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Introduction
Lung cancer is the most common cause of cancer-related 
death worldwide and accounts for approximately 18.0% 
of all such deaths [1]. Lung cancer can be divided into 
small cell lung cancer (SCLC) and non-small cell lung 
cancer (NSCLC) based on histological subtype, and 
SCLC accounts for approximately 15% of all lung cancer 
cases [2]. SCLC is a high-grade neuroendocrine carci-
noma with an exceptionally poor prognosis and an over-
all 5-year survival rate of only 7% [3]. Previous studies 
have shown that concurrent chemoradiotherapy (CCRT) 
has been the standard treatment for SCLC since the early 
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Abstract
Background This study aimed to explore the incidence of occult lymph node metastasis (OLM) in clinical T1 − 2N0M0 
(cT1 − 2N0M0) small cell lung cancer (SCLC) patients and develop machine learning prediction models using 
preoperative intratumoral and peritumoral contrast-enhanced CT-based radiomic data.

Methods By conducting a retrospective analysis involving 242 eligible patients from 4 centeres, we determined 
the incidence of OLM in cT1 − 2N0M0 SCLC patients. For each lesion, two ROIs were defined using the gross tumour 
volume (GTV) and peritumoral volume 15 mm around the tumour (PTV). By extracting a comprehensive set of 
1595 enhanced CT-based radiomic features individually from the GTV and PTV, five models were constucted and 
we rigorously evaluated the model performance using various metrics, including the area under the curve (AUC), 
accuracy, sensitivity, specificity, calibration curve, and decision curve analysis (DCA). For enhanced clinical applicability, 
we formulated a nomogram that integrates clinical parameters and the rad_score (GTV and PTV).
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1990s [4, 5]. With the widespread use of CT, the number 
of early peripheral SCLC tumours has increased [6–8]. 
Recent attention has shifted towards surgical interven-
tion, revealing promising 5-year survival rates of up to 
50% for pathological T1 − 2N0M0 SCLC patients [9–11]. 
Hence, the National Comprehensive Cancer Network 
guidelines recommend surgery as the primary treatment 
modality for pathological T1 − 2N0M0 SCLC [12, 13].

However, in clinical practice, while imaging is effec-
tive in determining the T1 − 2 stage, defining N0 is chal-
lenging because surgical lymph node dissection often 
yields positive results when imaging does not indicate 
lymph node metastases [14–16]. Occult lymph node 
metastasis (OLM) refers to the situation in which lymph 
node metastasis is not detected by presurgical imaging 
(mainly CT) but is confirmed by postoperative pathology 
[17–19]. Preoperative imaging examinations rely mainly 
on CT to diagnose lymph node metastasis, but many 
OLMs are missed, resulting in ineffective surgery. For 
cT1 − 2N0M0 SCLC patients, the presence or absence of 
OLM determines whether the patient is able to undergo 
surgery. Thoracoscopic biopsy is the “gold standard” for 
detecting the status of chest lymph nodes, but this is an 
invasive examination method that may lead to a series of 
complications, such as bleeding, infection, and pneumo-
thorax. Therefore, identifying new and valuable noninva-
sive imaging methods for predicting OLM in cT1 − 2N0M0 
SCLC patients is necessary.

In recent years, radiomics has emerged as a prominent 
area of research, allowing for the high-throughput extrac-
tion of extensive data from medical images [20]. This 
approach enables the analysis of high-level and quantita-
tive image features, providing a profound reflection of the 
spatial heterogeneity within tumour tissues [20]. Previous 
studies have successfully developed models for predict-
ing OLM in NSCLC patients based on radiomic features 
of primary lesions (including lesions with ground-glass 
density and solid density), demonstrating robust pre-
dictive performance [21–24]. Additionally, peritumoral 

radiomics has been proven equally predictive [25, 26]. 
Furthermore, the literature has focused predominantly 
on OLM in NSCLC [26–29], with limited studies explor-
ing the incidence rate of OLM in SCLC.

