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Precision cut lung slices: an integrated 
ex vivo model for studying lung physiology, 
pharmacology, disease pathogenesis and drug 
discovery
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Abstract 

Precision Cut Lung Slices (PCLS) have emerged as a sophisticated and physiologically relevant ex vivo model for stud‑
ying the intricacies of lung diseases, including fibrosis, injury, repair, and host defense mechanisms. This innovative 
methodology presents a unique opportunity to bridge the gap between traditional in vitro cell cultures and in vivo 
animal models, offering researchers a more accurate representation of the intricate microenvironment of the lung. 
PCLS require the precise sectioning of lung tissue to maintain its structural and functional integrity. These thin 
slices serve as invaluable tools for various research endeavors, particularly in the realm of airway diseases. By pro‑
viding a controlled microenvironment, precision-cut lung slices empower researchers to dissect and comprehend 
the multifaceted interactions and responses within lung tissue, thereby advancing our understanding of pulmonary 
pathophysiology.

Keywords  Precision cut lung slices, Respiratory therapeutics, Airway physiology in precision cut lung slices

Introduction
The history of precision-cut lung slices can be traced 
back to the general development of techniques for pre-
paring and studying tissue slices in general. The develop-
ment of tissue-slicing techniques began in the late 19th 
and early 20th centuries when investigators used special-
ized instruments to cut thin sections of various tissues for 
microscopic examination, but the use of the microtome 
for preparation of lung slices was first published in 1944 
[1]. The term “precision cut” implies a high degree of 
accuracy and consistency in the preparation of tissue 
slices. In the mid-20th century, advances in microtome/

vibratome technology and other cutting instruments 
allowed for the creation of slices with more precision, as 
depicted in Fig. 1. The application of precision-cut tech-
niques to lung tissue likely followed the general trends in 
tissue slicing.

Initially, lung slices were employed for toxicology studies  
to examine cellular survival in the face of exposure to 
environmental/industrial pollutants [2–5]. Subsequently, 
the importance of maintaining the physiological compo-
sition of the tissue for experiments was recognized, and 
precision-cut lung slices gained popularity and acceptance 
(as reviewed in [6]). Concerning respiratory research, 
PCLS became particularly valuable for studying airway 
reactivity and lung function, fibrosis, vascular responsive-
ness, responses to pharmacological agents/therapeutics, 
and airway immunology. The PCLS platform maintains 
the architecture of the lung tissue, including the airways, 
blood vessels, and parenchyma with the study of resident 
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cell types in the context of the whole lung tissue. Over the 
years, advancements in imaging technologies and tissue 
preparation methods helped to improve the quality, rigor, 
and reproducibility of studies conducted using lung slices. 
Researchers can now study dynamic processes in real-
time, such as airway constriction and dilation with greater 
accuracy, and can expose the slices to various substances 
to assess their effects on lung function and selective cel-
lular responses, all of which provide insight into drug 
development and safety evaluation of potential therapeu-
tic. PCLS provides a more realistic simulation of the lung 
microenvironment to study a variety of lung diseases.

Taken together, PCLS have emerged as a powerful tool 
to study an array of lung diseases, including asthma, 

chronic obstructive pulmonary disease, fibrotic lung dis-
eases (idiopathic pulmonary fibrosis, sarcoidosis), dis-
eases of the pulmonary vasculature (pulmonary arterial 
hypertension and bronchopulmonary dysplasia), acute 
respiratory distress syndrome, lung cancer, and the con-
sequences of respiratory pathogen exposure. The func-
tional complexity, physiological relevance, and versatility 
of the platform make PCLS an invaluable asset for the 
study of the complexities of lung diseases and for advanc-
ing therapeutic development. As researchers refine the 
generation and uses of PCLS, the platform is poised 
to play a pivotal role in deepening our understanding 
of lung diseases and ultimately improving clinical out-
comes for patients with those diseases. This review will 

Fig. 1  Generation of human lung slices.  The lobes of the lungs from either healthy or diseased donors were inflated with a low melting point 
agarose, the agarose was allowed to solidify in the lungs, and the lung tissue was sectioned.  A tissue punch or coring tool was used to generate 
columns of tissue containing airways, which are fed into a Precisionary Instruments Vibratome© to generate ~350 µm thick slices.  Airways in these 
slices were identified, and the slices were weighed by platinum weights with nylon threads to assess changes in contraction and relaxation 
of the airways
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summarize the use of PCLS in examining various lung 
diseases, and how this platform can foster an under-
standing of fundamental aspects of lung biology and dis-
ease-specific pathobiology, as depicted in Fig. 2. Further, 
the platform can serve as a tool for novel therapeutic dis-
coveries in lung diseases.

