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Abstract 

Background Abnormal remodeling of distal pulmonary arteries in patients with pulmonary arterial hypertension 
(PAH) leads to progressively increased pulmonary vascular resistance, followed by right ventricular hypertrophy 
and failure. Despite considerable advancements in PAH treatment prognosis remains poor. We aim to evaluate 
the potential for using the cytokine resistin as a genetic and biological marker for disease severity and survival 
in a large cohort of patients with PAH.

Methods Biospecimens, clinical, and genetic data for 1121 adults with PAH, including 808 with idiopathic PAH (IPAH) 
and 313 with scleroderma-associated PAH (SSc-PAH), were obtained from a national repository. Serum resistin levels 
were measured by ELISA, and associations between resistin levels, clinical variables, and single nucleotide polymor-
phism genotypes were examined with multivariable regression models. Machine-learning (ML) algorithms were 
applied to develop and compare risk models for mortality prediction.

Results Resistin levels were significantly higher in all PAH samples and PAH subtype (IPAH and SSc-PAH) samples 
than in controls (P < .0001) and had significant discriminative abilities (AUCs of 0.84, 0.82, and 0.91, respectively; 
P < .001). High resistin levels (above 4.54 ng/mL) in PAH patients were associated with older age (P = .001), shorter 
6-min walk distance (P = .001), and reduced cardiac performance (cardiac index, P = .016). Interestingly, mutant carriers 
of either rs3219175 or rs3745367 had higher resistin levels (adjusted P = .0001). High resistin levels in PAH patients 
were also associated with increased risk of death (hazard ratio: 2.6; 95% CI: 1.27–5.33; P < .0087). Comparisons of ML–
derived survival models confirmed satisfactory prognostic value of the random forest model (AUC = 0.70, 95% CI: 
0.62–0.79) for PAH.

Conclusions This work establishes the importance of resistin in the pathobiology of human PAH. In line with its func-
tion in rodent models, serum resistin represents a novel biomarker for PAH prognostication and may indicate a new 
therapeutic avenue. ML-derived survival models highlighted the importance of including resistin levels to improve 
performance. Future studies are needed to develop multi-marker assays that improve noninvasive risk stratification.
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Introduction
Pulmonary arterial hypertension (PAH) is a multifac-
torial and life-threatening condition characterized by 
abnormal remodeling of distal pulmonary arteries. This 
remodeling leads to a progressive increase in pulmo-
nary vascular resistance and subsequent right ventricu-
lar hypertrophy and failure [1]. Despite considerable 
advancements in PAH treatment over the past 30 years, 
prognosis remains poor [2]. One study that followed 162 
consecutive patients with PAH reported that continu-
ous treatment for at least 1  year with epoprostenol, the 
first therapy to be approved for the treatment of PAH, 
resulted in significantly greater survival rates at 1, 2 and 
3 years of 87.8%, 76.3% and 62.8%, respectively, compared 
with expected survival rates (58.9%, 46.3%, and 35.4% 
based on historical data) [3, 4]. The phase 3 randomized 
controlled trial STELLAR demonstrated the clinical ben-
efit of sotatercept, a TGFβ superfamily modulator, as 
an add-on treatment to stable background therapy for 
PAH [5]. Building on STELLAR findings, a recent study 
employed a population health model to assess the poten-
tial long-term clinical impact of sotatercept. According 
to this model, adding sotatercept to background therapy 
increased life expectancy by roughly three-fold among 
patients with PAH [6].

Mechanistic biomarkers, by serving as reliable predic-
tors of PAH severity and survival, could be crucial for the 
development of novel treatment strategies. One potential 
mechanistic biomarker candidate is resistin, a member 
of the resistin-like molecule (RELM) family of pleio-
tropic cytokines [7]. Resistin, which was first identified as 
an adipokine in mice with insulin resistance properties 
[8], is predictive of poor clinical outcomes in patients 
with cardiovascular disease and heart failure [9–12]. 
RELM signaling is an important component of the type 
2 inflammatory response to tissue injury in the lung and 
other organs [13, 14] and may be critically involved in 
inflammasome signaling and its downstream responses. 
We have shown that mRELMα, the mouse homolog of 
resistin, is dramatically upregulated in hypoxic lungs and 
produces potent mitogenic effects [15]. In rodent models, 
transtracheal delivery of mRELMα gene by adeno-asso-
ciated virus causes vascular remodeling and hemody-
namic changes like those of PAH [16]. Conversely, in vivo 
knockdown of mRELMα markedly reduces PAH devel-
opment caused by chronic hypoxia or Th2 inflammatory 
stimuli [16–18], indicating an etiologic role for mRELMα 
in PAH. Human resistin is expressed by myeloid cells, 
especially macrophages [19]. Our mechanistic study 
of gene-modified mouse lines recently revealed that 
human resistin induces pulmonary vascular remodeling 
and PAH development by mediating the endothelial and 
smooth muscle cell crosstalk and macrophage activation 