Consequently, this study focused on cT1 − 2N0M0 SCLC 
patients to investigate the incidence rate of OLM in this 
clinical population and developed predictive models for 
OLM that integrate clinical parameters and intratumoral 
and peritumoral contrast-enhanced CT radiomics.

Materials and methods
Patient selection
The institutional review boards approved this retrospec-
tive study, and the requirement for written informed 
consent was waived. The histopathology of the tumours 
was defined according to the 2015 World Health Orga-
nization definition [30], and clinical and pathological 
staging was based on the 8th edition of the TNM clas-
sification [31]. This study retrospectively reviewed 242 
patients with SCLC confirmed by postoperative pathol-
ogy from four centeres between January 2014 and Sep-
tember 2022. The inclusion criteria were as follows: (1) 
underwent resection of the primary lesion and system-
atic lymph node dissection; (2) underwent preoperative 
enhanced CT; and (3) had a clinical stage before surgery 
of T1 − 2N0M0. Additionally, all patients had solitary pul-
monary nodules in clinical stage T1 ~ 2 based on enhanced 
CT imaging and no enlarged lymph nodes (i.e., short 
diameter of LN ≤ 10.0  mm on CT imaging). The exclu-
sion criteria were as follows: (1) patients who received 
radiotherapy, chemotherapy, or other treatments for 
SCLC before surgery; (2) had an interval between CT 
examination and surgery of more than 2 weeks; (3) had 
thin-layer images (with a slice thickness less than or 
equal to 1.25  mm) missing; and (4) had severe CT arti-
facts and poor image quality. For patients with multiple 
lesions, only SCLC lesions with conclusive pathological 
results were included. The patient’s lymph node metasta-
sis was obtained from the postoperative pathology report 

Results The initial investigation revealed a 33.9% OLM positivity rate in cT1 − 2N0M0 SCLC patients. Our combined 
model, which incorporates three radiomic features from the GTV and PTV, along with two clinical parameters 
(smoking status and shape), exhibited robust predictive capabilities. With a peak AUC value of 0.772 in the external 
validation cohort, the model outperformed the alternative models. The nomogram significantly enhanced diagnostic 
precision for radiologists and added substantial value to the clinical decision-making process for cT1 − 2N0M0 SCLC 
patients.

Conclusions The incidence of OLM in SCLC patients surpassed that in non-small cell lung cancer patients. The 
combined model demonstrated a notable generalization effect, effectively distinguishing between positive and 
negative OLMs in a noninvasive manner, thereby guiding individualized clinical decisions for patients with cT1 − 2N0M0 
SCLC.
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and reconfirmed by a senior pathology professor in the 
Department of Pathology.

All patients from center 1 were allocated to the training 
cohort, and patients from center 2, 3 and 4 composed the 
external validation cohort (Fig. 1).

CT scanning and semantic CT features
All enrolled patients in the four hospitals underwent a 
similar scan setup but with different systems and param-
eters (Appendix E1). The definitions and evaluation cri-
teria for clinical parameters are described in Appendix 
E2. Two radiologists, each with 2 years of experience in 
lung imaging and blinded to the clinical and pathologic 
results, evaluated semantic CT features in the lung win-
dow setting (level, -550 HU; width, 1500 HU) and the 
mediastinal window setting (level, 40 HU; width, 400 
HU). Any disagreements regarding the description of 
semantic CT features were resolved through consensus 
reading, and the results were subsequently confirmed by 
a chief radiologist specializing in chest imaging.

CT image acquisition and lesion segmentation
Enhanced DICOM CT images were anonymized, and 
regions of interest (ROIs) were delineated by ITK-
SANP software (version 3.8.0; https://www.itksnap.org). 
According to previous studies [25, 32], the gross tumour 
volume (GTV) was dilated 15  mm in three dimensions 
and uniformly served as the GTV + PTV (peritumoral 

volume). The boundaries of the lung nodules were 
checked by a radiologist and manually adjusted if neces-
sary. Notably, the parts that cross the interlobar pleura, 
chest wall and mediastinum should be removed [33]. 
We obtained the PTV by subtracting the two values. To 
ensure that the PTV did not contain any GTV compo-
nents, we specifically added 1  mm to the region of the 
GTV (PTV = GPTV-(GTV + 1 mm)).

