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Abstract
Objectives To assess the effectiveness of HRCT-based radiomics in predicting rapidly progressive interstitial 
lung disease (RP-ILD) and mortality in anti-MDA5 positive dermatomyositis-related interstitial lung disease 
(anti-MDA5 + DM-ILD).

Methods From August 2014 to March 2022, 160 patients from Institution 1 were retrospectively and consecutively 
enrolled and were randomly divided into the training dataset (n = 119) and internal validation dataset (n = 41), 
while 29 patients from Institution 2 were retrospectively and consecutively enrolled as external validation dataset. 
We generated four Risk-scores based on radiomics features extracted from four areas of HRCT. A nomogram was 
established by integrating the selected clinico-radiologic variables and the Risk-score of the most discriminative 
radiomics model. The RP-ILD prediction performance of the models was evaluated by using the area under the 
receiver operating characteristic curves, calibration curves, and decision curves. Survival analysis was conducted with 
Kaplan-Meier curves, Mantel-Haenszel test, and Cox regression.

Results Over a median follow-up time of 31.6 months (interquartile range: 12.9–49.1 months), 24 patients lost to 
follow-up and 46 patients lost their lives (27.9%, 46/165). The Risk-score based on bilateral lungs performed best, 
attaining AUCs of 0.869 and 0.905 in the internal and external validation datasets. The nomogram outperformed 
clinico-radiologic model and Risk-score with AUCs of 0.882 and 0.916 in the internal and external validation datasets. 
Patients were classified into low- and high-risk groups with 50:50 based on nomogram. High-risk group patients 
demonstrated a significantly higher risk of mortality than low-risk group patients in institution 1 (HR = 4.117) and 
institution 2 cohorts (HR = 7.515).

Radiomics based on HRCT can predict RP-ILD 
and mortality in anti-MDA5 + dermatomyositis 
patients: a multi-center retrospective study
Wenzhang He1,2†, Beibei Cui3†, Zhigang Chu4, Xiaoyi Chen1, Jing Liu1, Xueting Pang1, Xuan Huang5, Hongkun Yin6, 
Hui Lin3*† and Liqing Peng1*†

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12931-024-02843-w&domain=pdf&date_stamp=2024-6-20


Page 2 of 12He et al. Respiratory Research          (2024) 25:252 

Introduction
Dermatomyositis (DM) is a multifactorial autoimmune 
disease, characterized by distinct dermatological find-
ings and frequently involving extracutaneous manifes-
tations, such as skeletal myopathy and interstitial lung 
disease (ILD) [1]. One subtype of dermatomyositis, with 
anti-melanoma differentiation-associated gene 5 autoan-
tibodies (anti-MDA5+), is associated with a higher risk 
of developing ILD and rapidly progressive ILD (RP-ILD) 
with a high mortality rate [2, 3]. RP-ILD is particularly 
challenging as it rapidly progresses and is often refrac-
tory to treatment, resulting in a mortality rate ranging 
from 33% to 59.2% within the first 6 months after diag-
nosis [4, 5]. The prognosis of RP-ILD might be improved 
with early radical treatment, such as plasma exchange 
and intravenous immunoglobulin [6, 7]. However, RP-
ILD prediction based on medical imaging or clinical data 
remains uncertain [8, 9]. 

To aid clinical decision-making, researchers have 
explored the relationship between clinical characteristics 
and RP-ILD in anti-MDA5 + DM-ILD patients [5, 10, 11]. 
High-resolution computed tomography (HRCT) pro-
vides high spatial resolution and excellent visualization of 
subtle structures, allowing for accurate detection of ILD 
and evaluation of their types, distribution, and severity 
[2, 12]. In fact, manual interpretation of HRCT images 
is insufficient and often lacks inter-individual reproduc-
ibility. Deep learning-based radiomics, as a powerful 
tool to transform the biological information contained in 
medical images into objective, quantitative digital infor-
mation, is potential to assist personalized treatment deci-
sions in ILD [13, 14]. Machine learning algorithms have 
been applied to baseline HRCT to predict the progres-
sion and classification of ILD [15–17]. In the radiomics 
research in anti-MDA5 + DM-ILD, radiomics based on 
HRCT has shown promise as a prognostic tool for pre-
dicting 6-month mortality and RP-ILD [13, 18]. Li et 
al. found that combining HRCT-based radiomics and 
clinico-radiological features can effectively predict rapid 
progression in anti-MDA5 + DM-ILD in a cohort of 103 
patients, with a best AUC of 0.812 in the test group [18]. 
The advancement of radiomics in the application of anti-
MDA5 DM-ILD is considerable. However, none of the 
studies validated the RP-ILD prediction ability of HRCT-
based radiomics by using external validation datasets 
and a relatively large dataset. And the external validation 
dataset is essential to determine the prediction ability of 
the radiomics model in the heterogeneity dataset.

