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Abstract

Aim Acute respiratory distress syndrome or ARDS is an acute, severe form of respiratory failure characterised by poor
oxygenation and bilateral pulmonary infiltrates. Advancements in signal processing and machine learning have led
to promising solutions for classification, event detection and predictive models in the management of ARDS.

Method In this review, we provide systematic description of different studies in the application of Machine Learn-
ing (ML) and artificial intelligence for management, prediction, and classification of ARDS. We searched the follow-
ing databases: Google Scholar, PubMed, and EBSCO from 2009 to 2023. A total of 243 studies was screened, in which,
52 studies were included for review and analysis. We integrated knowledge of previous work providing the state of art
and overview of explainable decision models in machine learning and have identified areas for future research.

Results Gradient boosting is the most common and successful method utilised in 12 (23.1%) of the studies. Due

to limitation of data size available, neural network and its variation is used by only 8 (15.4%) studies. Whilst all studies
used cross validating technique or separated database for validation, only 1 study validated the model with clini-

cian input. Explainability methods were presented in 15 (28.8%) of studies with the most common method is feature
importance which used 14 times.

Conclusion For databases of 5000 or fewer samples, extreme gradient boosting has the highest probability of suc-
cess. A large, multi-region, multi centre database is required to reduce bias and take advantage of neural network
method. A framework for validating with and explaining ML model to clinicians involved in the management of ARDS
would be very helpful for development and deployment of the ML model.
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Introduction

Acute respiratory distress syndrome (ARDS) is a com-
mon complication in adult general intensive care units
(ICUs) [1]. In 2016 a survey conducted in 459 ICUs
across 50 countries demonstrated that ARDS occurred
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practice is poor with absence of high-quality evidence
[2]. This may explain why there is a poor uptake of the
guidelines by clinicians. For example, the UK guidelines
recommend a low tidal volume of less than 8ml/kg and
a positive-end expository pressure (PEEP) of more than
12 ¢cmH,O [2]. However, only about 60% of patients
received 8ml/kg of tidal volume or less and more than
82% received less than 12cmH,O PEEP [1]. Huge prac-
tice variations are recognised and there is an urgent
need for evidence-based and standardised management
for ARDS in ICU.

Machine learning (ML) has been applied successfully
into other areas including natural language processing,
computer vision applications, and automatic speech
recognition. As a result, advancement has been made in
many areas from sports to robotic, from entertainment
to industry. Applications of ML have shown enormous
potential across several medical fields such as disease
prediction, clinical outcome prediction, diagnosis and
prognosis using various data modalities, including time
signals and medical imaging [3-18].

Although ML has the ability to recognise patterns
within large amount of data, many of these patterns are
imperceptible by human. These patterns can be used
in different ways to categorise or predict events [3].
However, to be successfully integrated into the health
care system, ML applications must aim to archive high
performance metric such as accuracy and achieve trust
from users towards clinical application. As a result, the
demand for better transparency in ML models in medi-
cine is essential for better understanding of the causal-
ity and relationship between input and output, and for
legal and ethical purposes [19-21].

The concept of interpretation or explainability in
machine learning is defined as the capability of the algo-
rithm to present and/or produce knowledge contained
inside the data so that it is perceptible and understand-
able by users [22]. Various explainability methods have
been used in medical care in general [23] and for ARDS
data in particular [24]. However, few studies have actu-
ally validated the effectiveness of these explainability
methods with direct involvement of clinicians [23].
There is also lack of evidence on which method is most
suitable for clinicians in terms of its explainability.

The main focus of this review is to identify studies
that has used machine learning methods on the man-
agement, prognosis and diagnosis of patients with
ARDS, reflect on usage of different database and data
gathering method, algorithms and their effectiveness.
The review also aims to highlight the state of explain-
ability in term of methods and usages, and performance
of different ML methods in ARDS.
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Method

Inclusion and exclusion criteria

Articles employing machine learning or artificial intelli-
gence addressed directly to the diagnosis, management,
risk assessment, prognosis or outcome of ARDS were
included in the review. The included articles can utilise
existing ML algorithm or create new algorithm based
on either classical ML method such as decision tree
or more advanced ones like neural network or both.
Protocol, commentaries, letters, abstract-only articles,
conference proceedings, non-English and non-peer
reviewed articles were excluded. Only studies using
exclusively human data were selected. Research using
paediatric patients was excluded.