To assess the robustness of the intratumoral and peri-
tumoral segmentation methods, 30 patients were ran-
domly selected, and two junior radiologists performed 
segmentation on their ROIs twice, with a 2-month inter-
val between sessions, to obtain intraclass correlation 
coefficients (ICCs).

Radiomic features
The images were resampled using linear interpolation to 
achieve a uniform voxel size of 1 × 1 × 1 mm3 in all three 
anatomical directions [34], and the image grayscale was 
discretized to 25 grayscales. We utilized PyRadiomics to 
extract features from segmented GPVs and PTVs [35]. 
For each region, 14 shape features (3D), 18 first-order 
features, 24 grey level cooccurrence matrix (GLCM) fea-
tures, 16 grey level run length matrix (GLRLM) features, 
16 grey level size zone matrix (GLSZM) features, 14 grey 
level dependence matrix (GLDM) features, and 5 neigh-
bouring grey-tone difference matrix (NGTDM) features 
were obtained. For each GTV region and PTV, 1595 

Fig. 1 Flow diagrams showing the pathways associated with patient inclusion and exclusion. SCLC = small-cell lung cancer. DICOM = Digital Imaging and 
Communications in Medicine
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radiomic features were extracted from the images. A 
detailed list of the extracted features and the parameters 
used in CT image preprocessing and feature extraction is 
provided in Appendix E3. All radiomic features extracted 
were continuous variables. To ensure comparability, we 
applied Z-score normalization to these features in the 
same manners as some previous studies [36, 37].

Feature selection and modelling
Before radiomic feature selection, only reproducible 
radiomic features with an ICC ≥ 0.8 were included in the 
analysis [38]. More details are in Appendix E4. Univariate 
analysis was subsequently performed, and features with a 
significance level of P < 0.01 were retained in the model. 
Additionally, features with a correlation coefficient 
exceeding 0.9 were removed. The least absolute shrink-
age and selection operator (LASSO) method, which com-
presses independent variables with little or no influence 
on 0, was used to select the most robust and nonredun-
dant radiomic features from the extracted features [39].

Clinical parameters were evaluated in combination 
with selected radiomic features in the multivariable logis-
tic regression model for predicting the presence of OLM 
(Appendix E5). The radiomics model’s output scores 
(Rad_score) were merged with the clinical features to 
construct the nomogram. This comprehensive model 
effectively integrated both radiomic and clinical param-
eters, enhancing the overall predictive power and poten-
tial clinical utility of the model.

Radiomics quality score (RQS) evaluation
In line with the imperative for standardization in 
radiomics research, we conducted an evaluation of our 
study utilizing the Radiomics Quality Score (RQS), a 
methodology consistent with previous studies [40, 41].

Statistical analysis
Continuous variables were compared using two-sam-
ple t test, whereas categorical variables were assessed 
through chi-square or Fisher’s exact tests. The GTV, PTV, 
GTV + PTV, clinical, and combined models were estab-
lished and verified by using R (version 4.1.0, https://www.
rproject.org). To assess the model’s performance, the area 
under the ROC curve (AUC) was utilized, with the opti-
mal cut-off value determined using the derived Youden 
index. Additionally, the model’s accuracy, sensitivity, 
specificity, negative predictive value, and positive predic-
tive value were computed. Decision curve analysis (DCA) 
was performed according to the methods of a previous 
study [42]. The Delong test was used to compare different 
AUC values [43]. A two-tailed p value of less than 0.05 
was considered to indicate statistical significance.

Results
Patient characteristics
A total of 242 patients (186 men, 56 women) with 242 
lesions (OLM-negative, 160; OLM-positive, 82) were 
included after the application of the exclusion criteria 
(Fig.  1). The rate of OLM positivity in all patients was 
33.9% (82/242). The characteristics of all the patients are 
detailed in Table 1.