Studies in infectious disease
Respiratory pathogen exposure has been extensively stud-
ied in primary and immortalized airway cell types; PCLS, 
however, offers an integrated tissue model to study the 
consequences of exposure and infection. Responses of 
the tissue to a variety of respiratory pathogens have been 
examined including responses to influenza, rhinovirus, 
respiratory syncytial virus, SARS-CoV2, fungal lung infec-
tion, and pathogenic bacterial species like Pseudomonas 
aeruginosa and Mycobacterium tuberculosis.

An influenza study used PCLS to show that exposure 
of PCLS downregulated albumin uptake, which impairs 
protein clearance from the alveolar space during 

flu-induced acute respiratory distress syndrome [7], 
and that the combination of influenza A and cigarette 
smoke exposure diminished responses to bronchodi-
lators used in the treatment of asthma and COPD [8]. 
Activation of virus-sensing pathways induced by influ-
enza and its competency for replication in PCLS fol-
lowing cigarette or e-cigarette exposure provided the 
model to report that cigarette exposure of the lung tis-
sue worsened responses to influenza by suppressing the 
ability of the lung to properly respond to infection [9, 
10]. Single cell sequencing of cells derived from PCLS 
showed that vaping extract amplified influenza-induced 
inflammatory responses [11]. Studies also examined 
the effects of specific inhibitors of multiple pathways 
to treat influenza infection and its effects [12–15], as 
well as to provide information on fundamental ways in 
which the lung responds to influenza infection [16–20]. 
Exposure to some species-specific viruses, including 
canine distemper virus [21] and murine pneumonia 
virus [22], have also been examined using PCLS.

Fig. 2   The range of processes that can be measured utilizing the PCLS as a model system. A wide variety of endpoints, from changes in gene 
expression to tissue fibrosis and more, can be studied using this model system. Specific outcomes are noted below each type of outcome 
measured
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The functional consequences of respiratory viruses like 
rhinovirus (RV) and respiratory syncytial virus (RSV), 
both of which evoke the development of wheeze and 
asthma as well as induce asthma exacerbations, have 
leveraged the use of PCLS. Lung inflammation follow-
ing exposure to RSV in PCLS [23] identified novel treat-
ment strategies including mucosal application of an RSV 
vaccine [24] and modulation of an ion channel [25] to 
attenuate the effects of RSV. Much of the research that 
has been conducted examining the effects of RV on the 
airways has focused on examining inflammatory media-
tor release from monocultures of airway epithelial cells. 
Interestingly, RV exposure of PCLS can modulate both 
agonist-induced contraction [26, 27] and relaxation [28] 
of the airways that both appear to be serotype- and dis-
ease state-specific. Inflammatory responses elicited by 
RV have also been studied in PCLS [29], with the addi-
tion of different treatment strategies showing a reduction 
in RV-induced inflammation [30, 31].

With the SARS-CoV2 pandemic catapulting respiratory 
virus exposure to the forefront of research efforts for 
scientists globally, PCLS provided a relevant platform to 
study aspects of infection and response to infection in the 
lung. An early study utilized various strains of infectious 
bronchitis virus, which are avian coronaviruses, to 
examine infection of the lung with these viruses [32]. 
An understanding of the mechanisms driving the 
inflammation associated with SARS-CoV2, as well as 
replication mechanisms and pathologic features of the 
disease have been achieved using PCLS [33–35]. Other 
laboratories identified effective therapeutics that could 
target SARS-CoV2 infection in PCLS [36–40].

While there has been extensive focus on exposure 
of lungs to viral pathogens, there are also pathogenic 
bacteria and fungi that infect the lung causing 
inflammation and disease. Investigators have used 
components of bacteria, including lipopolysaccharide 
(LPS), to stimulate pattern recognition receptors 
on a variety of cell types in PCLS. LPS induced an 
upregulation of innate immune responses consistent with 
endotoxin challenge of patients [41]; LPS had little effect 
on agonist-induced airway constriction or relaxation 
[42]; and toll-like receptor 2 (TLR2) activation reduced 
the ability of bronchodilators to induce relaxation of 
murine airways [43]. The consequences of exposure to 
the pathogenic bacteria Pseudomonas aeruginosa has also 
been examined in PCLS [44–47], with one study showing 
that some commensal bacteria strains present in the 
lung of cystic fibrosis patients may protect the host from 
P. aeruginosa-induced inflammation [46], and another 
noting a more robust immune/inflammatory response 
in younger mice compared to older mice of the same 
strain when exposed to the bacteria [47]. Some bacteria, 

