, due to the 
relatively small size of the available dataset, it is neces-
sary to carefully control the complexity of the ML model. 
In addition to the measures taken in this study to avoid 
overfitting, such as controlling hyperparameters, feature 
selection can also aid in controlling overfitting by reduc-
ing inputs. Another reason for using feature selection 
is that a smaller number of features can help simplify 
the analysis. Furthermore, utilising only three features 
enables the visualisation of group separation, aiding diag-
nostic interpretation.

Conclusions
In this work, a variety of machine learning algorithms 
were utilized to create a clinical auxiliary diagnosis sys-
tem that can identify respiratory anomalies in patients 
with PPF. In the initial disease stage (CGvsPPFN), respi-
ratory oscillation parameters achieved low diagnostic 
accuracy (AUC = 0.642), but ML classifiers significantly 
improved accuracy (AUC ≥ 0.9). In the progressive dis-
ease stage (CGvsPPFA), using oscillation parameters 
alone yielded moderate accuracy (AUC = 0.769), while 
ML algorithms greatly enhanced accuracy (AUC ≥ 0.9). 
The developed diagnostic system simplifies IOS appli-
cation in PPF patients, utilizing key IOS parameters 
identified through feature selection. All things consid-
ered, combining ML algorithms with IOS examina-
tion improves pulmonary function assessment in PPF 
patients, indicating future improvements in patient care.
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COPD	� Chronic obstructive pulmonary disease
SAD	� Small airway dysfunction
PPF	� Preserved pulmonary function
ML	� Machine learning
RF	� Random Forests
SVM	� Support Vector Machines
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RF ALL 0.951 86.4 92.3 0.9231 0.8636
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