Clinical parameters that were significant at p ≤ 0.05 in 
univariate analysis were subsequently entered into mul-
tivariate analysis. Furthermore, smoking status and shape 
(P < 0.05) were also included in the multivariate analysis.

Feature selection and model construction
Figure  2 shows the workflow of the radiomic feature 
analysis. The radiomic features were selected by using 
the ICC, univariate analysis, multivariate analysis, cor-
relation analysis, LASSO regression, and multivariable 
logistic regression. Finally, two radiomic features were 
selected and utilized to construct the GTV model, and 
three radiomic features were used to construct the PTV 
model. After the five selected features were integrated, 
correlation analysis and multivariate stepwise regression 
were performed, resulting in the final selection of three 
features—i.e., the MCC from the GTV, median and IDN 
from the PTV—for use in constructing the GTV + PTV 
model. The combined model was established by incor-
porating one GTV radiomic feature (MCC), two PTV 
radiomic features (median and IDN), and two clini-
cal parameters. The parameters of the five models are 
detailed in Appendix E6.

Performance and comparison of the three models for all 
patients
All five models have some predictive power. The AUC 
values of the combined model were 0.774 and 0.772 in 
the training and external testing cohorts, respectively, 
performing better than any other models in our study.

All the results regarding predictive performance are 
enumerated in Table  2, and the ROC curves are shown 
in Fig. 3. The correlation analysis of clinical and radiomic 
features is indicated in Appendix E5. With respect 
to the training cohort, the DeLong test revealed sig-
nificant differences in the area under the curve (AUC) 
(p < 0.05) between the GTV model and the combined 
model, between the PTV model and combined model, 
between the GTV + PTV model and combined model, 
and between the clinical model and combined model. 
With respect to the external testing cohort, the Delong 
test revealed that there were significant differences in 
the area under the curve (AUC) between the GTV + PTV 
model and the combined model (p < 0.05) (Appendix E7). 
The DCAs (Fig. 4) revealed that when the probability of 
the threshold was between approximately 10 ~ 80%, the 

https://www.rproject.org
https://www.rproject.org
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Training cohort External validation cohort
OLM (-) OLM (+) p value OLM (-) OLM (+) p value
N = 98 N = 60 N = 62 N = 22

