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Abstract
Background  Community-acquired pneumonia (CAP) is a common and serious condition that can be caused by 
a variety of pathogens. However, much remains unknown about how these pathogens interact with the lower 
respiratory commensals, and whether any correlation exists between the dysbiosis of the lower respiratory microbiota 
and disease severity and prognosis.

Methods  We conducted a retrospective cohort study to investigate the composition and dynamics of sputum 
microbiota in patients diagnosed with CAP. In total, 917 sputum specimens were collected consecutively from 
350 CAP inpatients enrolled in six hospitals following admission. The V3-V4 region of the 16 S rRNA gene was then 
sequenced.

Results  The sputum microbiota in 71% of the samples were predominately composed of respiratory commensals. 
Conversely, 15% of the samples demonstrated dominance by five opportunistic pathogens. Additionally, 5% of the 
samples exhibited sterility, resembling the composition of negative controls. Compared to non-severe CAP patients, 
severe cases exhibited a more disrupted sputum microbiota, characterized by the highly dominant presence of 
potential pathogens, greater deviation from a healthy state, more significant alterations during hospitalization, 
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Introduction
Community-acquired pneumonia (CAP) is an acute 
respiratory infection acquired outside the hospital, 
affecting alveoli and distal airways, with variable symp-
toms including cough, fever, dyspnea, and expectoration 
[1]. The incidence of lower respiratory tract infection 
(LRI), which includes CAP, was 5,837 cases and 6,832 
cases per 100,000 population among females and males, 
respectively [2]. It resulted in high morbidity and mor-
tality rates in all age groups, especially in children and 
the elderly [2]. LRI remained the fourth leading cause 
of global years of life lost in 2019 before the COVID-19 
pandemic [3]. 

Recent culture-independent studies revealed that the 
respiratory tract was not sterile in healthy individuals [4], 
and the lower respiratory tract microbiota contributed 
to the ecological and immunological homeostasis of the 
lung, influencing lung health and susceptibility to infec-
tions [5]. Although pathogen invasion is considered the 
cause of CAP, the causative agents are detected in fewer 
than 50% of CAP patients [4]. Studies have identified sig-
nificant differences in the respiratory microbiota between 
CAP patients and healthy individuals, with the former 
being less diverse and enriched with pathogenic microbes 
such as Pseudomonas, Staphylococcus, and Klebsiella 
[6–9]. Additionally, the respiratory microbiota may influ-
ence pneumonia susceptibility via impeding colonization 
and immunological modulation [10, 11]. However, previ-
ous studies primarily focused on high-risk populations, 
such as human immunodeficiency virus (HIV) patients, 
lung transplant recipients, and children, and often with 
a small size of patients [6–8]. The association between 
respiratory microbiota and CAP in immunocompetent 
adults remains unclear. The interpretation is further 
complicated by diverse pathogens, the use of antibiotics, 
intubation, and corticosteroid therapies in CAP patients. 
Therefore, a comprehensive microbiota study in the gen-
eral population, especially those untreated, is needed.

The respiratory microbiota is heterogeneous due 
to various host and environmental factors, including 
genetic background, mode of birth, feeding type, and 
inhaled pollutants [12–14]. Thus, clarifying the role of 
a specific variable in shaping the respiratory microbiota 

is challenging in cross-sectional studies. In contrast, 
longitudinal studies can pinpoint particular microbiota 
changes associated with a specific condition by con-
trolling other covariates. Although longitudinal studies 
have been conducted on lung transplantation, chronic 
obstructive pulmonary disease (COPD), cystic fibrosis, 
COVID-19, and ventilator-associated pneumonia [15–
19], studies on the lower respiratory microbiota in CAP 
patients are limited. Studying microbiota changes during 
the disease process will provide insights into the role of 
the respiratory microbiota in disease development.

In this study, we collected time-series sputum samples 
from CAP patients starting from the first day after admis-
sion, prior to therapy administration. We identified a cor-
relation between the composition and dynamics of the 
sputum microbiota and disease severity, revealing dis-
tinct microbiota compositions in patients with different 
pathogens. This suggests that the dysbiosis of the sputum 
microbiota could potentially serve as a valuable diagnos-
tic and prognostic marker for pneumonia. Furthermore, 
it presents a possible target for intervention in the man-
agement of the condition.

Results
Overview of the samples and sequencing data
Longitudinal sputum samples (1,065) were collected from 
367 inpatients diagnosed with CAP in six hospitals across 
representative geographical locations in China. Following 
quality filtering, 917 samples from 350 patients and 25 
negative controls (NCs) were used for subsequent analy-
sis (Fig.  1A-C). The composition of sputum microbiota 
of CAP patients was notably different from that of NCs 
(PERMANOVA, R2 = 0.2, p = 0.001, Fig. S1A), and the five 
most abundant taxa in NCs (Sphingomonas, Blastomo-
nas, Methylobacterium, Bosea, and Propionibacterium, 
Fig. S1B) comprised 53.1% of all NCs sequence, while 
comprising 2.7% of all sequence in CAP samples, indicat-
ing minimal background contamination.