dependent on activation of damage-associated molecu-
lar pattern (DAMP) signaling [20, 21]. Additionally, the 
cardiac-specific effects of human resistin on modulat-
ing inflammation in heart also have been revealed in our 
recent study [22].

We sought to assess the relationship of serum resistin 
levels with PAH disease severity and survival in a large 
cohort of patients with PAH composed mainly of two 
subtypes: idiopathic PAH (IPAH) and scleroderma-asso-
ciated PAH (SSc-PAH). Because right ventricular hyper-
trophy and failure are the major causes of mortality in 
patients with PAH, we hypothesized that resistin levels 
would be associated with PAH severity (ie, hemodynamic 
measures) and mortality. Models combining resistin lev-
els with clinical indicators have enhanced the ability to 
predict mortality compared with models that use clini-
cal indicators alone. In this study, we investigate the role 
of resistin as a novel biochemical and genetic marker 
for PAH. Our findings will facilitate the development 
of precision prognostication tools and resistin-targeted 
therapy.

Methods
Study subjects
The National Biological Sample and Data Repository for 
PAH (also known as the PAH Biobank) is a National Insti-
tutes of Health–funded repository of biologic samples, 
clinical and genetic data collected from 36 enrolling PAH 
centers across North America. Biorepository data collec-
tion was approved by the institutional review board at 
each participating center, and all patients gave informed 
consent at the time of enrollment. Inclusion and exclu-
sion criteria have been described elsewhere [23, 24], and 
details are in the online supplement. We received clini-
cal data and biologic samples, including serum, from all 
patients who had IPAH or SSc-PAH and were 18 years of 
age or older (n = 1121). Samples from 50 healthy control 
subjects were obtained from Innovative Research to use 
as controls. This study was approved by the Johns Hop-
kins University Institutional Review Board.

Measurement of serum resistin levels
ELISAs for resistin levels were successfully performed on 
serum from all patients. Briefly, serum resistin was ana-
lyzed in duplicate using the mesoscale discovery plate 
assay (Additional file 1: Supplementary Methods).

Genotyping
DNA was extracted according to standard protocols. 
Genotyping for single nucleotide polymorphisms (SNPs) 
was carried out by using a genome-wide genotyping array 
(Illumina HumanOmni5, Illumina Inc., San Diego, CA, 
USA) and provided by the PAH Biobank, with an average 
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completion rate of 98% [9]. Three SNPs within the gene 
that encodes resistin (RETN) and ~ 2  kb upstream 
(rs7408174 [T > C, upstream of RETN], rs3219175 [G > A, 
-2  kb variant], and rs3745367 [G > A, intron variant]) 
were covered by the array and analyzed for association 
with serum resistin levels.

Statistical analyses
The chi-square test, Mann–Whitney U test, or Kruskal–
Wallis test was used for comparisons between groups. To 
evaluate the performance of resistin level as a discrimi-
nator of PAH presence, we calculated the area under 
the curve (AUC) of the receiver operating characteris-
tic (ROC) curve. Survival curves were computed with 
Kaplan–Meier estimates and the association between 
resistin level and survival was also tested with multivaria-
ble Cox regression models. Additionally, we used logistic 
regression models to test for genetic marker association 
with resistin levels as a qualitative phenotype. Age, sex, 
ethnicity, and BMI were included as covariates (Addi-
tional file 1: Supplementary Methods).

