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Abstract
Background  There is no individualized prediction model for intensive care unit (ICU) admission on patients with 
community-acquired pneumonia (CAP) and connective tissue disease (CTD) so far. In this study, we aimed to establish 
a machine learning-based model for predicting the need for ICU admission among those patients.

Methods  This was a retrospective study on patients admitted into a University Hospital in China between November 
2008 and November 2021. Patients were included if they were diagnosed with CAP and CTD during admission and 
hospitalization. Data related to demographics, CTD types, comorbidities, vital signs and laboratory results during the 
first 24 h of hospitalization were collected. The baseline variables were screened to identify potential predictors via 
three methods, including univariate analysis, least absolute shrinkage and selection operator (Lasso) regression and 
Boruta algorithm. Nine supervised machine learning algorithms were used to build prediction models. We evaluated 
the performances of differentiation, calibration, and clinical utility of all models to determine the optimal model. The 
Shapley Additive Explanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) techniques were 
performed to interpret the optimal model.

Results  The included patients were randomly divided into the training set (1070 patients) and the testing set (459 
patients) at a ratio of 70:30. The intersection results of three feature selection approaches yielded 16 predictors. The 
eXtreme gradient boosting (XGBoost) model achieved the highest area under the receiver operating characteristic 
curve (AUC) (0.941) and accuracy (0.913) among various models. The calibration curve and decision curve analysis 
(DCA) both suggested that the XGBoost model outperformed other models. The SHAP summary plots illustrated the 
top 6 features with the greatest importance, including higher N-terminal pro-B-type natriuretic peptide (NT-proBNP) 
and C-reactive protein (CRP), lower level of CD4 + T cell, lymphocyte and serum sodium, and positive serum (1,3)-β-D-
glucan test (G test).
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Background
Community-acquired pneumonia (CAP) is an acute lung 
parenchyma infection caused by bacteria, viruses or 
fungi acquired outside the hospital. It is one of the most 
common infectious diseases in clinical practice. Mean-
while, it has been recognized as a major health problem 
and one of the leading causes of morbidity and mortality 
in all age groups worldwide [1–3]. Connective tissue dis-
ease (CTD) represents a heterogenous group of systemic 
autoimmune diseases that affect multiple organs, includ-
ing idiopathic inflammatory myopathies (IIM), rheu-
matoid arthritis (RA), Sjogren’s syndrome (SS), etc. It is 
characterized by the presence of circulating autoantibod-
ies and the self-directed chronic inflammation leading to 
collagen deposition, tissue damage and fibrosis, and ulti-
mately target organs failure. The prevalence and disease 
burden of CTD continue to increase significantly dur-
ing past years [4]. Patients with CTD have a higher risk 
of CAP than the general population according to prior 
reports [5, 6]. Besides, patients with CTD, especially 
those with high disease activity, are predisposed to suffer 
from unfavorable outcomes of CAP compared with those 
without CTD [7, 8]. Reversely, pneumonia is reported to 
be the leading cause of intensive care unit (ICU) admis-
sion in CTD patients, followed by acute exacerbation of 
CTD [9]. The underlying mechanisms include immuno-
suppressive medication use, immune system dysfunction, 
related comorbidities, etc. Thus, much attention needs to 
be paid to those patients with CAP and CTD.

It is estimated that 23% of patients who are hospitalized 
with CAP require ICU admission [10]. Clinical deteriora-
tion may occur after hospital admission in CAP patients. 
However, admission to a non-ICU setting with later 
transfer to ICU may be associated with poor outcomes 
and increased mortality [11, 12]. Therefore, apart from 
timely initiations of appropriate antibiotics and respira-
tory support, predicting the likelihood of ICU admission 
is another important issue in the management of CAP 
patients. Traditional risk score systems such as pneumo-
nia severity index (PSI) and CURB-65 (confusion, uremia, 
increased respiratory rate, hypotension, and age 65 years 
or older) have been widely used to facilitate choosing 
appropriate site-of-care and predicting the prognosis for 
patients with CAP [13, 14]. Meanwhile, the 2007 Infec-
tious Diseases Society of America / American Thoracic 
Society criteria for defining severe community-acquired 
pneumonia (IDSA/ATS 2007 criteria) remains the most 

pragmatic tool to predict ICU admission in CAP [15]. 
However, it is reported that the predictive values of PSI 
and CURB-65 in patients with CAP and CTD were lim-
ited [16]. Unfortunately, there are few studies on the indi-
vidualized risk stratification of them. To our knowledge, 
there is no specific prediction model for ICU admission 
on patients with CAP and CTD so far.

Machine learning, a branch of artificial intelligence, can 
handle plenty of high-dimensional data, analyze complex 
relationships and identify optimal predictors of clinical 
outcomes. Over the last few years, the prediction models 
for both medical diagnosis and prognosis assessment of 
various diseases have significantly benefited from diverse 
cutting-edge machine learning algorithms [17, 18]. They 
are more flexible and may have superior predictive pow-
ers than traditional linear models which use variables 
with statistical significance in some specific diseases 
according to previous reports [19, 20]. Furthermore, 
previous evidence demonstrated that machine learning 
algorithms had good performances in recognizing and 
predicting the need for intensive care in the initial assess-
ment of patients [21]. In this study, we aimed to estab-
lish a machine learning-based model using noninvasive 
and readily available clinical parameters for predicting 
the need for ICU admission during hospitalization in 
patients with CAP and CTD.