Thus, this study aimed to assess the efficacy of 
a radiomics approach based on baseline HRCT in 
predicting RP-ILD and mortality in patients with 
anti-MDA5 + DM-ILD.

Methods
This retrospective study involving human participants 
was reviewed and approved by the ethics committee of 
West China Hospital and the First Affiliated Hospital of 
Chongqing Medical University.

Patients
A total of 189 anti-MDA5 + DM-ILD patients who under-
went CT examination from August 2014 to March 2022 
in West China Hospital of Sichuan University were con-
secutively recruited. In addition, the anti-MDA5 + DM-
ILD patients with HRCT from August 2019 to May 2022 
in the First Affiliated Hospital of Chongqing Medical 
University were consecutively collected as the exter-
nal validation dataset. The diagnosis of DM was made 
according to the 119th ENMC or 224th ENMC clas-
sification criteria, and clinically amyopathic DM was 
confirmed [19–21]. ILD was confirmed by typical radio-
logical features in chest CT [2]. RP-ILD was defined as 
rapid progression of dyspnea symptoms, rapid worsening 
of HRCT findings, or decrease in partial pressure of oxy-
gen > 1.33 kPa (10mmHg) within 3 months [11, 22]. Each 
patient was diagnosed with RP-ILD within three months 
after CT examination.

Inclusion criteria included adult-onset disease (age > 18 
years), a diagnosis of DM, positive anti-MDA5 autoanti-
body, diagnosed with ILD for the first time on chest CT, 
without a history of drug-induced interstitial changes, 
and without a history of lobectomy. Exclusion criteria 
included inadequate image quality, lack of HRCT scan, 
and moderare-large pleural effusion. Finally, a total of 160 
patients from Institution 1 were retrospectively enrolled 
and were randomly divided into the training dataset 
(n = 119) and internal validation dataset (n = 41), while 29 
patients from Institution 2 were retrospectively enrolled 
as external validation dataset. The flowchart of patient 
enrollment is shown in Fig. 1. The flowchart of research 
is shown in Fig. S1.

HRCT scanning parameters
HRCT scans were performed in the axial plane with 
1-mm-thick sections by multidetector CT scan-
ner including Siemens Somatom Definition (Siemens 
Healthcare, Erlangen, Germany). Image reconstruction 
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convolution kernels included I70f, B10f, B30f, B80f, and 
B31f. In all patients, HRCT images were acquired in the 
supine position and at full inspiration.

Clinico-radiologic data
All clinical data as well as laboratory samples were col-
lected on the first day of admission and stored in the elec-
tronic medical records. Basic demographics, including 
age, gender, smoking history, and medical history, were 
assessed. The “infection” recorded in this study refers to 
patients with a clear diagnosis of “infection” at the time 
of discharge. The patients may have etiological evidence, 
or indirect evidence of a diagnosis of “infection”, such as 
symptoms, signs, and image findings suggestive of infec-
tion. Patients diagnosed with cancer on or before March 
26, 2023, were documented. The clinical presentation at 
diagnosis, includes fever, skin changes, arthritis/arthral-
gia, myalgia, dyspnea, infection, oral pain/ulcers, and 
acataposis. Fever was defined as an armpit temperature 
exceeding 37.4°. Laboratory findings at diagnosis, includ-
ing C-reactive protein, erythrocyte sedimentation rate, 
rheumatoid factor, anti-CCP antibody, creatine kinase, 
and blood cell count, were obtained. The neutrophil-to-
lymphocyte ratio was calculated by dividing the absolute 
neutrophil count by the absolute lymphocyte count [11]. 
Myositis-specific autoantibodies and Myositis-associated 
autoantibodies assessments were conducted by utiliz-
ing immunoblotting technology (YHLO Biotech Co.). 

Positive findings in patients were validated in duplicate. 
Time to death was recorded as the period between the 
time of the HRCT examination to the time of death.