like Trueperella pyogenes, only appear to infect animals 
but not humans, with their pathogenic effects having 
been studied in PCLS [48]. Additional studies in PCLS 
studied Mycobacterium tuberculosis [49], Mycobacterium 
abscessus [50], Yersinia pestis [51], and Staphylococcus 
aureus [52] to understand the pathologic features of 
infection and agents used to treat these infections. 
Additionally, co-infection of PCLS with influenza and a 
Mycobacterium strain showed that the influenza infection 
increased the susceptibility to Mycobacterium infection 
by attenuating responses to the bacteria that would 
otherwise allow the animal to clear the bacteria [53]. 
Exposure of the lung to fungal pathogens can also occur 
in healthy patients but tend to be a significant problem 
for those with underlying lung diseases. Infection of 
murine PCLS with Pneumocystis murina, a common 
pathogen that infects immunosuppressed mice and can 
cause pneumonia, showed colonization of PCLS with 
the pathogen and that PCLS can serve as a useful model 
for testing anti-fungal molecules in a moderate-to-high 
throughput manner [54]. Overall, PCLS can serve as a 
valuable model to study the pathologic and inflammatory 
aspects of exposure to bacterial and fungal pathogens, as 
well as aid in the discovery of novel, effective treatments 
to combat these pathogens.

Studies in lung cancer
Although considerable research has been done to 
study lung cancer and both current and potential 
therapeutics, few studies have used PCLS as a model 
system. Some studies have utilized lung cancer explants 
into murine systems and analyzed the PCLS derived 
from these mice, where others have used cancerous 
tissue derived from the lungs of patients to generate 
PCLS. A few studies have utilized PCLS as a preclinical 
model to test therapeutics in both human and mouse 
tissues [55–58]. Others have examined lymphocyte 
migration into lung tumors to try to understand 
lymphocyte accumulation in the tumors [59], while 
another study examined changes in macrophage 
activation and the contribution to lung cancer growth 
[60]. A proof-of-concept study leveraged molecular 
imaging of PCLS from non-small cell lung cancer 
tissue to examine cell-cell and cell-stroma interactions 
in lung cancer [61]. There have also been studies 
targeting specific signaling pathways driving some 
lung cancers that have provided insight into the utility 
of specifically targeting the lung to treat the cancer 
[62–68]. Collectively, PCLS use in cancer studies is 
still evolving, but the model is amenable to moderate 
to high-throughput drug discovery for cell-targeted 
therapy to the lungs.
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Studies in pulmonary vascular diseases
According to the National Institutes of Health, 
pulmonary hypertension (PH) has an incidence rate 
of about 1% globally. However, in over 50% of the 
cases of PH there is no known cause. PCLS have 
been used to study vasoconstriction and dilation 
[69], and to model the consequences of exposures 
that induce bronchopulmonary dysplasia (BPD) and 
acute respiratory distress syndrome (ARDS). Studies 
of endogenous vasoconstrictors and dilators have 
used PCLS [70–75], along with studies examining the 
consequences of pharmacologic intervention on these 
processes [76–83]. Two studies also noted that cigarette 
smoke enhanced the contraction of vessels in PCLS to 
endothelin-1 [84, 85], an endogenous vasoconstrictor. 
One study examined a role for IL-11 in PH, finding 
that in PH patients IL-11 expression was higher in the 
vasculature from those patients  compared to patients 
without PH, and that IL-11 treatment of PCLS made 
the vessels more sensitive to endothelin-1-induced 
vasoconstriction [86]. Changes elicited by exposure to a 
hypoxic [87–95] or hypercapnic [96] environment, both 
of which can cause increased  vascular resistance, have 
been modeled in PCLS. For BPD, the hyperoxia and 
mechanical ventilation that are necessary for ventilation 
of premature newborn lungs causes damage to the 
lungs that can persist long-term. Few studies exist using 
PCLS to examine mechanisms of pathology of BPD [93, 
97–99] or ARDS [100, 101] and even fewer have studied 
mechanisms of pulmonary hypertension [102, 103]. 
Despite a lack of extensive studies, PCLS may provide 
insight into the pathophysiology and discovery of new 
therapeutic approaches in the treatment of pulmonary 
vascular diseases.

Studies in fibrotic lung diseases
Idiopathic pulmonary fibrosis (IPF) is a fibrotic 
disease of the lung tissue surrounding the alveoli that 
progressively stiffens the lung, making it difficult for 
the person to breathe. Studies in PCLS have supported 
a number of different molecules in the pathogenesis of 
IPF including: a transmembrane protein that can interact 
with growth factor receptors or extracellular ligands 
to modulate receptor activation [104]; activation of 
histone deacetylases [105]; activation of integrins [106]; 
ion channel activation [107]; a kinase and a signaling 
microdomain protein [108]; a protein involved in cell 
fate determination, motility, and organogenesis [109]; 
and even an miRNA mimic as a potential therapy [110]. 
Additionally, other pathways have been postulated to be 
part of specific aspects of the biology of both epithelial 
cells and fibroblasts that may play a role in the pathology 
of IPF [111–121]. Studies have utilized PCLS to identify 