Methods
Study designs
This was a single-center retrospective observational 
study on pneumonia patients admitted into West 
China Hospital of Sichuan University in China between 
November 2008 and November 2021. The study proto-
col was approved by the West China Hospital of Sich-
uan University Biomedical Research Ethics Committee 
(No.2022 − 733) and was conducted in accordance with 
the amended Declaration of Helsinki. The requirement 
for written informed consent from patients was waived 
due to retrospective design. All personal information of 
the patients had already been de-identified during the 
analysis.

Patients and data
Patients were eligible for inclusion if they were diagnosed 
with CAP and CTD during admission and hospitaliza-
tion. The CAP was defined as a new pulmonary infiltrate 
on chest X-ray or computed tomography (CT) and at 

Conclusion  We successfully developed, evaluated and explained a machine learning-based model for predicting ICU 
admission in patients with CAP and CTD. The XGBoost model could be clinical referenced after external validation and 
improvement.
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least one of the following acute lower respiratory infec-
tion symptoms: fever, productive cough, purulent expec-
toration, dyspnea, pleuritic chest pain, focal chest signs 
on auscultation, or abnormal peripheral white cell counts 
[22]. CTD included polymyositis/dermatomyositis (PM/
DM), rheumatoid arthritis (RA), Sjogren’s syndrome (SS), 
systemic sclerosis (SSc), systemic lupus erythematosus 
(SLE), anti-synthetase syndrome (ASS), undifferentiated 
connective tissue disease (UCTD) and mixed connective 
tissue disease (MCTD) in present study. The diagnosis of 
each type of CTD was established based on correspond-
ing criteria from related clinical guidelines or previous 
studies [23–28]. Individuals were excluded from the 
study if they were: (1) under 18 years old; (2) pregnant; 
(3) having incomplete clinical records. Besides, only the 
first admission was considered if the patient had multiple 
admissions during study period.

The clinical data of demographics, CTD types, comor-
bidities, vital signs and laboratory results during the 
first 24  h of hospitalization were collected. The first 
value was used for analysis if any data was repeated. The 
clinical data were reviewed and collected by two expe-
rienced physicians using a standardized data collection 
form independently. Any disagreement was solved by a 
third physician or team discussion until a consensus was 
reached. The primary outcome was the need for ICU 
admission during hospitalization.

Feature selection and model construction
The flowchart of this study was shown in Fig.  1. The 
included patients were randomly divided into two sets 
(70% in training set and 30% in testing set) by simple ran-
dom sampling. The training set was used for developing 
the models and the testing set was utilized for evaluating 
the performances of models.

The baseline variables were screened to identify poten-
tial predictors in training set via three independent 
methods, including univariate analysis, least absolute 
shrinkage and selection operator (Lasso) regression and 
Boruta algorithm [29]. The univariate analysis is a classic 
selection method based on P values. The variables with 
P value < 0.05 were regarded as statistically significant 
and were extracted. The Lasso regression model identi-
fies the features having non-zero coefficients as potential 
predictors. It can eliminate multicollinearity and avoid 
over-fitting of variables. We used Lasso regression com-
bined with 10-fold cross-validation to analyze the base-
line high-dimensional data and screen variables. Boruta 
algorithm is a feature selection method that depends 
on the variable importance measure. To be specific, it 
identifies the most important features by comparing the 
Z-values of candidate features with that of “shadow fea-
tures”. The Z-value of each real feature is obtained based 
on a random forest (RF) classifier in each iteration, and 

the Z-value of each shadow feature is created by random 
shuffling of the real features. It can iteratively remove 
features that have been proved to be less relevant than 
random shadow features. Thus, only those relevant fea-
tures with Z-values higher than the maximal Z-value 
of shadow features by multiple internal bootstraps, are 
retained. Overlapping variables by intersecting univari-
ate analysis, Lasso and Boruta were obtained to establish 
prediction models.

Nine supervised machine learning algorithms, includ-
ing logistic regression (LR), classification and regres-
sion tree (CART), RF, support vector machine (SVM), 
k-nearest neighbors (KNN), decision tree (DT), gradi-
ent boosting machine (GBM), eXtreme gradient boost-
ing (XGBoost) and naive bayes (NB), were used to 
construct prediction models. The 5-fold cross-validation 
was applied to ensure the stability and accuracy of the 
models.

Model assessment
We evaluated the performances of differentiation, cali-
bration and clinical utility of nine models to identify the 
optimal model. The receiver operating characteristic 
(ROC) curves were plotted and the areas under the ROC 
curve (AUCs) were calculated to quantify their discrimi-
native performances. The significant differences of AUCs 
among models were tested using Delong’s test. Moreover, 
accuracy, sensitivity, specificity and Kappa value were 
used as additional descriptions of the predictive abilities 
of the models [30]. Then, the precision-recall (PR) curves, 
which plot the positive prediction value (PPV) against 
the true positive rate (TPR) across all thresholds, were 
used to further evaluate the discrimination capabilities of 
the models. Besides, we also calculated the AUCs of three 
traditional predictive tools, including IDSA/ATS 2007 
criteria, PSI and CURB-65, in predicting ICU admission 
of CAP patients with CTD. The calibration, which rep-
resents the agreement between predicted outcomes and 
actual outcomes, was performed via a bootstrap method 
with 1000 resamples and assessed by a calibration plot. 
The decision curve analysis (DCA) based on net benefits 
at different threshold probabilities was drawn to evaluate 
the model’s clinical validity and utility.