Pneumomediastinum was diagnosed based on CT 
images. Four HRCT-based scoring systems, namely 
the Idiopathic pulmonary fibrosis-score, Ground-glass 
opacity (GGO)-score, Consolidation-score, and Fibro-
sis-score, were assessed [23, 24]. The overall Idiopathic 
pulmonary fibrosis-score was calculated by summing 
the score of six zones (upper, middle, and lower zones 
on both sides). HRCT findings in each zone were graded 
1 (normal attenuation), 2 (GGO without traction bron-
chiectasis), 3 (consolidation without traction bronchiec-
tasis), 4 (GGO associated with traction bronchiectasis), 
5 (consolidation associated with traction bronchiecta-
sis), and 6 (honeycombing). GGO, consolidation, and 
fibrosis were separately assessed and recorded accord-
ing to the pulmonary involvement area of the five pul-
monary lobes. 0 (no involvement), 1 (≤ 5% involvement), 
2 (5–24% involvement), 3 (25–49% involvement), 4 
(50–75% involvement), and 5 (> 75% involvement) were 
recorded for GGO or consolidation at each lobe. And 
the fibrotic changes in each lobe were classified into 0 
(no fibrosis), 1 (interlobular septal thickening without 
honeycombing), 2 (honeycombing < 25%), 3 (25–49%), 4 
(50–75%), and 5 (> 75%) as fibrosis score. The respective 
total score of each component (GGO-score, Consolida-
tion-score, and fibrosis-score) was the sum of each lobe’s 

Fig. 1 Patient enrollment flowchart. Note: HRCT, high-resolution computed tomography; RP-ILD, rapidly progressive interstitial lung disease; NRP-ILD, 
non-rapidly progressive interstitial lung disease
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score. Four HRCT scores were assessed independently by 
chest radiologists 1 and 2 (with 4 and 18 years of expe-
rience in chest imaging diagnosis, respectively) in train-
ing, internal validation, and external validation datasets. 
The final scores were averaged by the scores of two radi-
ologists. One month later, 30 patients were randomly 
selected to be assessed by radiologist 1 to calculate the 
intra-observer correlation coefficient. The inter-observer 
correlation coefficient was calculated from the results of 
the first assessment by the two radiologists.

Region of interest segmentation
The segmentation of the three-dimensional region of 
interest (ROI) was performed using the open-source soft-
ware 3D Slicer (Version 5.0.2). The bilateral lung regions, 
including 5 lobes as well as corresponding bronchial and 
vascular bundles, were first labeled as ROI 2, while the 
areas only with Hu values from − 950 to -150 were labeled 
as ROI 1. Furthermore, the subpleural 1  cm areas were 
annotated as ROI 4, while the rest areas of the lung were 
marked as ROI 3 (Fig. 2). Three months later, 60 patients 
were randomly selected to be segmented by the same 
radiologist to calculate the intra-observer correlation 

coefficient. The radiologist was aware of the diagnosis of 
ILD but was blinded to clinical information.

Radiomics analysis and construction of the nomogram
The pixel resampling was applied before feature extrac-
tion and the CT images were reconstructed to a target 
voxel of 1 mm×1 mm×1 mm. The pixel values were also 
converted to HU using the following formula: HU = pixel_
value × slope + intercept, where slope = 1, intercept = 
-1024.

The radiomics features were extracted from the manu-
ally labeled ROIs in HRCT images by using the IBSI-
compliant Python package named PyRadiomics (version 
3.0) with the bin size fixed to 32. Multiple filters including 
Exponential, Gradient, Logarithm, Log-sigma (1.0  mm, 
2.0 mm, 3.0 mm, 4.0 mm, and 5.0 mm), Square, Squar-
eroot, and Wavelet (HHH, HHL, HLH, HLL, LHH, LHL, 
LLH, and LLL) were applied; and finally, a total of 1729 
radiomics features were extracted from each ROI.

Shape features were excluded because the relation-
ship between shape features and diffuse lung diseases 
is not clear. Histogram and texture features that were 
robust to variation in contour delineation (Intraclass cor-
relation coefficient > 0.80) and also not highly correlated 

Fig. 2 Examples of the 4 types of ROIs. Note: ROI, region of interest; 3D, three dimension; ROI 1, with Hu values from − 950 to -150 regions; ROI 2, the 
bilateral lung regions; ROI 3, without subpleural 1 cm area; ROI 4, the subpleural 1 cm area
 Note: ROC, receiver operating characteristic curve; AUC, area under the curve
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with each other (Pearson correlation coefficient > 0.95) 
were retained for subsequent analysis. The Least Abso-
lute Shrinkage and Selection Operator regression analy-
sis was applied to select radiomics features, and 10-fold 
cross-validation was used to select the appropriate value 
of the penalty parameter and avoid overfitting.