Search strategy

An extensive literature search was performed in Pub-
med, Google scholar and EBSCO on July 2023. The
summary of the screening process is reported in the
PRISMA diagram (Fig. 1) A random snowball search
was also carried out using Google to identify any addi-
tional results. Keywords used for these searches include
“acute respiratory distress syndrome’YARDS’, “acute
lung injury’, “ALI’’machine learning” and’artificial
intelligence”. Boolean Operator “AND” and “OR” was
used for Pubmed and EBSCO searches. The reference
list of all results was also screened by title and abstract
for potentially relevant citations. The list of author con-
tributions to this paper is included.

All the search results were collected using their title
and abstract. The full-text version of these results was
used for screening using criteria in 2.1. Non-full-text
paper was excluded at this stage. This process was car-
ried out independently by TT and MT to eliminate bias
and disagreements were resolved with consensus from
all authors.

Results

Search results and selection process

Google Scholar search yielded 54 results after pre-
liminary screening. Three non-English articles were
excluded along with 2 not yet peer-reviewed results, 1
duplication and 27 irrelevant articles. One duplicated
paper was also excluded.

The search was repeated with the EBSCO and Pub-
med database, resulting in 88 articles and 85 articles
respectively. Finally, 52 articles were selected for review
matching all criteria listed in Inclusion and exclusion
criteria section (Table 1).
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Fig. 1 The PRISMA diagram for this review. The authors checked all records for eligibility. In a total of 243 studies identified from Google Scholar,
EBSCO, PubMed and reference screening, 52 studies were included in this review

Characteristics of the reviewed studies

Fifty-two articles between 2009 and 2023 were selected.
18 (34.6%) of these focused on prediction of ARDS
development in patients during hospitalisation. 14
(26.9%) publications articles were related to diagnostic
accuracy. 11 (21.2%) articles were focused on catego-
rizing patients with ARDS into groups or subgroups
based on severity or mortality. Five articles were related
to the use of ML to predict patient mortality or create
more suitable management for patients. There is a sin-
gle (1.9%) article on the prognosis or health trajectory
of ARDS and 1 (1.9%) article on using ML to model the
condition of patients with ARDS. This can be seen in
(Fig. 2).

In summary, there are 49 different ML systems
deployed. The most common algorithm is the random
forest with 17 (32.7%) usages. A different variation of
gradient boosting algorithms is also very common with
13 (25%) XGBoost, 4 (7.7%) adaboost, and 7 (13.5%) oth-
ers. Neural networks methods and its variances were also
albeit less frequent with 8 (15.4%) neural network (NN),
1 (1.9%) deep neural network (DNN), 2 (3.8%) recurrent
neural network (RNN) and 3 (5.8%) convolutional neural
network (CNN) for 14 (26.9%) in total. Existed ML-based
models were also tested for example ALI sniffer, Dense-
Ynet and ResNet-50 (Fig. 3).

The definition and phenotypes of ARDS were defined
recently using the Berlin definition and updated in 2023
[76]. Therefore, there were various attempts to establish

a more rigorous subphenotype using the ML algorithm
over the years. Unsupervised algorithms were used with
some success. Sinha [31] used latent class analysis to sep-
arate patients into hyper and hypo-inflammatory states.
Zhang et al.[38] in 2019 and Liu et al. [53] in 2021 both
tried to categorise ARDS patients into 3 subphenotypes
using tree-based gradient boosting and k-mean method
respectively. Although the ML algorithm has shown great
potential to define ARDS subphenotypes, only 6 (50%)
out of 12 studies in severity and subphenotype topics
used this method.

There has been a surge in ARDS research since 2019
most likely in response to the COVID-19 pandemic.
44 (84.6%) studies were published between 2019 and
June 2023 of which 5 are directly used data from Covid
patients (Fig. 4).

Supervised ML algorithms are widely used for many
applications such as verifying subphenotypes, improving
diagnoses, predicting the development of ARDS, poten-
tial outcomes and providing insights into the manage-
ment of ARDS. Across these applications, the gradient
boosting method and its variations proved to be very
popular, being used in 24 of the studies. 12 (23.1%) arti-
cles employed multiple ML algorithms including gradi-
ent boosting-type algorithms: gradient boosting and its
variations. Among those, Gradient boosting-type algo-
rithms had the best performance in 8 studies (66.7%), for
example, Yang [40], Reamaroon [57] and Lazzarini [58].
The most common supervised ML algorithm is random
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Fig. 2 Pie chart of the articles studying the applications of Machine Learning in ARDS. Note that the total number is not 52 because some articles

focused on more than one aspect
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forest used in 17 studies, followed by logistic regression
and extreme gradient boosting (XGBoost) in 13 studies.