Mortality model construction and assessment
Initially we selected 21 variables (Additional file 1: Sup-
plementary Methods). These included demograph-
ics, clinical classification of PAH, and 10 hemodynamic 
measurements. Additionally, we included REVEAL 2.0 
risk score, serum resistin levels, and the genotypes of 
three RETN SNPs (rs7408174, rs3219175, rs3745367). 
Then, we applied Lasso regression to the 13 quantita-
tive variables. Lastly, we used 15 variables, including the 
6 quantitative variables selected by Lasso, 4 additional 
hemodynamic variables, and 5 categorical variables, for 
the full model. For quality control processing of the data, 
902 PAH patients (IPAH = 654) were enrolled after we 
removed subjects with missing values for quantitative 
variables. For machine-learning analysis, first, we ran-
domly selected 70% (n= 631, IPAH = 455) of the patients 
as the training set for model construction. Next, we bal-
anced the dataset using SMOTE-NC [25]. Then, five 
commonly adopted predictive model types were estab-
lished to predict PAH mortality: random forest (RF), 
XGBoost, support vector machine (SVM), multilayer 
perceptron (MLP), and a stacking classifier. To obtain 
optimal prediction performance, K-folder cross valida-
tion (k = 5) was used to train, construct, and compare 
models. The confusion matrix, area under the ROC curve 
(AUC), sensitivity, positive predictive value (PPV), and 
F1 score (which is the harmonic mean of the sensitivity 
and PPV) were used to evaluate and compare the com-
prehensive performance of model types. Lastly, 30% of 
the entire cohort was included in the test set (n = 271, 
IPAH = 199) to validate the training set.

Results
Patient characteristics
Demographics and clinical characteristics of PAH 
patients in this study are presented in Table  1. The 
cohort was composed mainly of patients with IPAH 
(n = 808); the second largest disease subtype was SSc-
PAH (n= 313). As in previous studies [24, 26], most 
patients were white women in the sixth decade of life, 
with New York Heart Association functional class 
(NYHA FC) III/IV symptoms; the median time from 
diagnosis to enrollment was approximately 4.8  years. 
Table  1 listed common comorbid conditions such as 
obesity (as determined by BMI), chronic renal disease, 
cardiovascular conditions (such as systemic hyper-
tension and cardiomyopathy), and respiratory condi-
tions (such as smoking, COPD and ILD/IPF). With the 
exception of ILD/IPF and renal insufficiency, which 
were more prevalent in SSc-PAH patients than in 
IPAH patients, co-morbidities were similar in patients 
with IPAH, SSc-PAH, and the entire cohort. Subjects 
had moderate to severe disease, with mean pulmonary 
artery pressure (mPAP) of 49  mm Hg (IQR: 19), pul-
monary vascular resistance (PVR) of 8.95 Wood units 
(IQR: 7.03), and cardiac index of 2.54 L/min/m2 (IQR: 
1.16). At enrollment, most patients were being treated 
with a phosphodiesterase-5 inhibitor or endothelin 
receptor antagonist therapy. The control cohort was 
50% male and had a median age of 38  years (range: 
18–57).

Serum resistin levels were significantly elevated in patients 
with PAH
Serum samples from 808 IPAH patients, 313 SSc-PAH 
patients, and 50 healthy control subjects (male-to-female 
ratio: 1:1) were available for analysis. When compared 
to circulating resistin levels in healthy control subjects 
(median [IQR] = 3.84  ng/mL [2.14]), levels were sig-
nificantly higher in samples of the overall PAH cohort 
(n = 1121; 6.63  ng/mL [4.34]), in IPAH patients (6.2  ng/
mL [3.67]), and in SSc-PAH patients (8.28 ng/mL [5.59]), 
all P < 0.0001 (Fig. 1A).

We used resistin levels from PAH patients and controls 
to generate an ROC curve for evaluating the specificity 
and sensitivity. Serum resistin discriminated all PAH, 
IPAH, or SSc-PAH from control subjects with AUCs of 
0.85, 0.82, and 0.91 (Fig.  1B-D), respectively (P < 0.001). 
Based on this ROC curve analysis, we established a 
serum resistin threshold value of 4.54 ng/mL (defined by 
the Youden index) to distinguish healthy individuals from 
those with PAH or IPAH, and 6.30 ng/mL for SSc-PAH. 
Notably, we found no evidence that the control group’s 
resistin levels were affected by sex. In the PAH cohort 
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we examined, we are unable to completely rule out the 
chance that changes in sex or gender could affect the 
function of resistin. As such, in all relevant analyses, we 
considered sex as a potential confounding variable.