The performances of the machine learning-based 
models may be affected by class imbalance due to the 
low incidence of positive events (ICU admission) in 
this study. Thus, we performed complementary analy-
ses using up-sampling, down-sampling and synthetic 
minority oversampling technique (SMOTE) approaches. 
Sampling techniques are often used to generate bal-
anced datasets (50/50 majority–minority splits) in the 
training set by up-sampling (over-sampling) or down-
sampling (under-sampling). The up-sampling algorithm 
improves the sensitivity of the minority by synthesizing 
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Fig. 1  Study flow chart. CAP: community-acquired pneumonia; CTD: connective tissue disease; Lasso: least absolute shrinkage and selection operator; 
LR: logistic regression; CART: classification and regression tree; RF: random forest; SVM: support vector machine; KNN: k-nearest neighbors; DT: decision 
tree; GBM: gradient boosting machine; XGBoost: eXtreme gradient boosting; NB: naive bayes; AUC: area under the receiver operating characteristic curve; 
DCA: decision curve analysis; SHAP: Shapley additive explanations; LIME: Local Interpretable Model-Agnostic Explanations
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the minority samples. The down-sampling algorithm 
achieves the balance of two classes by deleting the major-
ity samples. The SMOTE is an efficient algorithm for 
addressing class imbalance and reducing over-fitting of 
the model, employing k-neighbor synthesis to synthesize 
new minority samples.

Model interpretation
The Shapley Additive Explanation (SHAP) values of fea-
tures were evaluated to determine each characteristic’s 
contribution and significance based on its impact on 
the final classification outcome. The high SHAP value 
indicates great impact of a feature on model output. 
We reported the feature importance for interpreting the 
optimal model. At last, the Local Interpretable Model-
Agnostic Explanations (LIME) technique was performed 
to further explain the model [31–33].

Statistical analysis
The clinical characteristics of patients were expressed as 
the mean ± standard deviation (SD) for continuous vari-
ables with normal distribution, the median (interquartile 
range [IQR]) for continuous variables with non-normal 
distribution, and the frequency (percentage) for categori-
cal variables. The labels for categorical variables were 
coded as “1″ for “Yes″ and “0″ for “No″ during statisti-
cal analysis. Independent sample t test or Kruskal–Wal-
lis test was used to analyze the differences between the 
continuous variables as appropriate. The chi-square test 
or Fisher exact test was performed to analyze the cat-
egorical variables. A two-sided P < 0.05 was considered 
statistically significant. We removed variables missing 
over 30% of observations to ensure the accuracy of study. 
After that, we employed the multiple imputation method 
dealing with missing values.

In this study, R software version 4.2.1 (R Foundation for 
Statistical Computing) was used to implement the statis-
tical analysis. The Lasso and Boruta analyses were per-
formed using the R package “glmnet” and “Boruta”. The R 
package “caret” was used to train the models. By default, 
hyperparameter tuning for each model was performed 
automatically by caret using a standard grid search 
approach. The SHAP and LIME methods were completed 
using the “shapviz” and “lime” package.

Results
Baseline characteristics
A total of 1626 individuals with CAP and CTD were 
admitted into our hospital. Among them, 97 individuals 
were excluded from analysis according to exclusion crite-
ria. The included patients were divided into the training 
set (1070 patients) and the testing set (459 patients). In 
the training and testing set, the median age was 56 (IQR: 
47, 66) and 57 (IQR:49, 66) years, and 334 (31.2%) and 158 

(34.4%) patients were men, respectively. PM/DM was the 
most common type of CTD (28.9%), and interstitial lung 
disease (ILD) was observed in 65.1% of all patients. The 
top 3 comorbidities were hypertension (21.0%), diabetes 
(12.9%) and congestive heart failure (10.3%). The ICU 
admission rate and hospital mortality were 292 (27.3%) 
and 161 (15.0%) in the training set, and 121 (26.4%) and 
76 (16.6%) in the testing set. The detailed features were 
summarized in Table 1, which suggested that the baseline 
characteristics and clinical outcomes of patients did not 
differ significantly between two sets roughly.

Development of model
As shown in Supplementary Table S1, in the univariate 
analysis 36 variables were significantly different (P val-
ues < 0.05) between patients admitted and not admitted 
into ICU in training set. Among all baseline characteris-
tics, the Boruta algorithm effectively selected 32 poten-
tial predictors according to the Z-values (importances) 
(Fig.  2A and B). Meanwhile, the optimal lambda value 
was 0.003 by using the Lasso algorithm and 33 variables 
were selected as potential predictors (Fig. 2C and D). The 
variables identified by Boruta and Lasso were listed in 
detail in Supplementary Table S2.