The z-score normalization was used to standardize 
the values of the selected histogram and texture features 
before model development. The formula for z-score stan-
dardization is: z-score = (X-mean)/SD, where: X repre-
sents the value of the original sample, mean represents 
the mean value of the original sample values, and SD 
represents the standard deviation of the original sample 
values. Four radiomics models were developed based on 
the selected radiomics features from ROI 1, ROI 2, ROI 
3, and ROI 4, respectively. For each radiomics model, 
the risk-score was calculated based on the selected 
radiomic features with the support vector machine clas-
sifier, and the parameters were as follows: kernel = RBF, 
tolerance = 0.001, class _weight = balanced. In addition, 
the optimal c and gamma were determined by cross-
validation and grid-search. By using multivariate regres-
sion,  a nomogram was established by integrating the 
selected clinico-radiologic variables and the Risk-score of 
the most discriminative radiomics model in the training 
dataset.

Survival analysis
The prognostic value of the nomogram was evaluated by 
Kaplan-Meier curves, the Mantel-Haenszel test, and Cox 
regression. In Institutions 1 and 2, patients were classi-
fied into high-risk and low-risk groups at a 50:50 ratio 
according to the score calculated by the nomogram, 
respectively.

Statistical analysis
The discriminative capabilities were evaluated by the 
receiver operating characteristic analysis with respect to 
the area under the curve (AUC). Uni- and multivariable 
logistic regression analyses were used to select clinico-
radiologic variables according to the onset of RP-ILD. 
The goodness-of-fit of each model was calculated via 
the Hosmer-Lemeshow test and the calibration curve 
was generated by applying the 1,000 times bootstrapping 
resampling method. Decision curve analysis was plotted 
to compare the clinical usefulness of different models.

Statistical analyses were performed on the SPSS (SPSS 
Institute, Inc., Chicago, IL, USA, version 26.0) and Med-
Calc (version 20.0) software. The Chi-square test and 
the analysis of variance (ANOVA) were used to com-
pare qualitative and category characteristics. The AUCs 
between different models were compared by Delong’s 
test. The heatmap of the selected radiomics features was 
generated by using HemI v1.0 software. The calibration 

analysis and decision curve analysis were performed 
with R language (version 3.4.4) by using the “RMS” pack-
age and the “rmda” package, respectively. Pearson’s cor-
relation coefficient was used to determine correlations 
between radiomics features, Risk-score, and four HRCT 
scores. A 2-tailed p-value < 0.05 was considered to be sta-
tistically significant.

Results
Patient characteristics
160 patients from Institution 1 were retrospectively 
enrolled and randomly divided into the training dataset 
(n = 119; 44 RP-ILD and 75 non-RP-ILD) and internal val-
idation dataset (n = 41; 15 RP-ILD and 26 non-RP-ILD), 
while 29 patients (15 RP-ILD and 26 non-RP-ILD) from 
Institution 2 were retrospectively enrolled as the external 
validation dataset. The prevalence of RP-ILD across the 
three datasets was not significantly different (p = 0.97). 
Over a median follow-up of 23.6 months (interquartile 
range: 2.4–45.6 months), 25 patients lost to follow-up 
and 46 patients lost their lives (27.9%, 46/165) in Institu-
tion 1 and Institution 2 cohorts (Table S1). In our cohort, 
deaths occurred within six months of ILD diagnosis, and 
in the Institution 1 cohort (n = 160), there were 15 and 19 
patients lost to follow-up in the first 6 months and the 
first 12 months, respectively. The mortality in patients 
with RP-ILD was higher than those without RP-ILD.

The results showed that the erythrocyte sedimenta-
tion rate and prevalence of periungual erythema were 
significantly higher in the external validation dataset as 
compared to the training dataset. However, no signifi-
cant difference was observed in other clinical character-
istics across the training, internal validation, and external 
validation datasets (all p > 0.05). Table 1 presents a com-
prehensive comparison of the demographic and clinico-
radiologic characteristics of the enrolled patients in the 
three datasets.

Selection of clinico-radiologic variables and radiomics 
features
The inter- and intra-individual correlation coefficients 
of the four HRCT scores were analyzed (Table S2). The 
clinical variables were analyzed by univariate and mul-
tivariate regression analysis before model develop-
ment. Consolidation-score, LDH, and infection showed 
a p-value < 0.05 and were used for subsequent analysis 
(Table 2).

There were 90 ROI 1 features, 94 ROI 2 features, 111 
ROI 3 features, and 106 ROI 4 features left after intra-
observer correlation coefficient analysis and Pearson cor-
relation test. Finally, five, five, four, and four radiomics 
features from the ROI 1, ROI 2, ROI 3, and ROI 4 were 
selected for model development after LASSO regression, 
respectively. The optimal tuning parameter lambda was 
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0.10041 for ROI 1 features (Fig. S2a and Fig. S2e), 0.09402 
for ROI 2 features (Fig. S2b and Fig. S2f ), 0.10025 for ROI 
3 features (Fig. S2c and Fig. S2g), and 0.08691 for ROI 4 
features (Fig. S2d and Fig. S2h), respectively. The heat-
map of these selected radiomics features according to the 
standardized values is presented in Fig. S3.