Serum resistin levels were associated with metrics of PAH 
disease severity
Using multiple linear regressions in which we adjusted for 
age, sex, and BMI, we evaluated the relationship between 

Table 1 Demographics and clinical characteristics of patients with pulmonary arterial hypertension

Abbreviations: 6MWD 6-min walk distance, AA African American, CCB Calcium channel blocker, CO Cardiac output, COPD Chronic obstructive pulmonary disease, 
EA European American, ERA Endothelin receptor antagonist, ILD/IPF Interstitial lung disease/idiopathic pulmonary fibrosis, IPAH Idiopathic pulmonary arterial 
hypertension, IV/SC Intravenous or subcutaneous, IQR Interquartile range, mPAP Mean pulmonary arterial pressure, NTproBNP N-terminal pro–brain natriuretic 
peptide, NYHA FC New York Heart Association functional class, PAWP Pulmonary artery wedge pressure, PDE5 Phosphodiesterase-5, PVR Pulmonary vascular resistance, 
RAP Right atrial pressure, REVEAL Registry Registry to Evaluate Early and Long-Term PAH Disease Management, SSc-PAH Scleroderma-associated pulmonary arterial 
hypertension, WU Wood units

Overall (n = 1,121) IPAH (n = 808) SSc-PAH (n = 313)

Age, median (IQR), y 58 (22) 53 (23) 65.5 (14)

Female sex, n (%) 919 (81.91) 645 (79.83) 274 (87.54)

Race, n (%)

 EA 947 (85.39) 676 (84.08) 271 (88.85)

 AA 111 (10.00) 83 (10.32) 28 (9.18)

 Other 51 (4.60) 45 (5.60) 6 (1.97)

 Time from diagnosis to enrollment, mean ± SD, y 4.8 ± 4.66 5.41 ± 4.92 3.17 ± 3.39

Comorbidities, n (%)

 BMI, median (IQR), kg/m2 28.07 (9.69) 28.67 (10.51) 26.84 (7.79)

 Cardiovascular

  Hypertension 397 (35.41) 276 (34.16) 121 (38.66)

  Cardiomyopathy 20 (1.78) 13 (1.6) 7 (2.24)

 Respiratory

  Smoker 461 (41.12) 335 (41.46) 126 (40.26)

  Packs/per day, median (IQR) 1.0 (0.5) 1.0 (1.0) 1.0 (0.5)

  Total no. of years, median (IQR) 19 (20) 18 (20) 20 (20)

  COPD 106 (9.46) 81 (10.02) 25 (7.99)

  ILD/IPF 84 (7.5) 14 (1.73) 70 (22.36)

 Renal insufficiency 64 (5.71) 36 (4.46) 28 (8.95)

Deaths during follow-up, n (%) 191 (18.26) 96 (12.66) 95 (32.99)

6MWD, median (IQR), m 343 (164.75) 355 (155.75) 313.50 (169.5)

NYHA FC, n (%)

 I/II 299 (36.96) 203 (35.43) 96 (40.68)

 III/IV 510 (63.04) 370 (64.57) 140 (59.32)

Hemodynamics, median (IQR)

 RAP, mm Hg 8 (7) 8 (7) 8 (8)

 mPAP, mm Hg 49 (19) 52 (19) 43 (17)

 PAWP, mm Hg 10 (6) 10 (6) 10 (6)

 PVR, WU 8.95 (7.03) 10 (7) 7.31 (5.62)

 CO, L/min 4 (1) 4 (2) 4 (2)

 Cardiac index, L/min/m2 2.54 (1.16) 2.48 (1.17) 2.61 (2.07)

 REVEAL Registry 2.0 risk score, median (range) 7 (13) 6 (13) 8 (11)

Biomarker values, median (IQR)

 NTproBNP, pg/mL 719 (2091) 490 (1428) 1796 (4434)

 Resistin, ng/mL 6.63 (4.34) 6.2 (3.67) 8.28 (5.59)

Therapies, n (%)

 PDE5 inhibitor 794 (71.86) 568 (71.36) 226 (73.14)

 ERA 626 (56.65) 455 (57.16) 171 (55.34)