Gender 0.052 0.546
 Female 18 (18.367%) 20 (33.333%) 12 (19.355%) 6 (27.273%)
 Male 80 (81.633%) 40 (66.667%) 50 (80.645%) 16 (72.727%)
Age 63.000 [57.000;68.000] 61.500 [55.000;66.500] 0.204 62.500 [56.000;67.750] 63.000 [57.000;67.000] 0.579
Smoke 0.002* 0.012
 No 24 (24.490%) 30 (50.000%) 14 (22.581%) 12 (54.545%)
 Yes 74 (75.510%) 30 (50.000%) 48 (77.419%) 10 (45.455%)
Family history 0.655 0.371
 No 81 (82.653%) 52 (86.667%) 58 (93.548%) 19 (86.364%)
 Yes 17 (17.347%) 8 (13.333%) 4 (6.452%) 3 (13.636%)
Lobe 0.753 0.472
 RUL 27 (27.551%) 12 (20.000%) 17 (27.419%) 4 (18.182%)
 RML 6 (6.122%) 3 (5.000%) 1 (1.613%) 1 (4.545%)
 RLL 19 (19.388%) 16 (26.667%) 13 (20.968%) 4 (18.182%)
 LUL 27 (27.551%) 16 (26.667%) 15 (24.194%) 9 (40.909%)
 LLL 19 (19.388%) 13 (21.667%) 16 (25.806%) 4 (18.182%)
Location 0.023* 0.071
 Center 20 (20.408%) 23 (38.333%) 6 (9.677%) 6 (27.273%)
 Peripheral 78 (79.592%) 37 (61.667%) 56 (90.323%) 16 (72.727%)
Clinical stage T 0.051 0.085
 1 61 (62.245%) 27 (45.000%) 33 (53.226%) 17 (77.273%)
 2 37 (37.755%) 33 (55.000%) 29 (46.774%) 5 (22.727%)
Shape 0.033* 0.677
 Irregular 67 (68.367%) 30 (50.000%) 47 (75.806%) 15 (68.182%)
 Round or oval 31 (31.633%) 30 (50.000%) 15 (24.194%) 7 (31.818%)
Branching 0.423 0.280
 No 83 (84.694%) 47 (78.333%) 60 (96.774%) 20 (90.909%)
 Yes 15 (15.306%) 13 (21.667%) 2 (3.226%) 2 (9.091%)
Lobulation 0.581 0.506
 No 9 (9.184%) 8 (13.333%) 9 (14.516%) 5 (22.727%)
 Yes 89 (90.816%) 52 (86.667%) 53 (85.484%) 17 (77.273%)
Spiculation sign 0.501 1.000
 No 69 (70.408%) 46 (76.667%) 45 (72.581%) 16 (72.727%)
 Yes 29 (29.592%) 14 (23.333%) 17 (27.419%) 6 (27.273%)
Calcification 0.635 1.000
 No 96 (97.959%) 58 (96.667%) 60 (96.774%) 22 (100.000%)
 Yes 2 (2.041%) 2 (3.333%) 2 (3.226%) 0 (0.000%)
Concavity 1.000 .
 No 97 (98.980%) 59 (98.333%) 62 (100.000%) 22 (100.000%)
 Yes 1 (1.020%) 1 (1.667%) 0 (0.000%) 0 (0.000%)
Carcinoma 0.527 1.000
 No 41 (41.837%) 29 (48.333%) 27 (43.548%) 10 (45.455%)
 Yes 57 (58.163%) 31 (51.667%) 35 (56.452%) 12 (54.545%)
Bronchial 0.053 0.345
 No 64 (65.306%) 29 (48.333%) 40 (64.516%) 11 (50.000%)
 Yes 34 (34.694%) 31 (51.667%) 22 (35.484%) 11 (50.000%)
Air-bronchogram 0.302 .
 No 94 (95.918%) 55 (91.667%) 62 (100.000%) 22 (100.000%)
 Yes 4 (4.082%) 5 (8.333%) 0 (0.000%) 0 (0.000%)
Obstructive 0.022* 0.770
 No 74 (75.510%) 34 (56.667%) 48 (77.419%) 18 (81.818%)

Table 1 The parameters in the development of the clinical model
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Fig. 2 Workflow of radiomic analysis

 

Training cohort External validation cohort
OLM (-) OLM (+) p value OLM (-) OLM (+) p value
N = 98 N = 60 N = 62 N = 22

 Yes 24 (24.490%) 26 (43.333%) 14 (22.581%) 4 (18.182%)
Enhancement 
Heterogeneity

0.015* 0.112

 homogeneous 27 (27.551%) 6 (10.000%) 9 (14.516%) 7 (31.818%)
 not homogeneous 71 (72.449%) 54 (90.000%) 53 (85.484%) 15 (68.182%)
BVB 0.951 0.761
 No 57 (58.163%) 36 (60.000%) 41 (66.129%) 16 (72.727%)
 Yes 41 (41.837%) 24 (40.000%) 21 (33.871%) 6 (27.273%)
Pleural Retraction 0.800 0.720
 No 86 (87.755%) 51 (85.000%) 53 (85.484%) 20 (90.909%)
 Yes 12 (12.245%) 9 (15.000%) 9 (14.516%) 2 (9.091%)
Pleural Attachment 0.069 1.000
 No 75 (76.531%) 37 (61.667%) 46 (74.194%) 17 (77.273%)
 Yes 23 (23.469%) 23 (38.333%) 16 (25.806%) 5 (22.727%)
Peripheral Emphysema 0.124 0.469
 No 57 (58.163%) 43 (71.667%) 32 (51.613%) 14 (63.636%)
 Yes 41 (41.837%) 17 (28.333%) 30 (48.387%) 8 (36.364%)
Interstitial Pneumonia 0.749 0.053
 No 92 (93.878%) 55 (91.667%) 61 (98.387%) 19 (86.364%)
 Yes 6 (6.122%) 5 (8.333%) 1 (1.613%) 3 (13.636%)
*Significant difference (p < 0.05). RUL, right upper lung; RML, right middle lung; RLL, right lower lung; LUL, left upper lung; LLL, left lower lung; BVB, bronchovascular 
bundle thickening