The intersection results of three independent methods 
were considered to be the optimal features. Thus, a total 
of 16 clinical characteristics, including N-terminal pro-
B-type natriuretic peptide (NT-proBNP), CD4+T cell, 
lymphocyte, C-reactive protein (CRP), positive serum 
(1,3)-β-D-glucan test (G test), serum sodium, ratio of 
arterial oxygen partial pressure (mmHg) to fractional 
inspired oxygen (PF ratio), neutrophil, heart rate (HR), 
chronic obstructive pulmonary disease (COPD), serum 
glucose, pH, high density lipoprotein cholesterol (HDL-
C), albumin, platelet and confusion, were served as pre-
dictors to establish machine learning-based prediction 
models (Fig. 2E).

Evaluation of model
All models had accuracy values and AUCs of 0.80 and 
above in the testing set (Table 2). The ROC curves were 
shown in Fig. 3A. The XGBoost model achieved the high-
est AUC (0.941) and accuracy (0.913), suggesting favor-
able and robust discrimination. LR model was usually 
used as a traditional baseline model. Thus, the AUCs 
of other models were compared to that of the XGBoost 
model and LR model using Delong’s test. The Delong test 
P value (vs. XGBoost model) were all under 0.05 except 
for RF model. Meanwhile, the Brier score, Kappa value, 
sensitivity, specificity, positive predict value and negative 
predict value of XGBoost model were all superior or sim-
ilar to that of other models. Furthermore, the XGBoost 
model also achieved the highest area under the PR curve 
(0.897) among nine models (Supplementary Figure S1).
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Clinical characteristics Overall (n = 1529) Training set (n = 1070) Testing set (n = 459) P value
Demographic characteristics
Sex: male (%) 492 (32.2) 334 (31.2) 158 (34.4) 0.242
age 56 (47, 66) 56 (47, 66) 57 (49, 66) 0.423
CTD type
Polymyositis / Dermatomyositis (%) 442 (28.9) 318 (29.7) 124 (27.0) 0.314
Rheumatoid arthritis (%) 380 (24.9) 257 (24.0) 123 (26.8) 0.277
Sjogren syndrome (%) 246 (16.1) 174 (16.3) 72 (15.7) 0.838
Systemic sclerosis (%) 137 (9.0) 96 (9.0) 41 (8.9) 1
Undifferentiated connective tissue disease (%) 98 (6.4) 70 (6.5) 28 (6.1) 0.834
Systemic lupus erythematosus (%) 93 (6.1) 62 (5.8) 31 (6.8) 0.547
Mixed connective tissue disease (%) 89 (5.8) 67 (6.3) 22 (4.8) 0.315
Anti-synthetase syndrome (%) 44 (2.9) 26 (2.4) 18 (3.9) 0.152
Comorbidities
Interstitial lung disease (%) 996 (65.1) 699 (65.3) 297 (64.7) 0.861
cancer (%) 66 (4.3) 43 (4.0) 23 (5.0) 0.461
chronic liver disease (%) 89 (5.8) 59 (5.5) 30 (6.5) 0.507
congestive heart failure (%) 158 (10.3) 113 (10.6) 45 (9.8) 0.723
cerebrovascular disease (%) 56 (3.7) 40 (3.7) 16 (3.5) 0.926
chronic renal disease (%) 87 (5.7) 54 (5.0) 33 (7.2) 0.124
coronary heart disease (%) 62 (4.1) 45 (4.2) 17 (3.7) 0.753
diabetes (%) 197 (12.9) 140 (13.1) 57 (12.4) 0.785
hypertension (%) 321 (21.0) 225 (21.0) 96 (20.9) 1
COPD (%) 152 (9.9) 107 (10.0) 45 (9.8) 0.981
Vital signs
Diastolic blood pressure (mmHg) 76 (68, 84) 76 (68, 85) 76 (68, 84) 0.92
Systolic blood pressure (mmHg) 120 (108, 133) 120 (108, 133) 120 (108, 134) 0.949
Respiratory rate (breath/min) 22 (20, 28) 22 (20, 29) 21 (20, 27) 0.208
Heart rate (beat/min) 90 (80, 102) 90 (80, 102) 90 (80, 102) 0.642
Temperature (°C) 36.9 (36.5, 38.6) 36.9 (36.5, 38.6) 37.0 (36.5, 38.8) 0.881
confusion (%) 44 (2.9) 32 (3.0) 12 (2.6) 0.813
Laboratory examinations
Positive G test (%) 335 (21.9) 229 (21.4) 106 (23.1) 0.506
Positive GM test (%) 41 (2.7) 28 (2.6) 13 (2.8) 0.947
pH 7.41 (7.38, 7.44) 7.41 (7.38, 7.44) 7.41 (7.38, 7.44) 0.158
BUN (mmol/L) 6.8 (4.5, 10.7) 6.9 (4.5, 10.7) 6.5 (4.5, 10.7) 0.677
sodium (mmol/L) 137.3 (133.6, 140.4) 137.5 (133.8, 140.4) 137.0 (133.3, 140.2) 0.324
glucose (mmol/L) 6.93 (4.68, 10.78) 7.15 (4.70, 10.77) 6.01 (4.60, 10.73) 0.118
hematocrit (L/L) 0.36 (0.31, 0.40) 0.36 (0.31, 0.40) 0.36 (0.31, 0.40) 0.62
PF ratio 207 (166, 279) 206 (168, 280) 207 (162, 278) 0.639
hemoglobin (g/L) 115 (103, 128) 115 (102, 127) 114 (103, 128) 0.894
RDW (%) 14.7 (13.7, 16.2) 14.7 (13.8, 16.2) 14.6 (13.5, 16.2) 0.165
platelet (×10 9 /L) 182 (133, 245) 182 (132, 244) 182 (133, 248) 0.681
neutrophil (×10 9 /L) 7.53 (5.02, 11.07) 7.47 (4.94, 11.00) 7.58 (5.28, 11.20) 0.412
lymphocyte (×10 9 /L) 0.98 (0.59, 1.47) 0.99 (0.60, 1.46) 0.98 (0.57, 1.48) 0.79
monocyte (×10 9 /L) 0.33 (0.19, 0.51) 0.33 (0.19, 0.51) 0.33 (0.21, 0.51) 0.411
bilirubin (µmol/L) 9.4 (5.5, 11.9) 9.5 (5.4, 12.1) 9.1 (5.5, 11.8) 0.5
ALT (U/L) 23 (14, 53) 23 (14, 50) 24 (14, 58) 0.206
AST (U/L) 25 (18, 51) 24 (18, 47) 27 (18, 55) 0.11
albumin (g/L) 34.0 (28.7, 39.3) 33.9 (28.6, 38.8) 34.3 (28.8, 40.2) 0.092
globulin (g/L) 28.1 (23.2, 34.7) 28.1 (23.1, 34.9) 28.3 (23.4, 34.1) 0.882
creatinine (µmol/L) 55.00 (44.00, 71.00) 55.85 (43.00, 71.00) 55.00 (44.90, 70.00) 0.957
cystatin C (mg/L) 1.11 (0.94, 1.33) 1.10 (0.94, 1.33) 1.13 (0.95, 1.33) 0.519
triglyceride (mmol/L) 1.39 (1.00, 1.91) 1.37 (1.01, 1.92) 1.44 (0.96, 1.90) 0.978

