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Abstract 

Aim  Acute respiratory distress syndrome or ARDS is an acute, severe form of respiratory failure characterised by poor 
oxygenation and bilateral pulmonary infiltrates. Advancements in signal processing and machine learning have led 
to promising solutions for classification, event detection and predictive models in the management of ARDS.

Method  In this review, we provide systematic description of different studies in the application of Machine Learn-
ing (ML) and artificial intelligence for management, prediction, and classification of ARDS. We searched the follow-
ing databases: Google Scholar, PubMed, and EBSCO from 2009 to 2023. A total of 243 studies was screened, in which, 
52 studies were included for review and analysis. We integrated knowledge of previous work providing the state of art 
and overview of explainable decision models in machine learning and have identified areas for future research.

Results  Gradient boosting is the most common and successful method utilised in 12 (23.1%) of the studies. Due 
to limitation of data size available, neural network and its variation is used by only 8 (15.4%) studies. Whilst all studies 
used cross validating technique or separated database for validation, only 1 study validated the model with clini-
cian input. Explainability methods were presented in 15 (28.8%) of studies with the most common method is feature 
importance which used 14 times.

Conclusion  For databases of 5000 or fewer samples, extreme gradient boosting has the highest probability of suc-
cess. A large, multi-region, multi centre database is required to reduce bias and take advantage of neural network 
method. A framework for validating with and explaining ML model to clinicians involved in the management of ARDS 
would be very helpful for development and deployment of the ML model.

Keywords  AI, ARDS, Explainable AI

Introduction
Acute respiratory distress syndrome (ARDS) is a com-
mon complication in adult general intensive care units 
(ICUs) [1]. In 2016 a survey conducted in 459 ICUs 
across 50 countries demonstrated that ARDS occurred 
in 10% of patients with a mortality rate exceeding 
40% [1]. The management of ARDS in the US, UK and 
Europe is largely based on the individual country’s 
national guidelines. Although these guidelines are cre-
ated based on nationwide surveys and research studies, 
the quality of evidence for recommendations for clinical 
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practice is poor with absence of high-quality evidence 
[2]. This may explain why there is a poor uptake of the 
guidelines by clinicians. For example, the UK guidelines 
recommend a low tidal volume of less than 8ml/kg and 
a positive-end expository pressure (PEEP) of more than 
12 cmH2O [2]. However, only about 60% of patients 
received 8ml/kg of tidal volume or less and more than 
82% received less than 12cmH2O PEEP [1]. Huge prac-
tice variations are recognised and there is an urgent 
need for evidence-based and standardised management 
for ARDS in ICU.

Machine learning (ML) has been applied successfully 
into other areas including natural language processing, 
computer vision applications, and automatic speech 
recognition. As a result, advancement has been made in 
many areas from sports to robotic, from entertainment 
to industry. Applications of ML have shown enormous 
potential across several medical fields such as disease 
prediction, clinical outcome prediction, diagnosis and 
prognosis using various data modalities, including time 
signals and medical imaging [3–18].

Although ML has the ability to recognise patterns 
within large amount of data, many of these patterns are 
imperceptible by human. These patterns can be used 
in different ways to categorise or predict events [3]. 
However, to be successfully integrated into the health 
care system, ML applications must aim to archive high 
performance metric such as accuracy and achieve trust 
from users towards clinical application. As a result, the 
demand for better transparency in ML models in medi-
cine is essential for better understanding of the causal-
ity and relationship between input and output, and for 
legal and ethical purposes [19–21].

The concept of interpretation or explainability in 
machine learning is defined as the capability of the algo-
rithm to present and/or produce knowledge contained 
inside the data so that it is perceptible and understand-
able by users [22]. Various explainability methods have 
been used in medical care in general [23] and for ARDS 
data in particular [24]. However, few studies have actu-
ally validated the effectiveness of these explainability 
methods with direct involvement of clinicians [23]. 
There is also lack of evidence on which method is most 
suitable for clinicians in terms of its explainability.