Table 1 (continued) 



Page 7 of 12Jiang et al. Respiratory Research          (2024) 25:226 

net benefits of the combined model and the GTV + PTV 
model for the prediction of OLM were greater than those 
of any other type of model. The calibration plot revealed 
good predictive accuracy between the actual probability 
and the predicted probability of the GTV + PTV model 
and the combined model (Fig. 4).

RQS evaluation
The total RQS score was 36, and our study obtained a 
score of 24 (24/36, 66.7%) (Appendix E8).

Discussion
In this multicenter study, for the first time, we revealed 
a 33.9% positivity rate for OLM among patients with 
cT1 − 2N0M0 SCLC. This observation suggested that OLM 
in cT1 − 2N0M0 SCLC surpasses the prevalence observed 
in NSCLC, where it ranges from 16 to 29% [26–29, 44–
50]. A recent multicenter study of solid-predominantly 
invasive lung adenocarcinoma had an OLM metastasis 
rate of 36.1% [24]. In addition, we addressed a crucial 
challenge in managing cT1 ~ 2N0M0 SCLC by developing 
and validating predictive models for OLM. Our com-
bined model consistently outperformed the other models 
in our study, as evidenced by the higher area under the 
curve (AUC) values in both the training cohort (0.774) 
and the validation cohort (0.772). According to the 
model, patients identified as having a higher risk of OLM 
in cT1 − 2N0M0 SCLC could avoid unnecessary surgeries. 
Conversely, individuals assessed as having a lower risk 
might be more confidently considered for surgical resec-
tion, with the potential for significant improvements in 
survival. This study offers a promising approach for accu-
rately identifying OLM in cT1 − 2N0M0 SCLC patients, 
guiding personalized treatment decisions.

In terms of clinical parameters and conventional CT 
features, smoking status and tumour shape exhibited 
noteworthy differences in predicting OLM status, while 
the remaining features showed no significant distinc-
tions. Our study revealed a tendency for patients with 

OLM to be smokers, a well-established association with 
the occurrence and progression of SCLC [12, 51, 52]. In 
contrast, nonsmokers were more inclined to have OLM 
in the context of NSCLC [44]. Additionally, we reported 
for the first time that round and oval tumour shapes 
hold notable significance, suggesting that lesions with 
regular shapes may be at a greater risk of OLM positiv-
ity. Previous studies on risk factors for NSCLC have been 
abundant, but uniform results have been lacking, impli-
cating factors such as female sex, adenocarcinoma, den-
sity, location and a small tumour size [24, 44, 48, 53, 54]. 
Thus, there are significant differences in the risk factors 
for OLM between these two distinct pathological types 
of lung cancer, enhancing our understanding of OLM in 
lung cancer patients. However, further studies with larger 
patient cohorts are necessary to validate our findings.