Table 1  Baseline characteristics of patients
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Among the traditional predictive tools, the IDSA/
ATS 2007 criteria had higher discriminatory power for 
ICU admission (AUC: 0.817) compared with PSI (AUC: 
0.697) and CURB-65 (AUC: 0.607) (Fig.  3B). However, 
they did not perform as well as the XGBoost model. The 
calibration curve and DCA were shown in Fig.  3C and 
D, both suggesting that the XGBoost model performed 
best among nine models. Thus, the XGBoost model was 
considered to be the optimal model. The AUCs of mod-
els with up-sampling, down-sampling and SMOTE were 
found to be similar to the original AUCs in the testing 
set, as listed in detail in Supplementary Table S3.

Model interpretation
The SHAP values could provide more insights into how 
the XGBoost model predicted outcomes. The feature 
importance was summarized by the SHAP summary 
plot in Fig. 4A. Figure 4B depicted the standard bar chart 
of the mean absolute SHAP value for each predictor in 
descending order. The force plots provided personalized 

feature attributions using two representative examples 
and illustrated how the SHAP could be used to explain 
individual model predictions, as shown in Fig.  4C (a 
patient actually not admitted into ICU) and D (a patient 
actually admitted into ICU). It started at the base 
value, that is, the average of all predictions. And then, 
each input predictor at different level could increase 
or decrease the predicted probability of outcome. The 
lengths of arrows reflected the SHAP values for these 
features. Finally, the predicted output value of model was 
obtained for a particular patient.

We also quantitatively visualized the relationships 
between main risk factors and outcomes. The SHAP 
dependence plots illustrated the top 6 features with the 
greatest importance (Fig.  5A-F). It demonstrated that 
higher NT-proBNP and CRP values, lower levels of 
CD4 + T cells, lymphocyte and serum sodium, and posi-
tive G test contributed to an elevated risk of ICU admis-
sion. Meanwhile, the cutoff value for each variable could 
also be determined to discriminate between high-risk 