The main focus of this review is to identify studies 
that has used machine learning methods on the man-
agement, prognosis and diagnosis of patients with 
ARDS, reflect on usage of different database and data 
gathering method, algorithms and their effectiveness. 
The review also aims to highlight the state of explain-
ability in term of methods and usages, and performance 
of different ML methods in ARDS.

Method
Inclusion and exclusion criteria
Articles employing machine learning or artificial intelli-
gence addressed directly to the diagnosis, management, 
risk assessment, prognosis or outcome of ARDS were 
included in the review. The included articles can utilise 
existing ML algorithm or create new algorithm based 
on either classical ML method such as decision tree 
or more advanced ones like neural network or both. 
Protocol, commentaries, letters, abstract-only articles, 
conference proceedings, non-English and non-peer 
reviewed articles were excluded. Only studies using 
exclusively human data were selected. Research using 
paediatric patients was excluded.

Search strategy
An extensive literature search was performed in Pub-
med, Google scholar and EBSCO on July 2023. The 
summary of the screening process is reported in the 
PRISMA diagram (Fig.  1) A random snowball search 
was also carried out using Google to identify any addi-
tional results. Keywords used for these searches include 
“acute respiratory distress syndrome”,”ARDS”, “acute 
lung injury”, “ALI”,”machine learning” and”artificial 
intelligence”. Boolean Operator “AND” and “OR” was 
used for Pubmed and EBSCO searches. The reference 
list of all results was also screened by title and abstract 
for potentially relevant citations. The list of author con-
tributions to this paper is included.

All the search results were collected using their title 
and abstract. The full-text version of these results was 
used for screening using criteria in 2.1. Non-full-text 
paper was excluded at this stage. This process was car-
ried out independently by TT and MT to eliminate bias 
and disagreements were resolved with consensus from 
all authors.

Results
Search results and selection process
Google Scholar search yielded 54 results after pre-
liminary screening. Three non-English articles were 
excluded along with 2 not yet peer-reviewed results, 1 
duplication and 27 irrelevant articles. One duplicated 
paper was also excluded.

The search was repeated with the EBSCO and Pub-
med database, resulting in 88 articles and 85 articles 
respectively. Finally, 52 articles were selected for review 
matching all criteria listed in Inclusion and exclusion 
criteria section (Table 1).
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Characteristics of the reviewed studies
Fifty-two articles between 2009 and 2023 were selected. 
18 (34.6%) of these focused on prediction of ARDS 
development in patients during hospitalisation. 14 
(26.9%) publications articles were related to diagnostic 
accuracy. 11 (21.2%) articles were focused on catego-
rizing patients with ARDS into groups or subgroups 
based on severity or mortality. Five articles were related 
to the use of ML to predict patient mortality or create 
more suitable management for patients. There is a sin-
gle (1.9%) article on the prognosis or health trajectory 
of ARDS and 1 (1.9%) article on using ML to model the 
condition of patients with ARDS. This can be seen in 
(Fig. 2).

In summary, there are 49 different ML systems 
deployed. The most common algorithm is the random 
forest with 17 (32.7%) usages. A different variation of 
gradient boosting algorithms is also very common with 
13 (25%) XGBoost, 4 (7.7%) adaboost, and 7 (13.5%) oth-
ers. Neural networks methods and its variances were also 
albeit less frequent with 8 (15.4%) neural network (NN), 
1 (1.9%) deep neural network (DNN), 2 (3.8%) recurrent 
neural network (RNN) and 3 (5.8%) convolutional neural 
network (CNN) for 14 (26.9%) in total. Existed ML-based 
models were also tested for example ALI sniffer, Dense-
Ynet and ResNet-50 (Fig. 3).