Performance comparison for the radiomics models
The discriminative capability of the radiomics models 
was evaluated through ROC curve analysis in the train-
ing, internal validation, and external validation datasets 
(Fig. S4). The AUCs of the ROI 1, ROI 2, ROI 3, and ROI 
4 models were 0.838, 0.898, 0.796, and 0.853 in the train-
ing dataset, 0.790, 0.869, 0.792, and 0.826 in the inter-
nal validation dataset, and 0.816, 0.905, 0.763 and 0.858 
in the external validation dataset, respectively (Fig. S4a; 
Fig. S4b; Fig. S4c; Table 3). The detailed AUC, sensitivity, 
specificity, PPV, and NPV of the radiomics models under 

optimal threshold were summarized in Table  3. Risk-
score was positively associated with IPF-score (r = 0.476, 
p < 0.001), GGO-score (r = 0.469, p < 0.001), Consolida-
tion-score (r = 0.574, p < 0.001), Fibrosis-score (r = 0.261, 
p < 0.001) in the research cohort (n = 189), and more 
details were presented in Table S3.

Nomogram construction
By using multivariate regression, the Risk-score, Consol-
idation-score, LDH, and infection were used as indepen-
dent predictors to build the nomogram in the training 
dataset (Fig. 3a). Risk-score, with a coefficient of 9.3205, 
was the most important variable of the nomogram and 
detailed information of each independent variables in the 
nomogram were presented in Table S4.

Table 1 Demographic and clinico-radiologic characteristics of the enrolled patients
Clinical Variables Training

dataset
Internal validation dataset External validation dataset p

Female sex, n (%) 79 (66.4) 29 (70.7) 20 (68.9) 0.87
Age of onset, mean (SD), years 50.2 (11.1) 49.9 (12.7) 48.9 (11.3) 0.87
Smoking history, n (%) 19 (16.0) 9 (22.0) 2 (6.9) 0.24
RP-ILD, n (%) 44 (37.0) 15 (36.6) 10 (34.5) 0.97
Cancer, n (%) 1 (0.8) 1 (2.4) 1 (3.4) 0.53
Pneumomediastinum, n (%) 3 (2.5) 1 (2.4) 1 (3.4) 0.96
CADM, n (%) 23 (19.3) 6 (14.6) 3 (10.3) 0.46
Duration of DM, median (IQR), months 3.0 (2.0–6.0) 4.0 (2.0–7.0) 4.0 (2.0–7.0) NA
Fever, n (%) 30 (25.2) 10 (24.4) 10 (34.5) 0.56
C-reactive protein, mean (SD), mg/L 11.3 (15.4) 12.7 (28.6) 24.6 (69.9) 0.14
ESR, mean (SD), mm/h 47.3 (21.4) 51.9 (20.5) 64.0 (27.4) 0.002
Skin changes
 Skin ulceration, n (%)
 Gottron papules, n (%)
 Heliotrope rash, n (%)
 Periungual erythema, n (%)
 Mechanic hands, n (%)
 Raynaud phenomenon, n (%)
 V sign, n (%)
 Shawl sign, n (%)

16 (13.4)
78 (65.5)
61 (51.3)
5 (4.1)
7 (5.9)
8 (6.7)
22 (18.5)
9 (7.6)

6 (14.6)
25 (61.0)
24 (58.5)
3 (7.3)
3 (7.3)
2 (4.9)
4 (9.8)
3 (7.3)

5 (17.2)
17 (58.6)
20 (69.0)
7 (24.1)
3 (10.3)
0 (0)
9 (31.0)
3 (10.3)

0.87
0.73
0.21
0.002
0.69
0.35
0.08
0.87

Rheumatologic manifestations
 Arthritis/arthralgia, n (%)
 Rheumatoid factor, n (%)
 Anti-CCP antibody, n (%)

76 (63.9)
13 (10.9)
6 (5.0)

26 (63.4)
4 (9.8)
1 (2.4)

16 (55.2)
3 (10.3)
3 (10.3)

0.68
0.98
0.34

Muscular manifestations
 Myalgia, n (%)
 Creatine kinase, mean (SD), U/L

36 (30.3)
145.6 (293.7)

12 (29.3)
126.8 (197.0)

12 (41.4)
113.7 (124.0)

0.48
0.80

Lung manifestations
 Dyspnea, n (%)
 Infection, n (%)