Clinical characteristics Overall (n = 1529) Training set (n = 1070) Testing set (n = 459) P value
HDL-C (mmol/L) 1.02 (0.74, 1.36) 1.01 (0.74, 1.33) 1.03 (0.75, 1.41) 0.165
LDL-C (mmol/L) 2.19 (1.56, 2.78) 2.16 (1.55, 2.76) 2.23 (1.60, 2.88) 0.106
creatine kinase (U/L) 52 (26, 154) 50 (26, 146) 56 (28, 169) 0.115
LDH (U/L) 246 (189, 355) 247 (191, 363) 246 (186, 346) 0.451
potassium (mmol/L) 3.50 (3.14, 3.83) 3.50 (3.16, 3.82) 3.44 (3.10, 3.84) 0.206
myoglobin (ng/mL) 43.51 (21.17, 106.60) 42.03 (21.38, 104.05) 47.26 (21.00, 115.68) 0.427
CK-MB (ng/mL) 2.25 (1.09, 4.84) 2.11 (1.06, 4.51) 2.60 (1.22, 5.46) 0.006
NT-proBNP (ng/L) 393 (149, 929) 398 (156, 917) 362 (142, 1003) 0.627
Troponin T (ng/L) 23.0 (11.2, 47.9) 22.1 (11.0, 45.6) 26.2 (11.4, 56.9) 0.061
CRP (mg/L) 29.50 (10.40, 86.00) 30.00 (10.50, 88.75) 27.40 (10.35, 78.25) 0.367
Procalcitonin (ng/mL) 0.09 (0.05, 0.40) 0.09 (0.05, 0.39) 0.09 (0.05, 0.46) 0.366
PT (s) 11.3 (10.4, 12.3) 11.3 (10.5, 12.4) 11.23(10.4, 12.2) 0.099
APTT (s) 27.6 (24.5, 31.3) 27.5 (24.5, 31.5) 27.70(24.5, 30.8) 0.863
fibrinogen (g/L) 3.34 (2.55, 4.22) 3.38 (2.57, 4.27) 3.24 (2.48, 4.15) 0.062
AT III (%) 84.1 (70.4, 100.1) 84.3 (70.0, 99.8) 83.9 (70.7, 100.6) 0.678
D dimer (mg/L) 1.78 (0.74, 4.85) 1.79 (0.75, 4.92) 1.75 (0.72, 4.59) 0.425
PaCO2 (mmHg) 37.4 (32.9, 41.7) 37.4 (32.8, 41.9) 37.4 (33.1, 41.6) 0.663
lactate (mmol/L) 1.61 (1.16, 2.33) 1.61 (1.20, 2.34) 1.60 (1.10, 2.29) 0.193
CD4 + T cell (cell/µL) 346 (195, 516) 344 (198, 529) 349 (194, 499) 0.446
CD8 + T cell (cell/µL) 251 (130, 384) 252 (132, 386) 248 (121, 383) 0.449
pleural effusion (%) 546 (35.7) 386 (36.1) 160 (34.9) 0.692
Outcomes
ICU admission (%) 413 (27.0) 292 (27.3) 121 (26.4) 0.755
Need for vasopressors (%) 391 (25.6) 274 (25.6) 117 (25.5) 1
Need for IMV (%) 372 (24.3) 264 (24.7) 108 (23.5) 0.68
Hospital mortality (%) 237 (15.5) 161 (15.0) 76 (16.6) 0.502
Hospital LOS (days) 12 (9, 17) 12 (9, 17) 12 (9, 17) 0.314
Data are shown as median with interquartile range (IQR) for continuous variables and number with percentage for categorical variables

CTD: connective tissue disease; COPD: chronic obstructive pulmonary disease; G test: serum (1,3)-β-D-glucan test; GM test: serum Aspergillus galactomannan test; 
BUN: blood urea nitrogen; PF ratio: the ratio of arterial oxygen partial pressure (mmHg) to fractional inspired oxygen; RDW: red blood cell distribution width; ALT: 
alanine aminotransferase; AST: aspartate aminotransferase; HDL-C: High density lipoprotein cholesterol; LDL-C: Low density lipoprotein cholesterol; LDH: lactate 
dehydrogenase; CK-MB: creatine kinase-myoglobin binding; NT-proBNP: N-terminal pro-B-type natriuretic peptide; CRP: C-reactive protein; PT: prothrombin time; 
APTT: activated partial thromboplastin time; AT III: antithrombin III; ICU: intensive care unit; IMV: invasive mechanical ventilation; LOS: length of stay

Table 1  (continued) 
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(SHAP value > 0) and low-risk (SHAP value < 0) of ICU 
admission.

We selected two random samples from the testing 
set and used the LIME algorithm to further explain the 
individual ICU admission forecast. Supplementary Fig-
ure S2A depicts a case of patient admitted into ICU. The 
expected probability of ICU admission was 88% accord-
ing to the XGBoost model. Supplementary Figure S2B 

described a case of patient not admitted into ICU. The 
expected probability of no ICU admission was 60%.

Discussion
A novel clinically available tool that provides an early 
assessment and rapid prediction of ICU admission is 
warranted considering that risk stratification of patients 
with CAP and CTD remains challenging caused by 

Table 2  Performance of nine machine learning-based models for predicting ICU admission in the testing set
Model AUC Delong test P 

value
(vs. LR model

Delong test P value
(vs. XGBoost model

Accuracy Kappa 
value

Sensitivity Specificity Positive 
predict 
value

Negative 
predict 
value

Brier 
score

LR 0.871 - < 0.001 0.834 0.537 0.747 0.856 0.562 0.932 0.115
CART 0.911 0.035 0.011 0.878 0.672 0.810 0.898 0.703 0.941 0.093
RF 0.934 < 0.001 0.110 0.909 0.754 0.876 0.918 0.760 0.962 0.082
SVM 0.868 0.711 < 0.001 0.834 0.534 0.753 0.854 0.554 0.935 0.117
KNN 0.865 0.776 < 0.001 0.832 0.553 0.704 0.872 0.628 0.905 0.120
DT 0.834 0.126 < 0.001 0.856 0.641 0.707 0.917 0.777 0.885 0.113
GBM 0.931 < 0.001 0.0298 0.902 0.733 0.880 0.908 0.727 0.965 0.076
XGBoost 0.941 < 0.001 - 0.913 0.767 0.879 0.923 0.777 0.962 0.070
NB 0.896 0.120 < 0.001 0.852 0.568 0.844 0.853 0.537 0.965 0.128
ICU: intensive care unit; AUC: area under the receiver operating characteristic curve; LR: logistic regression; CART: classification and regression tree; RF: random 
forest; SVM: support vector machine; KNN: k-nearest neighbors; DT: decision tree; GBM: gradient boosting machine; XGBoost: eXtreme gradient boosting; NB: naive 
bayes