the cell types that drive fibrosis signals and showed 
the ways in which PCLS can model IPF [122–125]. A 
number of pharmacologic inhibitors have been used 
as potential treatments for IPF [126–131], including 
current therapeutics that are being used in the treatment 
of IPF, like nintedanib and pirfenidone [132–134]. The 
contribution of released factors to the development/
progression of IPF has also been studied in PCLS [121, 
135, 136]. PCLS provides an ex  vivo system in which 
lung tissue derived from IPF patients can be examined 
for biomarkers, and to ascertain the efficacy of a variety 
of therapeutic interventions to decrease expression/
deposition of the fibrotic proteins that are overproduced 
in the disease that contribute to the increased stiffness of 
the lungs.

Sarcoidosis is a systemic inflammatory disease that 
affects multiple organs of the body. Broadly, sarcoidosis 
induces granuloma formation in the tissue and in the 
lungs produces a fibrosis-like phenotype that, like IPF, 
induces severe, irreversible damage to the lungs. To 
date, there are no studies examining PCLS derived 
from the lungs of sarcoidosis patients. PCLS may 
provide a platform well suited for study of the fibrosis 
associated with sarcoidosis, allowing for testing of novel 
therapeutics and identification of biomarkers similarly to 
how IPF is being studied in PCLS.

Studies of obstructive lung diseases
PCLS models have been used to study the consequences 
of obstructive lung diseases including asthma and 
chronic obstructive pulmonary disease (COPD). A study 
showed that airway constriction and relaxation in PCLS 
linked internal perimeter of the airways to airway smooth 
muscle shortening [137]. Additionally, PCLS has enabled 
investigators to translate their findings to clinically 
measurable respiratory parameters that are typically 
measured in obstructive lung diseases like asthma 
and COPD. For example, the luminal area of the small 
airways in PCLS correlates with the forced expiratory 
flow between 25% and 75% (FEF25-75), which serves to 
predict small airways obstruction that is characteristic of 
asthma and COPD (as reviewed in [138]).

With respect to allergic asthma, studies in both human 
PCLS and in animal models of allergic airways inflamma-
tion have enhanced our understanding of basic mecha-
nisms underlying bronchoconstriction and how an 
inflammatory milieu affects basal bronchomotor tone. 
Early studies using human PCLS (hPCLS) demonstrated 
that allergen sensitization of hPCLS, and subsequent 
stimulation with allergen, could mimic bronchoconstric-
tion associated with allergic asthma [139, 140]. Since 
then, human- [141–144], rat- [145], and guinea pig-
derived [146, 147] PCLS have been utilized to determine 
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the roles of specific receptor subtypes and signaling mol-
ecules downstream of the immunoglobulin E (IgE) recep-
tor in IgE-induced airway constriction. Murine models 
of allergen exposure, or exposure to proteases found in 
allergen extracts, showed that release of specific inflam-
matory mediators [148] increased airway contractility 
[148–151]. In the context of a Th2 inflammation of the 
airways, compelling evidence suggests that Interleu-
kin-13 (IL-13) and IL-4, Th2 cytokines, enhanced airway 
contractility and diminished responsiveness to com-
monly used bronchodilators in human, rat, and murine 
PCLS [141, 152–156]. In animal models of allergic air-
way inflammation, PCLS studies revealed a spectrum 
of cellular pathways that evoke airway hyperresponsive-
ness including transcription factor activation in airway 
cells [157]; asthma-associated genes modulating airway 
smooth muscle shortening [158]; and increased cholin-
ergic stimulation of nerve-dependent airway constric-
tion following ovalbumin sensitization and challenge 
[159] following early-life allergen exposure [160]. Stim-
ulation of PCLS with other inflammatory cytokines 
that are associated with allergic asthma, non-allergic 
asthma, and asthma exacerbations have been shown to 

alter contractility of the airways and/or attenuate ago-
nist-induced bronchodilation (specific studies listed in 
Table 1) [141, 152, 155, 156, 161–165].

To understand basic mechanisms of airway biology, 
PCLS can be used to examine mechanisms that underly 
contraction or relaxation in non-diseased tissue from 
either human or animal models. The role(s) for numerous  
signaling molecules in mechanisms of receptor-mediated 
contraction and relaxation of small airways have been  
examined by observing narrowing and opening of  
airways (specific studies listed in Table  2) [75, 151,  
166–182], and/or visualization of signaling events occur-
ring simultaneously with airway contraction/relaxation  
(specific studies listed in Table 3) [75, 158, 169, 170, 175, 
183–196]. Airway constriction in PCLS also induced 
remodeling in guinea pig PCLS [197]. Bronchopulmonary  
dysplasia can alter the vasculature architecture of the 
lung, inducing susceptibility for the development of 
asthma. One study noted that exposure of mouse pups 
to hyperoxia, that induces a BPD-like phenotype, evoked 
greater maximal airway contraction in PCLS derived 
from the hyperoxic mice compared to those in normoxic 
conditions [198]. PCLS has also had value in modeling of 

Table 1  Studies of inflammatory mediator-dependent modulation of airway contraction/relaxation
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clinically observed phenomena, including desensitization 
of the β2 adrenergic receptor (β2AR) following agonist 
stimulation [155, 199–202].