The definition and phenotypes of ARDS were defined 
recently using the Berlin definition and updated in 2023 
[76]. Therefore, there were various attempts to establish 

a more rigorous subphenotype using the ML algorithm 
over the years. Unsupervised algorithms were used with 
some success. Sinha [31] used latent class analysis to sep-
arate patients into hyper and hypo-inflammatory states. 
Zhang et al.[38] in 2019 and Liu et al. [53] in 2021 both 
tried to categorise ARDS patients into 3 subphenotypes 
using tree-based gradient boosting and k-mean method 
respectively. Although the ML algorithm has shown great 
potential to define ARDS subphenotypes, only 6 (50%) 
out of 12 studies in severity and subphenotype topics 
used this method.

There has been a surge in ARDS research since 2019 
most likely in response to the COVID-19 pandemic. 
44 (84.6%) studies were published between 2019 and 
June 2023 of which 5 are directly used data from Covid 
patients (Fig. 4).

Supervised ML algorithms are widely used for many 
applications such as verifying subphenotypes, improving 
diagnoses, predicting the development of ARDS, poten-
tial outcomes and providing insights into the manage-
ment of ARDS. Across these applications, the gradient 
boosting method and its variations proved to be very 
popular, being used in 24 of the studies. 12 (23.1%) arti-
cles employed multiple ML algorithms including gradi-
ent boosting-type algorithms: gradient boosting and its 
variations. Among those, Gradient boosting-type algo-
rithms had the best performance in 8 studies (66.7%), for 
example, Yang [40], Reamaroon [57] and Lazzarini [58]. 
The most common supervised ML algorithm is random 

Fig. 1  The PRISMA diagram for this review. The authors checked all records for eligibility. In a total of 243 studies identified from Google Scholar, 
EBSCO, PubMed and reference screening, 52 studies were included in this review
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Fig. 2  Pie chart of the articles studying the applications of Machine Learning in ARDS. Note that the total number is not 52 because some articles 
focused on more than one aspect

Fig. 3  Summary of the machine learning method from studies in our system review
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forest used in 17 studies, followed by logistic regression 
and extreme gradient boosting (XGBoost) in 13 studies.

In term of data used, the most popular data source is 
from private data collections, which was used in 30 stud-
ies (57.7%). Public and large data collections composed 
the rest of data usage. The most popular public data col-
lection is The Medical Information Mart for Intensive 
Care (MIMIC) and was used 12 times in two versions 3 
[34] and 4 [67] (23.1%). The eICU database [51] is also 
popular and was used in 9 studies (17.3%). Others nota-
ble data sources include the Secure Anonymised Data 
Linking (SAILS) Databank [42] with 4 appearances and 
the National Lung, Heart, and Blood Institute ARDS Net-
work (ARMA, ALVEOLI, and FACTT) [46] which was 
used 10 times across all versions. Even with large data 
collection like MIMIC and eICU, only 12 (23.1%) stud-
ies included more than 5000 samples (Fig. 5). The largest 
data collection is from the National Trauma Data Bank 
from the US used by Pearl, et  al., [26] with 1,438,035 
patients. Barakat, et  al., [72] used 1 million simulated 
patients based on MIMIC 3 database for their study. The 
simulation method was developed by Sharafutdinov [77]. 
This approach circumvents the need of cleaning the data, 
data protection and deidentification and handling miss-
ing and inconsistent data. It also allows limitless database 
in term of data size.

In 14 studies there was an attempt to develop algo-
rithms based on neural network architectures. The 
developed models based on neural network architecture 
such as ResNet-50 (CNN) and Dense-Ynet (DNN) were 
also tested with promising results such as with Jabbour 
in 2022 [63] and Yahyataba [71] in 2023. However, when 
competing with non-neural network models in Yang [40] 

in 2019, Izadi [62] in 2022, Xu [47] in 2021 and Wang 
[67] in 2023, neural networks showed no advantage in 
terms of ROC area under the curve (AUC) or accuracy. 
This might be due to the amount of data available for use 
in the neural network (Fig. 5), showcased clearly in Lam 
[66] 2022 study, developing XGBoost and RNN model on 
the relatively large database of 40,703 patients with RNN 
came out on top with AUC = 0.842.