Fig. 2  Features selected by Boruta, Lasso and univariate analysis. A and B. Variables selected by Boruta algorithm. The minimum, average and maximum 
shadow score are shown in blue. In terms of the score of feature importance, the 32 variables in green are regarded as important variables, while yellow 
are neutral and red are rejected. C. The Lasso regression coefficient profiles of all baseline characteristics. D. The optimal lambda selection in the Lasso 
regression with 10-fold cross-validation. Misclassification errors of different variables against log(lambda) are revealed. The two vertical dashed lines rep-
resent the optimal value under the minimum criterion and 1-SE criterion, respectively. The “lambda” is the tuning parameter. A total of 33 predictors with 
non-zero coefficients are identified. E. The Venn diagram of features selected by Boruta, Lasso and univariate analysis. The intersection results of three 
methods yield 16 clinical characteristics. SE, standard error; Lasso, least absolute shrinkage and selection operator
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heterogeneous disease progression. A reliable and accu-
rate prediction model would help clinicians identify 
specific patients who require special attentions and allo-
cate resources appropriately, which is crucial to timely 
and effective intervention for prognosis improvement. 
Machine learning has gained popularity and is increas-
ingly utilized in various domains of biomedicine. To 
our knowledge, this study is the first to develop a useful 
machine learning-based model for predicting the risk 
of ICU admission in patients with CAP and CTD. The 
promising performance of model was verified by the 
testing set. The use of advanced machine learning-based 

models is often limited in clinical practice because of 
the lack of clear interpretation of their decision-mak-
ing process. Thus, we used SHAP and LIME to explain 
what features of the patient are responsible for the given 
prediction, avoiding the obstacle of “black-box” nature 
of machine learning algorithms. We found that the 
NT-proBNP, CD4 + T cell, lymphocyte, CRP, positive 
G test and serum sodium were the top 6 features of the 
XGBoost model in terms of their abilities to predict ICU 
admission.

In our study cohort, the median PSI was only 80 (IQR: 
63,103) points, which was slightly lower than that of 

Fig. 3  Machine learning-based models used to predict ICU admission in patients with CAP and CTD. (A) ROC curves for the machine learning-based 
models used to predict ICU admission. (B) ROC curves for the traditional risk scores used to predict ICU admission. (C) Calibration curves of the machine 
learning-based models. (D) DCA of the machine learning-based models. ROC: receiver operating characteristic; DCA: Decision curve analysis; IDSA/ATS 
2007 criteria: 2007 Infectious Diseases Society of America / American Thoracic Society criteria for defining severe community-acquired pneumonia; PSI: 
pneumonia severity index; CURB-65: confusion, uremia, increased respiratory rate, hypotension, and age 65 years or older
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previous similar studies of CAP patients with a median 
PSI of about 100 points [34–38]. This may be caused by 
the differences of included population. The median age, 
the proportion of male and the number of comorbidi-
ties of our cohort were all lower than that of previous 
cohorts. However, the rate of ICU admission in our study 
was equal to that in previous reports. Thus, the adverse 
impact of CTD on the clinical outcomes of CAP should 
not be ignored. We believed that the CAP patients with 
CTD might represent a specific subgroup deserving of 
additional investigations. However, there is still a lack of 
personalized accurate assessment to guide optimal clini-
cal decisions for them. Li et al. have conducted a simi-
lar study including 368 pneumonia patients with CTD 
treated with glucocorticoids or immunosuppressants 
[39]. They constructed a prognostic nomogram based 
on five variables (fever, cyanosis, blood urea nitrogen, 
ganciclovir treatment and anti-pseudomonas treatment) 
for predicting the 90-day mortality. The C index of train-
ing cohort and validation cohort was 0.808 and 0.762, 
respectively. Compared to their research, our study had 
a larger sample size and more predictors. Furthermore, 
the current study period was more than 10 years with the 
primary outcome of ICU admission.

The predicting values of these identified predictors are 
deemed worthy of clinicians’ attention. They can be used 
to clinically assist physicians to identify high-risk patients 
at an early stage. The main predictors can be supported 
by previous studies and theories. NT-proBNP is secreted 
by the heart in response to excessive stretching of cardio-
myocytes. Thus, it is widely used as diagnostic biomark-
ers for ventricular insufficiency, heart failure and cardiac 
dysfunction. Previous evidence showed that NT-proBNP 
was positively correlated with the severity of CAP and 
remained an independent mortality predictor (hazard 
ratio [HR]: 1.004, 95% confidence interval [95%CI]: 1.00-
1.01) in multivariable analysis [40, 41]. Meanwhile, in 
patients with CTD, elevated NT-proBNP is considered 
to be associated with pulmonary arterial hypertension 
or even heart involvement which may lead to a signifi-
cant poor prognosis [42–44]. Although treatment with 
glucocorticoids or immunosuppressive drugs were not 
recorded, we collected and analyzed the count of lym-
phocyte subsets instead. It is an objective indicator of 
the immunosuppressive status of patients. In our study, 
the CD4 + T cell and lymphocyte were both identified as 
predictors. This result further confirmed that immuno-
suppression is indeed a critical indicator of disease sever-
ity. Meanwhile, it demonstrated that in various subsets 