 IV/SC prostacyclin 297 (26.88) 249 (31.28) 48 (15.53)

 CCB 125 (11.31) 98 (12.31) 27 (8.74)
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serum resistin levels (log transformed) and continuous 
clinical variables, including invasive resting hemodynam-
ics and exercise tolerance assessed by the 6-min walk 
distance (6MWD). In PAH patients, serum resistin was 
significantly associated with right atrial pressure (RAP, 
P < 0.026) and inversely associated with cardiac index 
(P < 0.014, Additional file  1: Table  S1). Additionally, we 
observed a significant correlation between resistin levels 
and PAH severity measured by REVEAL Registry PAH 
risk score 2.0 (P < 0.001); each log-unit higher resistin 
was associated with a 0.1-point higher risk score. We 
observed similar trends for RAP (P < 0.032) and cardiac 
index (P < 0.01) for the IPAH subtype, but not in the SSc-
PAH patients.

We further dichotomized PAH patients into resistin-
levellow and resistin-levelhigh subgroups based on their 
serum resistin levels using a median split (Additional 
file 1: Supplementary Methods). As shown in Additional 
file 1: Tables S2 & S3, patients within the resistin-levelhigh 
group had shorter 6MWD (P = 0.001) and worse cardiac 
index (P = 0.016). Thus, PAH patients with higher resis-
tin levels in the overall cohort had diminished functional 

capacity (NYHA FC III/IV vs. I/II, P = 0.014) and 
increased REVEAL Registry 2.0 risk score (P = 0.0001) 
that may contribute to the high mortality rate (23.1% vs. 
13.4%, P = 0.0001).

Serum resistin levels were associated with outcomes 
in PAH patients
Kaplan–Meier curves
We generated Kaplan–Meier curves to assess the rela-
tionship between elevated resistin levels and mortality. 
We arranged resistin levels in PAH patients (n = 1064) 
by quartiles: group 1 (< 25th percentile, n = 255; median 
log(resistin) = 0.609); group 2 (25th to 50th percen-
tile, n = 233; median log(resistin) = 0.761); group 3 
(50th to 75th percentile, n = 266; log(resistin) = 0.885); 
and group 4 (> 75th percentile, n = 241; median 
log(resistin) = 1.14). Figure S1 (Additional file 2) shows 
that survival was significantly shorter in subjects with 
higher resistin levels (chi-square = 23.5; P < 0.015 by 
log-rank test). A similar trend was observed for IPAH 
patients (chi-square = 10.94; P < 0.012 by log-rank test), 
but not for SSc-PAH patients.

Fig. 1 Comparison of serum resistin levels and receiver operating characteristic (ROC) curves. A, Resistin levels were significantly higher in patients 
with IPAH (n = 808, median [IQR] = 6.2 ng/mL [4.63–8.3]) and SSc-PAH (n = 313, 8.28 ng/mL [6.18–11.77]) than in controls (n = 50, 3.84 ng/mL [2.64–
4.78]). ***, P < .0001, Kruskal–Wallis test. B–D, The specificity and sensitivity of serum resistin as a predictor for diagnosis of PAH in all PAH patients 
(n = 1121, B), IPAH patients (n = 808, C), and SSc-PAH patients (n = 313, D). P < .001 for all comparisons
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Univariable Cox proportional hazard modeling
Given the strong predictive value of serum resistin for 
PAH outcome, we further constructed Cox propor-
tional hazard models to examine this relationship. Resis-
tin levels were significantly associated with mortality in 
univariable Cox proportional hazard modeling. A high 
resistin level (log transformed) was a significant predic-
tor of adverse outcomes, with an unadjusted hazard ratio 
(HR) of 6.04 (95% CI: 3.20–11.39; P< 0.0001) in the over-
all cohort. Univariate analysis also showed associations 
between mortality and age, 6MWD, RAP, and mPAP, 
consistent with published data in other PAH cohorts 
[27–29]. When survival analyses were repeated in the 
two subgroups, the significance remained the same in 
IPAH (HR = 8.41; 95% CI: 3.41–20.71; P < 0.0001), but 
attenuated in SSc-PAH.