There are 15 (28.8%) studies which employed explain-
ability in ML in some way (Fig.  6). The most popular 
explainability method was feature importance used in 13 
(87%) studies. Most of these studies did not specify how 
the feature importances were obtained. 6 studies used 
feature extraction tools: Shapley additive explanations 
(SHAP) and Local interpretable model-agnostic expla-
nations (LIME) to obtain the importance of all the fea-
tures that contributed to the results [49, 58, 65–67, 73]. 
In 2020, Sinha et  al. [46] used feature importance on 3 
different ML methods to determine the 6 most impact-
ful parameters which can be fed into the final ML algo-
rithms. The white-box approach of explainability was 
used by Wu et al. in 2022 [69] via an interpretable ran-
dom forest algorithm. Wang et  al. in 2023 [68] used 3 
different feature attraction methods SHAP, LIME and 
DALEX for their best-performing algorithm. They were 
also the only group that actively pursue explainability as 
the core feature of the final algorithm.

Discussion
This review aimed to highlight the usage of ML methods 
on ARDS and ARDS-related issues such as diagnosis and 
management. The vast majority of research showed good 
results within their performing metric, for example, all 

Fig. 4  Time scale of articles on Machine learning in ARDS application
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Fig. 5  Data size and performance comparison for different ML models. Blue: Studies on ARDS diagnosis, Red: Studies on prediction of ARDS. X-axis 
indicates time and the size of the circles represents the size of the database used in each study



Page 11 of 14Tran et al. Respiratory Research          (2024) 25:232 	

studies used AUC as a performing gauge and archived the 
AUC values of between 0.7 and 1. However, while most 
studies employed the k-fold validating technique and/or 
used separated cohorts for validation, only one study by 
Lazzarini et  al.[58] compared and validated the predic-
tion capability of the ML algorithm through clinicians.

XGBoost seems to be the most popular and success-
ful algorithm. This may be due to the size of the database 
used in these studies [24, 33, 40, 42, 48, 51, 57–59, 65, 66, 
69, 73]. While large public databases such as MIMIC and 
eICU were commonly used, the vast majority of research 
used less than 5000 samples. This may limit the viability 
of more advanced ML algorithm such as neural network 
and its variances. Additionally, ML algorithms especially 
non-neural network models, can perform well with lim-
ited data, having a large database can potentially pro-
vide a more stable and reliable final algorithm. The most 
advanced ML algorithm, neural network, also requires 
a larger database to increase its potential. However, col-
lecting patient data is meet with many difficulties in term 
of ethic and administrative control such as identifiability 
or patient consent. An interesting way to avoid this is by 
using virtual/simulated patients pioneered by Barakat 
[72]. However, whilst this method provided arbitrar-
ily large, cleaned and complete database, the realistic of 
the virtual patients must be thoroughly tested and justi-
fied before being used for ML model development. It is 
another layer of complexity added on top of the devel-
oped ML model which must be independently validated.

With the rise of applications of ML and AI in real 
life, medical law, regulations, and demand for transpar-
ency will require a larger degree of explainability on ML 

algorithms. However, the use of explainability methods 
in the reviewed articles seems to be an afterthought with 
only one research actively trying to create an explainable 
ML algorithm as one of their main goals [67]. Further-
more, there was no attempt to validate those explain-
able features with actual physicians and clinicians. With 
the growing impetus and demand for digital healthcare, 
more research in this area is required. For example, there 
is currently no method to quantify the effectiveness of 
explainability methods to clinicians that was utilised in 
the included papers. Future work also should verify the 
resulting ML algorithm and is explainability methods 
with actual physician and clinician as a key component of 
the research. Although a rigorous validating method was 
proposed by Amarasinghe et al. [78], there are currently 
few studies that fully utilise this method [78].