47 (39.5)
70 (58.8)

18 (43.9)
23 (56.1)

8 (27.6)
22 (75.9)

0.37
0.20

NLR, mean (SD) 5.8 (5.4) 4.8 (3.1) 6.2 (7.3) 0.43
Oral pain/ulcers, n (%) 18 (15.1) 6 (14.6) 5 (17.2) 0.87
Acataposis, n (%) 4 (3.4) 4 (9.8) 1 (3.4) 0.24
Note: RP-ILD, rapidly progression interstitial lung disease; CADM, clinically amyopathic dermatomyositis; ESR, erythrocyte sedimentation rate; CCP, cyclic citrullinated 
peptide; NLR, neutrophil-to-lymphocyte ratio; IQR, interquartile range.
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Comparison of the clinico-radiologic model, Risk-score and 
nomogram
As shown in Fig.  3b, the AUCs of the Risk-score and 
the nomogram were 0.898 and 0.920 in the training 
dataset, which was significantly higher than that of 

the clinico-radiologic model (AUC = 0.767, p = 0.01 vs. 
Risk-score and p = 0.001 vs. nomogram). Similar perfor-
mance was observed in the internal validation dataset 
(Fig.  3c), the Risk-score (AUC = 0.869) and nomogram 
(AUC = 0.882) outperformed the clinico-radiologic 

Table 2 Regression analysis of the clinico-radiologic variables in the training dataset
Clinico-radiologic variables Univariate regression Multivariate regression

Odd Ratio 95% CI p Odd Ratio 95% CI p
Consolidation-score 1.210 1.090–1.343 < 0.001 1.212 1.018–1.443 0.03
GGO-score 1.146 1.062–1.237 < 0.001 1.075 0.980–1.179 0.12
IPF-score 1.151 1.056–1.254 0.001 0.914 0.761–1.099 0.34
Fibrosis-score 1.399 1.041–1.879 0.03 1.429 0.933–2.190 0.10
ALT 1.000 0.996–1.005 0.89
AST 1.003 0.999–1.006 0.13
CK 0.999 0.998–1.001 0.49
CRP 1.049 1.018–1.082 0.002 1.028 0.995–1.062 0.10
ESR 1.001 0.984–1.019 0.89
LDH 1.005 1.002–1.008 < 0.001 1.004 1.001–1.007 0.02
Mechanic’s hands 1.299 0.277–6.092 0.74
NLR 1.099 1.009–1.196 0.03 1.025 0.930–1.131 0.62
Shawl sign 1.400 0.355–5.515 0.63 1.212 1.018–1.443
V sign 0.968 0.370–2.532 0.95 1.075 0.980–1.179
Infection 4.213 1.781–9.969 0.001 0.914 0.761–1.099 0.03
Age of onset 1.027 0.992–1.064 0.13
Fever 1.430 0.616–3.326 0.41
Arthritis/arthralgia 1.152 0.528–2.511 0.72
Dyspnea 1.721 0.806–3.676 0.16
Gottron papules 0.875 0.401–1.910 0.74
Myalgia 1.124 0.502–2.517 0.78
Periungual erythema 0.413 0.045–3.815 0.44
Oral pain/ulcers 0.829 0.287–2.391 0.73
Rynaud phenomenon 0.548 0.106–2.839 0.47
Skin ulceration 0.746 0.241–2.308 0.61
Smoking history 2.157 0.801–5.811 0.13
Heliotrope rash 0.799 0.379–1.684 0.56
Female sex 1.954 0.895–4.267 0.09
Note: CI, confidence interval; ALT, alanine transaminase; AST, aspartate transaminase; CK, creatine kinase; CRP, C-reactive protein; ESR, erythrocyte sedimentation 
rate; LDH, lactate dehydrogenase; NLR, neutrophil-lymphocyte ratio.

Table 3 Performance comparison of four radiomics models
Dataset Model AUC 95% CI Threshold SEN (%) SPE (%) PPV (%) NPV (%)
Training ROI 1 0.838 0.759–0.899 > 0.2372 88.6 69.3 62.9 91.2

ROI 2 0.898 0.830–0.946 > 0.3352 86.4 78.7 70.4 90.8
ROI 3 0.796 0.713–0.865 > 0.3690 59.1 90.7 78.8 79.1
ROI 4 0.853 0.776–0.911 > 0.3454 77.3 82.7 72.3 86.1

Internal validation ROI 1 0.790 0.634–0.901 > 0.2577 73.3 80.8 68.8 84.0
ROI 2 0.869 0.727–0.954 > 0.3371 86.7 80.8 72.2 91.3
ROI 3 0.792 0.637–0.903 > 0.2790 93.3 57.7 56.0 93.8
ROI 4 0.826 0.675–0.926 > 0.3234 66.7 88.5 76.9 82.1