Following our in-depth analysis, features with ICC val-
ues equal to or greater than 0.8 were specifically chosen 
during feature preprocessing, emphasizing their reliabil-
ity and repeatability. After a rigorous feature selection 
process, three radiomic features were ultimately selected: 
one was the MCC according to intratumoral imaging, 
and the other two were the median and IDN according 
to peritumoral imaging. The MCC and IDN are obtained 
from the grey level co-occurrence matrix (GLCM), 
which is a texture analysis method that describes spa-
tial relationships between neighbouring pixels to reflect 
the internal texture of tumours, such as the complexity 
and heterogeneity of the tumour regions and peritumor 
regions [55]. The first-order median is expressed as the 
median grey-level intensity of all pixels in the ROI, which 
can reflect the textural characteristics of regions around 
the lesions. Based on our results, even if the imag-
ing findings may be similar in both groups, the MCC, 
median, and IDN in OLM may serve as noninvasive pre-
dictive biomarkers and provide additional information 
from both intra- and peritumor radiomic data. Then, the 
selection of an appropriate method for creating com-
bined predictions after variable selection in our study 

Table 2 Performance of the five models
AUC (95% CI) ACC SEN SPE PPV NPV

Training cohort (n = 158)
GTV 0.657(0.571–0.744) 0.633 0.685 0.606 0.474 0.788
PTV 0.687(0.599–0.776) 0.646 0.667 0.635 0.486 0.786
GTV + PTV 0.697(0.610–0.785) 0.665 0.722 0.635 0.506 0.815
Clinical 0.689(0.605–0.773) 0.627 0.741 0.567 0.471 0.808
Combined 0.774(0.696–0.853) 0.759 0.63 0.827 0.654 0.811
External test cohort (n = 84)
GTV 0.663(0.535–0.792) 0.607 0.607 0.607 0.436 0.756
PTV 0.673(0.541–0.804) 0.607 0.536 0.643 0.429 0.735
GTV + PTV 0.703(0.575–0.831) 0.667 0.607 0.696 0.5 0.78
Clinical 0.675(0.557–0.792) 0.595 0.786 0.5 0.44 0.824
Combined 0.772(0.656–0.887) 0.762 0.679 0.804 0.633 0.833
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was a deliberate choice aimed at maximizing the predic-
tive power and clinical interpretability of our model. It is 
widely used by scholars to create combined predictions 
using multivariate logistic regression in clinical studies, 
especially in oncology [25, 56–58]. Its broad applicabil-
ity is one of its considerable advantages. And nomograms 
are universally recognized for their ability to offer indi-
vidualized risk assessments presented in a user-friendly 

graphical format visually [59, 60]. Numerous previous 
studies have focused on the application of nomograms 
in depicting OLM [21, 23, 56]. The nomogram’s simplic-
ity and interpretability make it a valuable tool in a clini-
cal setting. Combining intra- and peritumoral radiomics 
with clinical variables in a nomogram allows for the inte-
gration of both radiomic and clinical information, lever-
aging the strengths of each domain.

Fig. 3 Demonstration of the radiomic nomogram and ROC curves. (a) A radiomic nomogram incorporating clinical parameters, GTV, and PTV features 
was constructed. (b, c) ROC curves showing the performance of the GTV model, PTV model, GTV + PTV model, clinical model, and combined model for 
the prediction of OLM in the training (b) and external validation (c) cohorts
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Surgical intervention has emerged as a highly impactful 
therapeutic modality for cT1 − 2N0M0 SCLC, emphasiz-
ing the crucial role of promoting this approach in clini-
cal practice [61]. A critical consideration is determining 
whether patients lacking observable lymph node enlarge-
ment on routine imaging harbour OLMs. In clinical prac-
tice, CT serves as the primary method for preoperative 
lymph node staging in patients with lung cancer, com-
monly using a short-axis diameter greater than 1 cm as 
a threshold [44]. However, OLM cannot be assessed. 
PET-CT supplements this assessment but has inherent 

limitations, including false positives and negatives [62], 
and its high cost makes widespread clinical application 
challenging [44]. This study presented a comprehensive 
noninvasive model that demonstrated good performance 
across all dimensions, boasting a specificity of 82.7% and 
a sensitivity of 63% on the training dataset. The model 
exhibited robustness during external validation with a 
specificity of 80.4% and a sensitivity of 67.9%. A compari-
son of the five models using DCA curves revealed that 
our integrated model outperformed the others within the 
10-80% probability threshold range. Within this clinically 