Multivariable Cox proportional hazards models
Multivariable models were built with adjustment for age, 
sex and BMI as well as hemodynamic variables associated 
with increased mortality in univariate analysis (mPAP 
and RAP). In multivariable Cox proportional hazards 
models (Table 2), the relationship between resistin levels 
and outcome remained significant in the overall cohort 
(HR, 2.6; 95% CI: 1.27–5.33; P < 0.0087) and in IPAH (HR, 
3.29; 95% CI: 1.19–9.07; P < 0.0214) after adjusting for the 
following seven variables: age, gender, BMI, variables sig-
nificant in the univariate analysis (RAP and mPAP) and 
NTproBNP. Furthermore, when multivariable analyses 
were repeated, excluding NTproBNP (reduced model 1) 
or only adjusting for age, sex and BMI (reduced model 
2), the magnitude of biomarker associations with survival 
persisted in the overall cohort and IPAH.

RETN genetic variants were associated with serum resistin 
levels in PAH patients
We evaluated three RETN SNPs (rs7408174, rs3219175, 
and rs3745367) on the Omni5 Beadchip panel (Addi-
tional file  2: Figure S2A) for association with serum 
resistin level and clinical metrics for PAH severity. In 

776 IPAH patients, two SNPs located in the proximal 
upstream (rs3219175) and intronic region (rs3745367) of 
RETN were associated with resistin levels. The coefficient 
r values were 0.218 (95% CI: 0.150–0.284; P = 0.0001) for 
rs3219175 and 0.134 for rs3745367 (95% CI: 0.065–0.203; 
P = 0.0002; Figure S2B). We further adjusted the models 
with age, sex, ethnicity, and BMI in logistic regression. In 
overall cohort of PAH patients, we observed significant 
adjusted P values of 0.0001 for both variants (Additional 
file  1: Table  S4). In IPAH, with each additional copy of 
the AA or GA genotype for rs3219175, there was a 14.65-
fold increased risk for having high resistin levels (above 
6.20  ng/mL, tested under a dominant model). In con-
trast, the homozygous mutant carriers of rs3745367 (AA 
genotype, recessive model) had a 2.31-fold increased risk. 
However, no association signal was found for rs7408174. 
Similar trends were found for both variants in SSc-PAH 
patients (Additional file 1: Supplementary Results).

Comparison of five mortality prediction models in the test 
set
After confirming the association between high resis-
tin levels and PAH severity and outcome, we sought to 
determine whether resistin, as a mechanistic biomarker, 
can improve the performance of mortality prediction 
models. First, we constructed models utilizing REVEAL 
2.0 risk score, demographics (age and sex), clinical clas-
sification of PAH, and seven hemodynamic measure-
ments. Five classifiers were established, and the average 
AUC and 95% CI for each classifier are shown in Fig. 2A. 
All five classifiers had AUC values above 0.60 (the 
acceptable cutoff for accuracy), and the MLP classifier 
obtained the highest AUC value of 0.73 (95% CI: 0.64–
0.81). As shown in Additional file  1: Table  S5, the five 
classifying models demonstrated varying performances 
for classifying non-survivors. The RF classifier was also 
the best-performing in the test set (AUC = 0.69; 95% 
CI: 0.60–0.77), with the highest sensitivity (0.58), preci-
sion (0.29), and F1 score (0.38). Second, we further con-
structed a full model (Fig. 2B) to include resistin levels 

Table 2 Multivariable Cox proportional hazard models for mortality

The full model was adjusted for age, sex, BMI, right atrial pressure (RAP), mean pulmonary artery pressure (mPAP) and NTproBNP
a NTproBNP excluded from the full model
b The reduced model 2 was adjusted for age, sex and BMI

Predictor: (log) Resistin Full model Reduced model  1a Reduced model  2b

Hazard ratio 95% CI P value Hazard ratio 95% CI P value Hazard ratio 95% CI P value