External validation ROI 1 0.816 0.629–0.934 > 0.3095 80.0 94.7 88.9 90.0
ROI 2 0.905 0.738–0.982 > 0.3140 80.0 89.5 80.0 89.5
ROI 3 0.763 0.570–0.900 > 0.3837 60.0 100.0 100.0 82.6
ROI 4 0.858 0.678–0.959 > 0.2892 70.0 89.5 77.8 85.0

Note: AUC, area under the curve; CI, confidence interval; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value.
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model (AUC = 0.682, p = 0.04 vs. Risk-score and p = 0.02 
vs. nomogram). Although not statistically significant, 
the binary classification capability of the Risk-score 
(AUC = 0.905) and the nomogram (AUC = 0.916) was 
still higher than that of the clinico-radiologic model 
(AUC = 0.737, p = 0.13 vs. Risk-score and p = 0.05 vs. 
nomogram) in the external validation dataset (Fig.  3d). 
No significant differences were found between the Risk-
score and the nomogram in terms of AUCs in all three 
datasets (all p values > 0.05) (Fig. 3b and c, and Fig. 3d). 
The detailed performance of the clinico-radiologic model, 
Risk-score, and nomogram was presented in Table S5.

Clinical utility analysis
The clinico-radiologic model, Risk-score, and nomogram 
showed good calibration in both the internal validation 
dataset and the external validation dataset (Fig. S5). The 
non-significant statistics of the Hosmer–Lemeshow test 
indicated no significant deviation from an ideal fitting 
(Clinico-radiologic model, p = 0.09 and 0.14 for the inter-
nal and external validation datasets; Risk-score, p = 0.32 
and 0.88 for the internal and external validation datasets; 

nomogram, p = 0.70 and 0.61 for the internal and external 
validation datasets, respectively) (Table S5).

The net benefit of the nomogram was higher than 
the other two models across the majority of reasonable 
threshold probabilities, which demonstrated that the 
nomogram had higher clinical usefulness (Fig. S6).

Survival analysis
The Kaplan-Meier curves demonstrated that the high-
risk group patients had significantly shorter survival 
time than those low-risk group patients, with hazard 
ratio = 4.117 (95% CI = 2.195–7.722], p < 0.001(Fig.  4a) 
in the Institution 1 cohort and 7.515 (95% CI = 1.297–
43.540], p < 0.001 in the Institution 2 cohort, respectively 
(Fig. 4b).

Discussion
The following are the main findings of our study: (1) The 
prediction ability of bilateral lungs, subpleural 1 cm area, 
-150 to -950 Hu value area, and without subpleural 1 cm 
area based Risk-scores ranked first, second, third, and 
fourth, respectively; (2) For clinico-radiologic variables, 

Fig. 3 The nomogram and ROC analysis for three models. (a) The nomogram integrates the Risk-score and selected clinical variables; ROC analysis for 
the comparison of clinico-radiologic model, Risk-score, and nomogram in the training (b), internal validation (c), and external validation (d) datasets. The 
45-degree dotted line represents the performance of a random classifier. Note: CON, consolidation; LDH, lactate dehydrogenase; AUC, area under the 
curve
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consolidation-score, lactate dehydrogenase (LDH), and 
infection were independent predictors of RP-ILD in 
anti-MDA5 + DM-ILD (OR = 1.212, 1.004, and 2.723, 
respectively); (3) Among the three models (Risk-score, 
clinico-radiologic model, and nomogram) investigated, 
the nomogram mainly based on Risk-score proved supe-
rior and conveyed independent biologic information 
for RP-ILD; (4) Survival analysis revealed that patients 
with higher nomogram scores had worse survival out-
comes compared to those with lower scores, with hazard 
ratio = 4.117 (95% CI = 2.195–7.722], p < 0.001 in Institu-
tion 1 and 7.515 (95% CI = 1.297–43.540], p < 0.001 in 
Institution 2, respectively.