To bridge the gap between research and real-life appli-
cation, future research should focus on not only the 
performing metric of the ML algorithm such as AUC 
or accuracy but also on finding a clear explanation for 
the algorithm outcome. These should not be limited to 
graphical outputs such as those provided by SHAP or 
LIME but should other outputs (textual or numerical). 
Validating these explanations with clinicians and phy-
sicians should also be prioritised. We propose another 
validation step by seeking consensus with clinicians to 
validate the usability of future models.

The risk of bias was not formally reported in this review 
due to bias assessment tool such as Prediction model 
Risk of Bias Assessment Tool (PROBAST) is for predic-
tion model alone. However, in general, the characteristic 
of data used such as ethnicity or sex were unreported in 

Fig. 6  Pie chart identifies the percentage of explaination models in total reviewed articles
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all studies. Therefore, the risk of bias is high in all studies 
if PROBAST was used.

To develop more robust ML model, there is a need for a 
large, multinational, multi centres database. This database 
will help to reduce bias, increase representation in dif-
ferent ethnic and gender groups. Collaboration between 
clinician and data scientist is also vital to cross validate 
and evaluate the viability of developed model. One of 
the most important purposes of the reviewed studies is 
to further the knowledge about ARDS and thus provide a 
tool for clinician to improve patient’s condition and sur-
vivability. Therefore, a rigorous framework for assessing 
the effectiveness of explainability of ML model on end-
user is needed. The framework may contain series of sur-
veys and tests to evaluate clinicians’ performances with 
and without ML support and explanations. Such frame-
work would narrow the gap between academic study and 
real-world applications.

Conclusion
This systematic review captures the usage of ML in 
ARDS research. This is the most extensive review on this 
topic thus far with 52 articles included. However, due to 
the amount of area of research included, spanning 7 cat-
egories (Fig. 2), meta-analysis was not considered for this 
paper. This can be done in future review focusing on each 
category of ML application.

Machine learning has been proven to be useful in 
many aspects of ARDS including diagnosis, risk assess-
ment, mortality prediction and prognosis. To fully utilise 
the advantages of neural network algorithm, a database 
of more than 5000, ideally more than 10,000 patient 
records is required. With small databases of fewer than 
5000 records, extreme gradient boosting has the highest 
probability of success. Public databases such as MIMIC 
are ideal if used in conjunction with handpicked data 
to either provide a broader spectrum, or to validate the 
resulting algorithm emerged from such data. With such 
database, more advanced and powerful ML algorithm 
such as neural network, reinforcement learning and deep 
learning and be utilised and show their full potential.

In term of area of research, not a lot of research 
focused on how ARDS is currently managed (Fig.  2). 
More research could be done in this category such as in 
drug admission and ventilator setting as improvement in 
this area can vastly improve the mortality rate of patients. 
As the nature of this kind of the outcome of management 
research is more complex than prediction of ARDS or 
mortality research, this category of research would also 
benefit from lager database and more advanced algo-
rithm mentioned above.

In terms of explainability, while SHAP and LIME 
are popular choices, there is still a gap between 

understanding and utilising the results from such instru-
ments by data scientists compared to real clinicians. 
Therefore, to develop a machine learning model to truly 
support clinicians to tackle ARDS, there is still a lack of 
research on transparent and explainable models. Due to 
the complexity of ARDS in definition, recognition, and 
management, this is challenging. Future research and 
studies on machine learning applications in ARDS should 
focus more on the explainability and robustness of the 
model rather than the accuracy and sensitivity of the 
models.

Amarasinghe et al. [78] proposed a framework to quan-
tify the effectiveness of explainability method to clinician. 
This method involves a series of survey on how clinician’s 
opinion changed with and without explainability. Future 
research can ultilised this method to evaluate the result-
ing algorithm and explainability method. This can accel-
erate the acceptance and integration of ML into real life 
application. However, this method is time consuming 
due to the number of clinicians required and the num-
ber of surveys needed for this method to be statistically 
significant. Therefore, a more approachable framework 
that requires fewer resources, would be hugely benefi-
cial for future researches and can be integrated into more 
researches.
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