All PAH (n = 1,121) 2.60 1.27–5.33 .0087 3.43 1.71–6.89 .0005 3.73 1.89–7.36 .0001
IPAH (n = 808) 3.29 1.19–9.07 .0214 5.17 1.97–13.60 .0009 6.66 2.66–16.65 .0001
SSc-PAH (n = 313) 1.73 0.59–5.01 .311 2.05 0.71–5.92 .187 2.0 0.69–5.77 .20
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and SNPs, in addition to the REVEAL 2.0 risk score 
and clinical variables mentioned above. Indeed, this full 
model (highest AUC = 0.70 from the RF classifier; 95% 
CI: 0.62–0.79) outperformed the model that excluded 
resistin levels and SNPs, exhibiting improved sensitiv-
ity (0.60), precision (0.29), and F1 score (0.39, Table S5). 
Then, we used the RF model to analyze the importance 
of features in predicting mortality. The 10 most impor-
tant features are shown in Fig. 2C and D. REVEAL 2.0 
risk score, age, diastolic pulmonary gradient [DPG], sex, 
and mPAP were the top 5 features that contributed to 
the model without resistin. In contrast, serum resistin 
level was among the top 5 important features in the full 
model. Of note, several other hemodynamic parameters 
(cardiac index, PVR, mean pulmonary capillary wedge 
pressure [mPCWP], and transpulmonary pressure 
gradient) also showed varying importance in models 
with and without resistin. Carrier status of RETN SNP 

rs3745367 was also among the top features in the full 
model.

Discussion
Circulating resistin levels have an emerging role as bio-
markers for a variety of diseases, including glucose 
metabolism and obesity [30, 31], diabetes [32], cancer 
[33], inflammatory diseases such as inflammatory bowel 
disease [34], and cardiovascular diseases [9, 10]. Because 
lung is the primary location of most RELM isoforms [7, 
15, 35], research into the association between RELMs and 
the pathogenesis of cardiothoracic and respiratory dis-
eases is now beginning to expand rapidly. In our study, we 
discovered that resistin levels were significantly higher in 
PAH patients as a group and in those with specific PAH 
subtypes, than they were in controls (P < 0.0001). Further-
more, when we used the AUC values of the ROC curve as 
criteria to evaluate how well resistin levels discerned the 

Fig. 2 Evaluation of predictive models and analysis of the importance of each feature in classifying mortality. The ROC curves of the five models 
in the testing set were derived from selected parameters that excluded (A) or included (B) resistin levels and RETN gene SNPs. Mean AUC values 
and 95% CIs of different prediction models are shown. C, D Corresponding bar graphs describe the relative importance of the top 10 features 
in the random forest model. CI, cardiac index; DPG, diastolic pulmonary gradient; mPAP, mean pulmonary artery pressure; mPCWP, mean pulmonary 
capillary wedge pressure; PA PP, pulmonary arterial pulse pressure; PVR, pulmonary vascular resistance. TPG, transpulmonary pressure gradient
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presence of PAH, all three tests had excellent discrimina-
tive ability (AUCs were 0.84, 0.82, and 0.91 for all PAH, 
IPAH, and SSc-PAH, respectively). More strikingly, when 
we further dichotomized IPAH patients into two sub-
groups using the identified threshold, we found that higher 
resistin levels were associated with worsening NYHA FC 
and reduced functional capacity. Additional evidence was 
found in survival analyses, supporting circulating resistin 
as a robust predictor of mortality in patients with PAH. 
The Kaplan–Meier curve analysis showed that elevated 
resistin levels (above the highest quartile) were signifi-
cantly associated with increased risk of death in the over-
all cohort (P < 0.015 by log-rank test) and also in IPAH 
(P < 0.012). Of note, the relationship between resistin levels 
and outcomes persisted in multivariable Cox models in the 
overall cohort (P < 0.009), even after adjusting NTproBNP 
which is a known predictor for mortality in PAH. Thus, 
our study shows that serum resistin can serve as a bio-
marker for PAH prognosis and survival in a large cohort 
composed solely of patients with IPAH and SSc-PAH.

Resistin expression appears to be controlled in part by 
genetic programming, as genotypes of the RETNgene 
correlated with both level and disease state in some 
populations. Several SNPs have been shown to correlate 
with increased circulating resistin levels, and estimates 
suggest that approximately 70% of resistin expression 
can be attributed to genetic effects [36]. Gene variants 
in the promoter region upstream of RETN(− 420 C > G 
and − 638 G > A) appear to have the strongest effect. 
The − 420 C > G SNP (rs1862513, which was not covered 
by the Omni5 Beadchip) associated with increased cir-
culating resistin levels has been associated with type 2 
diabetes in several studies of Asian populations [37–39]. 
Additionally, the –420 C > G polymorphism was signifi-
cantly associated with hypertrophic cardiomyopathy in 
a Pakistani population [40]. In our study, subjects who 
carried the minor allele of either the promoter variant 
rs3219175 or intronic variant rs3745367 had significantly 
higher resistin levels than did non-carriers; those with 
the promoter variant rs3219175 exhibited the strongest 
effects. Thus, our genetic analysis provides insight into 
the variation and complexity of resistin’s role in PAH.