This was the first study to evaluate segmentation meth-
ods on radiomics analysis performance. Risk-score-based 
predictions might be not consistent with the severity 
of pulmonary signs in HRCT, and radiomics provides 
information beyond the radiological signs and aids in 
clinical decisions (Fig.  5). The radiomics analysis based 
on the bilateral lungs had the best efficacy in predict-
ing RP-ILD, this might be explained by this model could 
mine all the potential information that could reflect 
the histopathological alterations in ILD patients [25, 
26]. But the detailed histopathological changes on anti-
MDA5 + DM-ILD are necessary to be conducted in the 
future. In addition, the radiomics analysis based on a sub-
pleural 1 cm area had a fair performance for predicting 
RP-ILD in anti-MDA5 + DM-ILD patients, which might 
be explained by the most lesions located at the peripheral 
zones of bilateral lungs. On the contrary, the radiomics 
analysis based on without subpleural 1 cm area had the 
worst performance in predicting RP-ILD, this is easy 
to understand as this segmentation includes the least 
lesions of anti-MDA5 + DM-ILD. As for radiomics based 

on segmentation of -150 to -950 Hu value area, this cov-
ers most lesions that could reflect the histopathological 
alterations in anti-MDA5 + DM-ILD patients; however, 
some features such as consolidation, patchy lesions that 
have predicting significance have not been included.

On the other hand, radiomics analysis from differ-
ent ROIs had a significant impact on feature stability 
and model performance [27, 28]. Incomplete ROI-based 
radiomics analysis may result in incomplete information 
capture. To avoid heterogeneity caused by different data 
sources, we tried to preprocess images, including resam-
pling and discretization [29, 30]. 

In our study, the consolidation-score, LDH, and infec-
tion were found to be independent predictors of RP-ILD. 
Van Krugten et al. found that the lower lung zone con-
solidation on HRCT in anti-MDA5 + DM-ILD patients 
was prone to develop RP-ILD [31]. The correlation 
between lung consolidation and the occurrence of RP-
ILD was validated in our study. Elevated LDH, associ-
ated with biological information inside and outside the 
lungs, reflects a severe degree of disease [32]. Infection 
is a common comorbidity symptom in DM patients, with 
pulmonary infection being the most common. Pulmo-
nary macrophage infiltration in DM-ILD patients may be 
the pathogenesis of RP-ILD due to the destruction of the 
original physiological balance [31, 33]. 

In predicting RP-ILD in anti-MDA5 + DM, our nomo-
gram, mainly based on Risk-score, achieved 80.0%, and 
90.0% accuracies, and 88.5%, and 89.5% specificities in 
the internal and external validation datasets, respectively. 
Its calibration curve showed good agreement between 
predicted and actual RP-ILD, and decision curve analy-
sis verified its clinical usefulness. The survival analysis 
based on the nomogram revealed that the patients in the 

Fig. 4 Kaplan–Meier survival analysis according to the risk score predicted by the nomogram. (a) Insititution 1 cohort (Development dataset); (b) Insititu-
tion 2 cohort (Enternal validation dataset). Note: CI, confidence interval; HR, hazard ratio
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high-risk group had significantly shorter survival times 
than those in the low-risk group. These findings high-
lighted that the nomogram might be promising in clinical 
practice to help predict RP-ILD in anti-MDA5 + DM-
ILD patients. The study of So et al. proposed the “FLAW 
model”, including fever, LDH > 300 IU/l, age > 50 years, 
and NLR > 7 at diagnosis, which allows rapid clini-
cal risk stratification for the imminent RP-ILD at anti-
MDA5 + DM-ILD patients [11]. Li et al. identified 
radiomics features combined with disease duration times 
and dyspnea could accurately predict RP-ILD with an 
AUC of 0.812 in the test dataset [18]. This is partly consis-
tent with our study, but our study did not find a potential 
association between disease duration time and RP-ILD as 
well as dyspnea and RP-ILD. In the combined model of Li 
et al., significant differences in AUCs in the training and 
the test datasets may suggest the possibility of overfitting 
[18]. Due to its small sample size and lack of external val-
idation, the application of its model may require further 
validation. Our nomogram, combining Risk-score, LDH, 
Consolidation-score, and infection, would be more ben-
eficial for predicting RP-ILD in anti-MDA5 + DM-ILD.

Our study had several limitations. First, some biologi-
cal indicators as predictors or prognostic factors for RP-
ILD, such as lung function test data, ferritin, and IL-1β, 
were incomplete. Second, a small part of patients with 
RP-ILD were lost to follow-up after discharge. Finally, 

although our cohort is already a relatively large cohort 
in anti-MDA5 + DM-ILD, a large sample size study from 
multi-centers is needed. Finally, the measurement of 
baseline right heart and pulmonary artery parameters 
on HRCT is beneficial for prognostic evaluation of lung 
diseases, and we will explore this in the next step of our 
research [34]. 

In conclusion, the nomogram developed by integrating 
radiomics features and clinico-radiologic factors can pre-
dict RP-ILD in patients with anti-MDA5 + DM-ILD and 
is an independent predictor of mortality.
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