Despite significant advances in our knowledge of 
asthma pathogenesis, the search for better bronchodila-
tors is still evolving. Drugs that inhibit pathways under-
lying contraction promote relaxation of pre-constricted 
airways [150, 155, 162, 168, 178, 180, 203–207], and test-
ing of selective molecules that either elicit or enhance 

bronchodilation have been used in PCLS [81, 208–212]. 
Other non-canonical pathways have also been targeted 
to reverse, or inhibit, airway contraction (specific studies 
listed in Table  4) [155, 165, 202, 213–228]. Compounds 
targeting orphan, or non-β2 receptors, can serve as new 
classes of bronchodilators, or have been suggested to be 
useful as add-on therapy for existing therapeutics  [164, 
165, 214–228]. Overall, PCLS provide a highly useful 
and versatile platform for drug discovery to modulate 

Table 2  Studies of airway contraction/relaxation
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Table 3  Studies showing visualization of processes associated with airway contraction/relaxation



Page 9 of 21Koziol‑White et al. Respiratory Research          (2024) 25:231 	

both contraction and relaxation of the airways that can 
serve to increase our understanding of basic mechanisms 
underlying these processes, and uncover novel therapeu-
tics that may have clinical use in treatment of obstructive 
lung diseases.

Despite considerable research into modeling asthma 
phenotypes and/or inflammatory milieu associated 
with asthma, there is a paucity of research into chronic 
obstructive pulmonary disease (COPD) using PCLS. 
To date, only four studies examining aspects of COPD 
pathobiology in hPCLS have been published [229–
233]. Van Dijk et  al. reported that elastase-induced 
parenchymal disruption of murine PCLS that would 
provide an animal model to study COPD [234], and Kim 
et al. defined the mechanical properties of PCLS derived 
from lungs from an emphysema patient [235]. Ideally, 
PCLS derived from patients with COPD would identify 

biomarkers that could be targeted, thereby aiding in 
discovery of drugs that would mitigate the inflammation 
and destruction of the airspace associated with the 
disease.

Environmental toxicant exposure studies
An early adaption of PCLS for research focused on  
PCLS use in lung toxicology [2–5]. Since then, an array 
of other endpoints have been studied to understand 
how exposure to various toxicants can engender inflam-
mation and even promote airway hyperresponsiveness. 
Consequences of exposure to noxious gases, including 
warfare agents like sarin and VX gas, in PCLS showed 
enhanced airway constriction that could be modulated by 
anti-muscarinic drugs [236–239]. Chlorine exposure of 
PCLS increased release of inflammatory mediators from 
the tissue, decreased airway constriction, and decreased 

Table 4  Studies of novel bronchoconstrictors and bronchodilators
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cell viability [240, 241]. Exposure to gases from industrial 
processes or the use of pesticides induced cytotoxicity in  
PCLS, as well as inflammatory mediator production and 
oxidative stress [242, 243]. Interestingly, lipid peroxidation 
occurs in many disease processes and occurs following 
toxicant exposure. Recently, a PCLS study detected lipid 
peroxidation using a biosensor following exposure to 
nitrogen mustard [244]. Such a biosensor can provide a 
tool for understanding of toxicity of a variety of environ-
mental compounds. Additionally, another study found 
that the effects of nitrogen mustard exposure that drive 
pulmonary toxicity appear to be independent of immune 
cell trafficking to the lungs [245].

In addition to noxious gases, exposure to environmental 
cigarette smoke (CS), has been studied in PCLS. CS or 
CSE (cigarette smoke extract) elicited inflammatory 
mediator release, induced histologic inflammatory 
changes and extracellular matrix gene expression, 
decreased cell viability, increased markers of the unfolded 
protein response, and increased airway constriction to 
serotonin but not methacholine [246–249]. Interestingly, 
menthol-containing e-cigarette condensate decreased 
airway contraction in PCLS but increased oxidative stress 
markers [250]. The combination of influenza with CS 
exposure showed that CS exposure reduced flu-induced 
inflammatory mediator release, and the combination 
of the two insults reduced airway relaxation when 
CS exposure alone had little effect [8]. Using a highly 
sensitive sensor for cAMP, investigators showed that 
CS exposure of mouse PCLS attenuated β2AR signaling 
that was reversed by inhibition of phosphodiesterase 3 
(PDE3) and PDE4 [251].