Fig. 4 Decision curve analysis of the training cohort (a) and external validation cohort (b). The calibrations of the GTV + PTV model (c) and combined 
model (d)
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relevant range, both the specificity and sensitivity were 
considered acceptable. The effectiveness of all the mod-
els underscores the inadequacy of traditional methods 
for evaluating our study’s specific objectives, establish-
ing a significant advantage in efficacy for our research 
in the field. These findings hold substantial clinical rel-
evance for cT1 − 2N0M0 SCLC patients identified with 
preoperative negative OLMs, emphasizing the potential 
impact of timely surgical intervention. The comparison of 
AUC values between radiomic models utilized the pair-
wise DeLong test, with corresponding p values provided 
in Supplement E7. In the training cohort, four p val-
ues derived from the DeLong test were less than 0.05, 
suggesting that the combination of the GTV and PTV 
radiomic features with clinical parameters may surpass 
the performance of a single radiomic feature. Notably, 
clinical parameters play a pivotal role in predicting OLM 
in patients with cT1 − 2N0M0 SCLC. In the validation 
cohort, only the comparison between the GTV model 
and the combined model yielded a p value less than 0.05, 
implying that the combined model has a greater predic-
tive ability than the solitary GTV model. Additionally, 
for the first time, we employed radiomics for prediction, 
revealing its pioneering significance. Future enhance-
ments with increased data volume will further boost the 
model’s efficacy.

Moreover, our research offers notable advantages. 
First, this study pioneers the application of radiomic 
techniques for OLM prediction in cT1 − 2N0M0 SCLC 
patients, advancing clinical diagnostic proficiency and 
facilitating precise decision-making and tailored treat-
ment. Second, as a multicenter study, this study included 
a substantial sample size within the realm of enhanced 
CT-based radiomic research. Third, the combined model 
consistently demonstrated stable and commendable per-
formance across both the internal training and external 
validation datasets, while the nomogram provided visu-
alization and served as a valuable clinical tool for pre-
dicting OLM in presurgical cT1 − 2N0M0 SCLC patients. 
Lastly, The RQS has been widely recognized as a valuable 
tool for assessing the quality of radiomics studies [40]. 
The total RQS score for our study was 24 (24/36, 66.67%), 
surpassing the scores of most radiomics studies [63, 64]. 
This high score indicates the scientific rigor and repro-
ducibility of our research. While our study received com-
mendable ratings overall, consistent with the standard 
practice of rigorous methodological validation, there are 
areas that require improvement. These include the incor-
poration of biological correlates and the integration of 
genetic sequencing, both of which necessitate additional 
funding and patient enrollment. To comprehensively 
address these aspects, we intend to increase our invest-
ment in future research endeavors.

Our study has certain limitations. Firstly, selection bias 
is inherent in retrospective studies and is exacerbated by 
a modest sample size. Secondly, in the validation cohort, 
only the GTV model versus combined model compari-
son had a p-value less than 0.05. Although the combined 
model performed better in the training cohort, its gen-
eralizability to the validation cohort may be limited due 
to demographic variations across centers. Larger sample 
sizes in future studies are needed to address this limita-
tion. Thirdly, diverse machine parameters across differ-
ent hospitals may introduce variations. Nevertheless, 
this variability contributes to the robustness of the mod-
els we trained. Lastly, compared to traditional radiomic 
methods, deep learning enhances the prediction model’s 
performance to some extent. Emerging machine learn-
ing technologies such as convolutional neural networks 
are particularly suitable for classification tasks. Our 
future studies will prioritize data from larger sample sizes 
and incorporate deep learning applications to further 
enhance the robustness and performance of our models 
[65–67].

In conclusion, OLM is not rare and has a greater inci-
dence than NSCLC. Our combined model, which incor-
porates both intra- and peritumoral radiomic features 
based on contrast-enhanced CT imaging, serves as a 
valuable tool for discerning OLM in cT1 − 2N0M0 SCLC 
patients, guiding individualized clinical decisions.
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