In term of data used, the most popular data source is
from private data collections, which was used in 30 stud-
ies (57.7%). Public and large data collections composed
the rest of data usage. The most popular public data col-
lection is The Medical Information Mart for Intensive
Care (MIMIC) and was used 12 times in two versions 3
[34] and 4 [67] (23.1%). The eICU database [51] is also
popular and was used in 9 studies (17.3%). Others nota-
ble data sources include the Secure Anonymised Data
Linking (SAILS) Databank [42] with 4 appearances and
the National Lung, Heart, and Blood Institute ARDS Net-
work (ARMA, ALVEOLI, and FACTT) [46] which was
used 10 times across all versions. Even with large data
collection like MIMIC and eICU, only 12 (23.1%) stud-
ies included more than 5000 samples (Fig. 5). The largest
data collection is from the National Trauma Data Bank
from the US used by Pearl, et al., [26] with 1,438,035
patients. Barakat, et al.,, [72] used 1 million simulated
patients based on MIMIC 3 database for their study. The
simulation method was developed by Sharafutdinov [77].
This approach circumvents the need of cleaning the data,
data protection and deidentification and handling miss-
ing and inconsistent data. It also allows limitless database
in term of data size.

In 14 studies there was an attempt to develop algo-
rithms based on neural network architectures. The
developed models based on neural network architecture
such as ResNet-50 (CNN) and Dense-Ynet (DNN) were
also tested with promising results such as with Jabbour
in 2022 [63] and Yahyataba [71] in 2023. However, when
competing with non-neural network models in Yang [40]

in 2019, Izadi [62] in 2022, Xu [47] in 2021 and Wang
[67] in 2023, neural networks showed no advantage in
terms of ROC area under the curve (AUC) or accuracy.
This might be due to the amount of data available for use
in the neural network (Fig. 5), showcased clearly in Lam
[66] 2022 study, developing XGBoost and RNN model on
the relatively large database of 40,703 patients with RNN
came out on top with AUC=0.842.

There are 15 (28.8%) studies which employed explain-
ability in ML in some way (Fig. 6). The most popular
explainability method was feature importance used in 13
(87%) studies. Most of these studies did not specify how
the feature importances were obtained. 6 studies used
feature extraction tools: Shapley additive explanations
(SHAP) and Local interpretable model-agnostic expla-
nations (LIME) to obtain the importance of all the fea-
tures that contributed to the results [49, 58, 65—-67, 73].
In 2020, Sinha et al. [46] used feature importance on 3
different ML methods to determine the 6 most impact-
ful parameters which can be fed into the final ML algo-
rithms. The white-box approach of explainability was
used by Wu et al. in 2022 [69] via an interpretable ran-
dom forest algorithm. Wang et al. in 2023 [68] used 3
different feature attraction methods SHAP, LIME and
DALEX for their best-performing algorithm. They were
also the only group that actively pursue explainability as
the core feature of the final algorithm.

Discussion

This review aimed to highlight the usage of ML methods
on ARDS and ARDS-related issues such as diagnosis and
management. The vast majority of research showed good
results within their performing metric, for example, all
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studies used AUC as a performing gauge and archived the
AUC values of between 0.7 and 1. However, while most
studies employed the k-fold validating technique and/or
used separated cohorts for validation, only one study by
Lazzarini et al.[58] compared and validated the predic-
tion capability of the ML algorithm through clinicians.
XGBoost seems to be the most popular and success-
ful algorithm. This may be due to the size of the database
used in these studies [24, 33, 40, 42, 48, 51, 57-59, 65, 66,
69, 73]. While large public databases such as MIMIC and
eICU were commonly used, the vast majority of research
used less than 5000 samples. This may limit the viability
of more advanced ML algorithm such as neural network
and its variances. Additionally, ML algorithms especially
non-neural network models, can perform well with lim-
ited data, having a large database can potentially pro-
vide a more stable and reliable final algorithm. The most
advanced ML algorithm, neural network, also requires
a larger database to increase its potential. However, col-
lecting patient data is meet with many difficulties in term
of ethic and administrative control such as identifiability
or patient consent. An interesting way to avoid this is by
using virtual/simulated patients pioneered by Barakat
[72]. However, whilst this method provided arbitrar-
ily large, cleaned and complete database, the realistic of
the virtual patients must be thoroughly tested and justi-
fied before being used for ML model development. It is
another layer of complexity added on top of the devel-
oped ML model which must be independently validated.
With the rise of applications of ML and Al in real
life, medical law, regulations, and demand for transpar-
ency will require a larger degree of explainability on ML