The effects of chemical sensitizers, whether inhaled 
or dermal sensitizers, have been studied in PCLS where 
most sensitizers induced inflammatory mediator release 
from PCLS [252, 253], but only a few increased contrac-
tility of the airways [252, 254, 255]. Additionally, the toxi-
cologic effects of various drugs and chemicals have been 
assessed in PCLS. Exposure of PCLS to an anti-cancer 
drug that is known to cause pulmonary toxicity showed 
increased inflammatory mediatory release as well as cel-
lular toxicity [256]. PCLS exposed to the industrial toxins 
cadmium chloride, ammonium hexachloroplatinate, and 
zinc chloride showed increased inflammatory mediator 
release from PCLS [257–259], and when cadmium chlo-
ride was combined with Transforming Growth Factor β 
(TGFβ) there was increased fibrosis of the tissue com-
pared to TGFβ treatment alone [257].

Common environmental exposures that induce a 
significant number of exacerbations of underlying 
asthma, including ozone and particulate matter, have 
also been studied using PCLS. Following exposure to 

ozone, inflammatory markers were upregulated in PCLS 
[260–262] and acute exposure to high levels of ozone 
also induced airway hyperresponsiveness in the absence 
of influx of immune cells [260]. Interestingly, deletion 
of microsomal prostaglandin E synthase 1 (PGES-1), an 
enzyme necessary for the metabolism of arachidonic 
acid into prostaglandin E2, had little effect on ozone-
induced airway hyperresponsiveness and inflammation 
in a mouse model [262]. Diesel exhaust particle exposure 
of PCLS induced cell death, oxidative stress, and 
inflammatory mediator release [263, 264]. Particulate 
matter, from agricultural dust or the desert, increased 
airway hyperresponsiveness [265], anti-oxidant gene 
expression, and inflammatory mediator gene expression 
[266] in PCLS.

Comparisons of animal versus human models
Animal models provide platforms to study patho-
physiology of human disease. Studies of lung diseases 
have extensively used rodent models, including mice 
and rats, and many studies have used PCLS derived 
from these animals. Only a few studies have compared 
animal-derived to human-derived PCLS. Schleputz et al. 
performed a study of PCLS from mice, rats, guinea pigs, 
marmosets, sheep, and humans found that electric field 
stimulation of neural responses that induced airway con-
striction in marmosets and guinea pigs was similar to 
humans, whereas the airways of mice and rats did not 
respond similarly to human [267]. Zeng et  al. noted 
differences among strains of mice in their responsive-
ness to methacholine, a muscarinic receptor agonist, 
and 5-hydroxytryptamine (5-HT), a serotonin receptor 
agonist, where airway constriction of the small airways 
(not the tracheas) in PCLS of BALB/c mice to both con-
tractile agonists elicited greater contraction compared to 
small airways from C57BL/6 [187]. Comparison between 
human and guinea pig-derived PCLS noted that airways 
from both contracted to leukotriene D4, thrombox-
ane, histamine and methacholine, but only guinea pig 
airways contracted to serotonin [268]. A comparison 
among PCLS from a primate species and humans found 
that airways from cynomolgus macaques and baboons 
responded most similarly to human airways with respect 
to their responsiveness to methacholine, histamine, sero-
tonin, leukotriene D4 (LTD4), and endothelin-1 [269].

In addition to differential responsiveness to broncho-
constrictors, many studies highlight the substantial dif-
ferences between mice and human lungs in terms of 
the physiology, anatomy, and immunology of each spe-
cies. Studies have also highlighted that the preclinical 
results obtained from mouse studies failed to accurately 
model airways diseases in humans (as reviewed in [138]). 
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Despite the limitations of mouse models in the study of 
airways diseases, rodent strains offer the opportunity 
to genetically modify the animal to assess the function 
of cell-specific gene deficiency on the development and 
progression of lung diseases. Two studies have utilized 
siRNA-mediated knockdown of specific transcripts in 
human PCLS [225, 270, 271], but the siRNA used in each 
study was not cell-type specific. Despite the limitations 
of working with animal model systems, these platforms 
can augment our understanding of disease pathogenesis 
when combined with observations using human cells 
and tissues.