Fig. 4  SHAP plots. (A) SHAP summary plot shows feature importance for each predictor of the XGBoost model in descending order. The upper predictors 
are more important to the model’s predictive outcome. A dot is created for each feature attribution value for the XGBoost model of each patient. The 
further away a dot is from the baseline SHAP value of zero, the stronger it effects the model output. Dots are colored according to the values of features. 
Yellow represents higher feature values and red represents lower feature values. (B) Bar chart of the mean absolute SHAP value for each predictor of the 
XGBoost model in descending order. C and D. The force plots provide personalized feature attributions using two representative examples. C: a patient 
actually not admitted into ICU; D: a patient actually admitted into ICU. SHAP: Shapley additive explanations; ICU: intensive care unit;
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of lymphocyte, low CD4 + T cell was mainly related to 
ICU admission in patients with CAP and CTD. Wang et 
al. also demonstrated CD4 + T cells (HR: 0.986, 95%CI: 
0.978–0.994), rather than CD8 + T cell, was an inde-
pendent risk factor for severe CAP in elderly and frailty 
patients [45]. CRP, a widely utilized inflammatory bio-
marker, is known to be associated with the severity and 
mortality of CAP. Meanwhile, it is also a marker for dis-
ease activity and risk of death in various types of CTD 
[46–48]. The G test is a serum pan-fungal marker used to 
detect the majority of pathogenic fungi, including Asper-
gillus spp., Candida spp., etc. It is highly accurate for 
diagnosing invasive fungal infections [49].

However, caution is needed in clinical use of some 
unexpected results of our study. In disagreement with 
prior studies, the age and sex, two traditional risk fac-
tors, were not identified as predictors in our study. We 
suspected that, as mentioned above, the median age 
and the proportion of male in present study were lower 
compared with that of prior researches, which might 
be partly responsible for this result. However, these two 
factors should also be considered by the clinicians, espe-
cially when treating those old male patients. Another 
unexpected result is that, the proportion of ILD was 

comparable between patients admitted into ICU and 
those not admitted into ICU. ILD was generally consid-
ered as a negative prognostic factor in CAP [50]. How-
ever, the studies from Li et al. and Liang et al. also showed 
that ILD was not independently associated with mortality 
in pneumonia patients with CTD [5, 39]. More prospec-
tive researches are needed to clarify the impact of ILD on 
CAP patients.

Gearhart et al. have found that assigning differential 
weights to variables could generate a novel risk score 
with higher accuracy than original IDSA/ATS 2007 cri-
teria for predicting ICU admission in CAP patients [51]. 
Consistently, in present study the XGBoost model yielded 
considerably improved predictions compared with tradi-
tional tools. As a highly efficient gradient tree boosting 
technique, XGBoost is utilized in a variety of medical 
researches. It can optimally handle diverse variable types 
and imbalanced datasets, including high-order interac-
tions, non-linearities, discontinuities, etc. Besides, it is 
resistant to outliers in the predictors and the potential 
multicollinearity among them. XGBoost uses advanced 
regularization (L1& L2) to prevent overfitting, opti-
mize prediction model, and increase model’s generaliza-
tion ability [52–55]. Xu et al. recruited 2302 adults with 

Fig. 5  The SHAP dependence plots for the top 6 features with the greatest importance. A. N-terminal pro-B-type natriuretic peptide (NT-proBNP). B. 
CD4 + T cell. C. lymphocyte. D. C-reactive protein (CRP). E. positive serum (1,3)-β-D-glucan test (G test). The “1” represents “Yes″ and the “0″ represents 
“No″. F. serum sodium. The SHAP dependence plots show how a single feature affects the output of the XGBoost model. SHAP values for specific features 
exceed zero, representing an increased risk of ICU admission. SHAP: Shapley additive explanations; ICU: intensive care unit;
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CAP and found that XGBoost model based on common 
clinical features had the best performance with AUC of 
0.801 in the prediction of ICU admission among vari-
ous machine learning algorithms [56]. Besides, among 
patients with COVID-19, XGBoost model was also con-
firmed to be an excellent prediction model for predicting 
ICU admission [57, 58].

Our study had some limitations. First, it was a single-
center retrospective study, and the selection bias were 
difficult to completely avoid. Second, this study was only 
validated using an internal testing set due to the lack of 
available external validation cohort. The generalizability 
and robustness of model may be compromised. Third, 
some data were incomplete because of the retrospective 
design, including the ILD patterns, such as nonspecific 
interstitial pneumonia (NSIP), organizing pneumonia 
(OP) or usual interstitial pneumonia (UIP), the pulmo-
nary function test results, the CTD disease activities, the 
titers of auto-antibodies, etc. Therefore, they were not 
included into the analysis. Last, the model was estab-
lished by baseline characteristics, and the therapies and 
changes of features after admission were not considered. 
However, our early investigation may provide a basis for 
future studies.

Conclusions
In conclusion, we successfully developed, evaluated and 
explained a machine learning-based model for predict-
ing ICU admission in patients with CAP and CTD. The 
XGBoost model showed the optimal performance among 
nine algorithms. The model could be clinical referenced 
after external validation and improvement.
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