algorithms. However, the use of explainability methods
in the reviewed articles seems to be an afterthought with
only one research actively trying to create an explainable
ML algorithm as one of their main goals [67]. Further-
more, there was no attempt to validate those explain-
able features with actual physicians and clinicians. With
the growing impetus and demand for digital healthcare,
more research in this area is required. For example, there
is currently no method to quantify the effectiveness of
explainability methods to clinicians that was utilised in
the included papers. Future work also should verify the
resulting ML algorithm and is explainability methods
with actual physician and clinician as a key component of
the research. Although a rigorous validating method was
proposed by Amarasinghe et al. [78], there are currently
few studies that fully utilise this method [78].

To bridge the gap between research and real-life appli-
cation, future research should focus on not only the
performing metric of the ML algorithm such as AUC
or accuracy but also on finding a clear explanation for
the algorithm outcome. These should not be limited to
graphical outputs such as those provided by SHAP or
LIME but should other outputs (textual or numerical).
Validating these explanations with clinicians and phy-
sicians should also be prioritised. We propose another
validation step by seeking consensus with clinicians to
validate the usability of future models.

The risk of bias was not formally reported in this review
due to bias assessment tool such as Prediction model
Risk of Bias Assessment Tool (PROBAST) is for predic-
tion model alone. However, in general, the characteristic
of data used such as ethnicity or sex were unreported in
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all studies. Therefore, the risk of bias is high in all studies
if PROBAST was used.

To develop more robust ML model, there is a need for a
large, multinational, multi centres database. This database
will help to reduce bias, increase representation in dif-
ferent ethnic and gender groups. Collaboration between
clinician and data scientist is also vital to cross validate
and evaluate the viability of developed model. One of
the most important purposes of the reviewed studies is
to further the knowledge about ARDS and thus provide a
tool for clinician to improve patient’s condition and sur-
vivability. Therefore, a rigorous framework for assessing
the effectiveness of explainability of ML model on end-
user is needed. The framework may contain series of sur-
veys and tests to evaluate clinicians’ performances with
and without ML support and explanations. Such frame-
work would narrow the gap between academic study and
real-world applications.

Conclusion

This systematic review captures the usage of ML in
ARDS research. This is the most extensive review on this
topic thus far with 52 articles included. However, due to
the amount of area of research included, spanning 7 cat-
egories (Fig. 2), meta-analysis was not considered for this
paper. This can be done in future review focusing on each
category of ML application.

Machine learning has been proven to be useful in
many aspects of ARDS including diagnosis, risk assess-
ment, mortality prediction and prognosis. To fully utilise
the advantages of neural network algorithm, a database
of more than 5000, ideally more than 10,000 patient
records is required. With small databases of fewer than
5000 records, extreme gradient boosting has the highest
probability of success. Public databases such as MIMIC
are ideal if used in conjunction with handpicked data
to either provide a broader spectrum, or to validate the
resulting algorithm emerged from such data. With such
database, more advanced and powerful ML algorithm
such as neural network, reinforcement learning and deep
learning and be utilised and show their full potential.

In term of area of research, not a lot of research
focused on how ARDS is currently managed (Fig. 2).
More research could be done in this category such as in
drug admission and ventilator setting as improvement in
this area can vastly improve the mortality rate of patients.
As the nature of this kind of the outcome of management
research is more complex than prediction of ARDS or
mortality research, this category of research would also
benefit from lager database and more advanced algo-
rithm mentioned above.

In terms of explainability, while SHAP and LIME
are popular choices, there is still a gap between
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understanding and utilising the results from such instru-
ments by data scientists compared to real clinicians.
Therefore, to develop a machine learning model to truly
support clinicians to tackle ARDS, there is still a lack of
research on transparent and explainable models. Due to
the complexity of ARDS in definition, recognition, and
management, this is challenging. Future research and
studies on machine learning applications in ARDS should
focus more on the explainability and robustness of the
model rather than the accuracy and sensitivity of the
models.

Amarasinghe et al. [78] proposed a framework to quan-
tify the effectiveness of explainability method to clinician.
This method involves a series of survey on how clinician’s
opinion changed with and without explainability. Future
research can ultilised this method to evaluate the result-
ing algorithm and explainability method. This can accel-
erate the acceptance and integration of ML into real life
application. However, this method is time consuming
due to the number of clinicians required and the num-
ber of surveys needed for this method to be statistically
significant. Therefore, a more approachable framework
that requires fewer resources, would be hugely benefi-
cial for future researches and can be integrated into more
researches.
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