Technologic innovations in PCLS use
With any model system, the broad utility and versatility 
of the system is what propels it into use on a greater 
scale, ultimately leading to significant use of the system. 
PCLS is becoming a platform that demonstrates both 
broad utility and versatility. Given this, studies by Martin 
et  al. [81, 163, 172, 203, 267, 272, 273] and Sanderson 
et  al. [158, 169, 170, 183–192, 195, 196] paved the way 
for technologic advances for studying obstructive lung 
diseases in PCLS with respect to imaging of airway 
and vascular constriction, but also visualization of 
cellular processes that underly airway constriction, 
like calcium oscillations in muscle surrounding the 
airways. Others have studied the effects of stretch of the 
tissue that mimics breathing in human lung, examining 
both mechanical and biological outcomes [274–280]. 
Utilization of PCLS to generate large data sets, like 
miRNA and RNAseq data sets, have also been optimized 
by a few laboratories [281, 282]. To understand how 
histone modifications alter inflammation of the lung, the 
histone acetyltransferase inhibitor MG149 was found 
to attenuate LPS and Interferon γ (IFNγ)-stimulated 
proinflammatory gene expression [283]. Others have 
also optimized siRNA-mediated knockdown of multiple 
gene targets to decrease protein expression [225, 270, 
271], with one of the studies also assessing the functional 
effects of the knockdown [225]. Receptor localization 
has also been studied in the epithelium of the airways by 
fluorescent microscopy following adenoviral transduction 
of hPCLS following desensitization of the β2AR [199]. 
Investigators have imaged PCLS to visualize migration of 
live immune cells [284], to define 3D cell-cell interactions 
in situ [285], and to generate immune responses normally 
associated with immune responses observed to antigens 
that the individual has been vaccinated against [286]. 
Studies have also used electric field stimulation of PCLS 
and measured airway contraction [273], or exposure 
to specific wavelengths of light to induce relaxation of 
muscle in the airways [287]. PCLS have been utilized to 
examine mucociliary properties of airway epithelial cells 

[288–292], and the ability of lung tissue to repair itself 
[293]. A variety of pathologic processes, as well as cellular 
changes, have been examined using PCLS using a wide 
array of technologies.

Advantages and challenges of the system
PCLS maintain the native architecture of the lung, includ-
ing a complement of resident cells like airway smooth 
muscle, epithelial cells, fibroblasts, and resident immuno-
cytes. This architecture provides the study of physiologic 
processes including airway constriction and dilation, 
vasoconstriction and dilation, lung fibrosis, and epithe-
lial ciliary function. In diseased tissues, researchers can 
examine the reversal of some of the pathologies associ-
ated with the disease given experimental interventions. 
PCLS affords physiologic relevance to the research, as it 
is an environment that closely mimics the in vivo condi-
tions and retains the 3D structure of the lung, thereby 
providing meaningful insights into disease mechanisms. 
Additionally, this system fosters the study of a multitude 
of outcomes through the interplay among various cell 
types. PCLS serve as invaluable tool for drug screening 
and therapeutic development, allowing for testing of both 
the safety and efficacy of compounds/biologics/etc. to 
expedite the translation of promising candidates for trans-
lation from bench to bedside.

With all the advantages of the system, there are some 
disadvantages to using PCLS to study lung diseases. The 
issues with the system are the following: lack of circula-
tion, tissue viability over time, and standardization of 
derivation/culture/use of the slices between laborato-
ries. While there is a wide array of cell types present in 
the lung tissue, the consequences of the effects of ther-
apeutic intervention outside the lung on the resident 
lung cells, or on cell types recruited to the lung, cannot 
be studied. Only in in vivo systems, like rodent and non-
human primate models, are the systemic responses and 
their effects on the lungs able to be studied in isolated 
PCLS following a given exposure. For human lung tissue, 
this simply is not possible. Due to the nature of genera-
tion of PCLS, there exists the limitation that exposure to 
small molecules/pathogens/etc. is non-physiologic as the 
entire slice, and all cell types contained within the slice, 
is/are likely exposed to a given stimulus. The use of slices 
in air-liquid interface cultures and delivery of some types 
of stimuli into the lumen of the airway directly may miti-
gate some of the off-target or non-physiological effects 
of a given exposure. Viability of the tissue over time is 
also an issue, depending on the outcome(s) being meas-
ured. For some assays including measuring ciliary beat or 
acute progression of induced fibrosis, short-term meas-
urements pose no challenges. However, for other assays 
like assessment of airway contraction and relaxation, 
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the fidelity and reproducibility of PCLS measurements 
decreases over time  that the slices have been in cul-
ture. Baseline viability that is irrespective of therapeu-
tic intervention that may be used to try to reverse the 
effects of processes like fibrosis also presents a challenge 
for long-term study of those types of lung pathologies. 
With respect to the differences in baseline variability, the 
acceptance criteria for lungs from “healthy” donors that 
have no history chronic illness can vary between labo-
ratories with respect to things like O2 saturation of the 
donor near time of death, number of days on a ventilator, 
etc. Some laboratories use non-diseased resections from 
donors that have lung cancer, which calls into question 
whether they can be directly compared with tissue/PCLS 
from people with no cancer diagnosis. Standardization 
of a basic set of parameters for acceptance of tissue from 
“healthy” donors may help in decreasing experimental 
variability between laboratories.