The use of artificial intelligence in diagnosing respiratory 
diseases is rapidly evolving for prediction of sepsis, lung 
cancer prognosis, risk of hospital admission with chronic 
obstructive lung disease, and diagnosis of PAH [41–44]. To 
interpret the complex data for risk stratification in patients 
with PAH, we adapted common machine language tech-
niques by training the algorithm on a cohort of 631 PAH 
patients (training data) to accurately predict PAH mor-
tality. The reproducibility of the predictive performance 
quality was further verified on the test data composed of 
271 PAH patients. The results indicated that RF classifier 

generated the best-performing predictive classifying model 
(obtained the highest predictive performance as indicated 
by an AUC value of 0.70) in the test set. Random forest is 
one of the ensemble models with advantages in handling 
mixed variable types, and it is robust to outlying observa-
tions. Based on the satisfactory predictive performance in 
RF models, we determined the relative importance of each 
attribute. Intriguingly, serum resistin levels ranked as the 
fourth most important feature after REVEAL 2.0 risk score, 
age, and DPG for predicting mortality in PAH patients. We 
utilized several hemodynamic parameters derived from 
the primary data including DPG (defined as diastolic PAP 
– mPCWP [mm Hg]). DPG previously has been reported 
to be associated with survival in group 1 pulmonary hyper-
tension patients and portends poor prognosis in heart 
failure [45]. Another hemodynamic parameter, mPAP, 
also played an important role in the model, and recent evi-
dence suggests that even mildly elevated mPAP is associ-
ated with morbidity and mortality. Therefore, in 2018, the 
hemodynamic definition of pulmonary hypertension was 
revised by lowering the threshold from mPAP ≥ 25 mmHg 
to > 20  mmHg [46]. Thus, our results clearly show that 
REVEAL 2.0 risk score is a robust predictor of mortality in 
PAH and that addition of resistin to survival models may 
improve model fit and predictive capacity.

The large sample size and complex clinical features 
within this cohort enabled important feature selection and 
extensive machine-learning–based multivariable modeling 
and model comparisons. To our knowledge, this study is 
among the very few to attempt machine-learning–based 
risk stratification in patients with PAH [47]. However, the 
study had several limitations. First, because this multicenter 
registry relies on separate reports from different centers for 
data collection, some covariates had missing data, notably 
6MWD and NYHA FC. Despite the fact that 6MWD is a 
known predictor for PAH mortality and was also associated 
with increased mortality in univariate analysis, 6MWD was 
excluded due to significant missingness when we repeated 
the multivariable survival analyses (Table  2), which may 
affect the performance of predictive models. Second, some 
of the parameters included in the REVEAL Registry scor-
ing tool for PAH risk prediction were unavailable in this 
cohort [48, 49]. Nevertheless, their omission is unlikely 
to have affected our results, as the REVEAL Registry risk 
score retains its predictive ability if at least seven of the 12 
available risk parameters are available and included in the 
calculations. Third, most patients were receiving PAH-
specific therapy at the time of biomarker assessment, which 
may have affected circulating biomarker levels. However, 
the association between resistin and mortality remained 
significant after adjusting for the presence and class of 
PAH therapy in multivariable models. Finally, serum collec-
tion was not contemporaneous with assessments of other 
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clinical variables such as hemodynamics. Thus, perform-
ing the analyses in a subset of patients with biomarkers 
obtained within 6 months of other clinical measures of dis-
ease severity may strengthen the significance of biomarker 
associations with survival.

As illustrated in Fig. 3, our study provides evidence to 
support the use of circulating biomarkers as objective and 
accessible tools for noninvasive PAH risk stratification. 
Additional clinical, genetic, and epidemiologic studies are 
warranted to strengthen the association between resistin 
and the prevalence, severity, and outcome of PAH.
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