With respect to the issue of viability of PCLS, groups 
have examined various outcomes following cryopreser-
vation of PCLS to provide a larger supply of PCLS that 
can be utilized for more than just short-term culture 
[259, 294–298]. Bailey et  al. showed that embedding 
PCLS in hydrogel biomaterials can extend the viability of 
the slices in culture [299]. With respect to cryopreserva-
tion, the methods vary from lab to lab, and vary among 
species  that the PCLS were derived from. Watson et  al. 
reported that PCLS were susceptible to zinc chloride-
induced damage after cryopreservation [259], suggest-
ing significant variation between freshly prepared and 
cryopreserved PCLS. Undoubtedly, standardization of 
the cryopreservation method and fidelity of the data pro-
duced in thawed tissue slices become much more difficult 
to achieve and assess when there is a lack of reproduc-
ibility or standard operating procedures. While some 
outcomes, like inflammatory mediator release, may 
exhibit less variability before and after cryopreservation, 
other outcomes like contraction and relaxation of the air-
ways are subject to high variability from donor to donor 
even before PCLS are cryopreserved, most notably in 
human PCLS. Despite some successes, significant work 
is needed assure that outcomes of  cryopreserved PCLS 
mimic those of fresh PCLS.

Other issues concern standardization of experimental 
conditions among laboratories. Multiple methods-
focused papers have been published detailing the 
processing of mainly murine [66, 300–303] and human 
lung tissue [258, 304], highlighting both the complexities 
of generating PCLS and noting that becoming adept at 
the process of generating the slices can ensure greater 
reproducibility of results. These and other publications 
also show the differences in how murine PCLS are 
generated versus human PCLS, and demonstrate that 

the method(s) of generation even the same type of lung 
source (i.e. human lung tissue) can vary greatly between 
laboratories. Be it lung inflation protocols, tissue slicing 
protocols, culture media, or culture protocols, there is 
wide variation between labs that makes comparisons 
between studies challenging (partially noted in [6, 
305]). With respect to culture media, Patel et  al. 
described differences in long-term PCLS culture in a few 
different media formulations, noting that given certain 
inflammatory stimulation (LPS or poly(I: C)) that the 
robustness of cytokine release varied between the air-
liquid interface (ALI)-cultured PCLS and submerged 
cultures as to which culture environment elicited a 
greater response [305]. The antimicrobial agents used 
in culture of PCLS vary slightly between studies, but 
most investigators use penicillin/streptomycin in the 
presence or absence of an anti-fungal agent to protect 
their cultures. The components added to a base media, 
including things like fetal bovine serum, vary between 
groups and can vary dependent upon the outcome that 
will be measured or the cell type that the investigators are 
interested in studying. For example, some groups do not 
use any serum in their media formulation because there 
isn’t a need for growth of the structural cells in culture, 
but rather maintenance of the architecture of the tissue. 
For study of epithelial cells lining the airways, some 
groups have used epithelial cell-specific media that is 
used for monoculture of air-liquid differentiated airway 
epithelial cells. Others have used media used for the 
culture of immunocytes, which may not be optimal for 
the culture of structural cell types.

A discussion of experimental replicates when using 
PCLS also requires careful attention; some report 
experimental  replicates as those data derived from 
multiple slices from a single lung donor. This approach 
fails to account for biological variation across multiple 
donors. Arguably, technical replicates can refer to serial 
slices cut from the same core/piece of lung tissue, or 
may refer to multiple slices derived from a single donor. 
A designation of biological replicates, however, should 
only be applied to data derived from separate, distinct 
donors  and should not be published as experimental 
replicates if they are all derived from a single donor. 
Other investigators refer to a variant of PCLS in which 
bronchioles are embedded in agarose and thinly sliced 
[306–308]. This system is more akin to organ bath 
systems where bronchiole rings are cut and tethered to a 
myograph to measure force generation of airway smooth 
muscle. PCLS can measure an integrated response that 
incorporates parenchymal tethering of the airway and 
is more akin to an in  situ environment in which airway 
luminal area is measured. Accordingly, the bronchiole 
slice model may not equate to PCLS and may serve to 



Page 13 of 21Koziol‑White et al. Respiratory Research          (2024) 25:231 	

measure outcomes disparate from those measured with 
PCLS. In summary, standardization of protocols for the 
generation and use of PCLS will improve scientific rigor 
and reproducibility.

Conclusions and future directions
PCLS provide a multifaceted platform in which studies 
of several different lung diseases can be studied. The 
mechanistic insights gained for a range of lung diseases 
provide novel targets for development of therapeutics 
that can be used in conjunction with current treatments, 
or may even serve as replacements to traditional 
therapeutic strategies. The PCLS platform offers a 
broadly applicable model for treatment of an array of lung 
diseases, with the platform providing a solid connection 
between translational science and clinical utility.
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