The median days from symptoms onset to admis-
sion were six (IQR 3–7). Forty-one (12.0%) patients had 
chronic pulmonary diseases, including COPD, asthma, 
and bronchiectasis. Before admission, 66 (19.5%) patients 
took antibiotics within five days, and 15 (5.5%) patients 

and sparser bacterial interactions. The sputum microbiota on admission demonstrated a moderate prediction of 
disease severity (AUC = 0.74). Furthermore, different pathogenic infections were associated with specific microbiota 
alterations. Acinetobacter and Pseudomonas were more abundant in influenza A infections, with Acinetobacter was also 
enriched in Klebsiella pneumoniae infections.

Conclusion  Collectively, our study demonstrated that pneumonia may not consistently correlate with severe 
dysbiosis of the respiratory microbiota. Instead, the degree of microbiota dysbiosis was correlated with disease 
severity in CAP patients.

Keywords  Community-acquired pneumonia, Sputum microbiota, 16S rRNA, Longitudinal study, Disease severity
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used immunosuppressants. Fifty-five (16.3%) patients 
were diagnosed with severe cases and seven of them died. 
Notably, five clinical severity indicators, including the 
use of invasive mechanical ventilation, CURB65 scores, 
pneumonia severity index (PSI) scores, duration of oxy-
gen supplementation, and length of hospital stay, were 
all significantly higher in severe cases than in non-severe 
cases (Fisher’s exact test or Wilcoxon signed-rank test, 
p < 0.05). More demographic and clinical information was 
provided in Table  1 and Table S1. Meanwhile, 876 spu-
tum microbiotas in Chinese healthy individuals (with no 
acute or chronic respiratory diseases) from three previ-
ous studies were used as the healthy controls (HCs) in the 
study (Table S2 and S3) [20–22]. 

Sputum microbiota composition in CAP patients
Six commensal microbes that are frequently observed in 
the respiratory tract, including Streptococcus, Veillonella, 
Neisseria, Prevotella, Rothia, and Haemophilus, showed 
the highest relative abundance and accounted for 51.2% 
of CAP microbial reads, 38.0% of HC microbial reads, 
and 1.4% in NCs (Fig. 1D). The sputum microbiota diver-
sity and composition in CAP patients were significantly 
different from HCs (PERMANOVA, mean R2 = 0.13, 
p < 0.001; Fig. S1A). Possible pathogens, including Pseu-
domonas, Enterobacteriaceae, Sphingomonas, and Steno-
trophomonas, were significantly enriched in CAP samples 
compared to all three HC populations (Fig. S1C).

The major component of sputum microbiotas in CAP 
patients showed significant heterogeneity among dif-
ferent individuals (Fig.  1D). Employing clustering algo-
rithms on the microbiota data revealed the presence 
of nine distinct clusters (CSs) (Fig.  2A, Fig. S2A). The 
robustness of these clusters was confirmed by bootstrap 
analysis (Fig. S2B, mean Rand index = 0.85, see Supple-
mentary methods). These CSs could be further classified 
into three microbiota types: CS2, CS3, and CS4 (CS2-4), 
which were found in 71.1% of CAP patients, exhibited 
higher alpha diversity than other clusters, except for CS6 
(Fig. 2B). CS2-4 were dominated by commensal bacteria 
(Fig. 2A) and showed higher similarity to healthy controls 
(Fig. 2C). In contrast, CS1, CS5, and CS7-9 (CS1,5,7,8,9) 
were dominated by possible pathogens. They had lower 
alpha diversity, higher dominant bacteria abundance, 
and were more distinct from HCs compared to CS2-4 
(Fig.  2B-C, Fig. S2C). Microbiotas in CS6 exhibited the 
highest similarity to NCs and were more prevalent in 
specific individuals than randomly distributed (Fig.  2D, 
Fig. S2D-F), suggesting that the sputum samples of CS6 
were either relatively sterile or challenging to collect. 
Additionally, CS6 did not appear to be detected more fre-
quently in the later period of hospitalization, suggesting 
no association with post-admission treatment (Fig. S2G). 
Notably, the severity rate (incidence of severe condi-
tion) in CS2-4 patients was 12.9%, similar to CS6 (4.7%, 
Fisher’s exact test, p = 0.213), but significantly lower than 
CS1,5,7,8,9 (36.4%, Fisher’s exact test, p < 0.001).

Fig. 1  Study design and sputum microbiota composition. (A) Geographic distribution of the samples. n: sample size. (B) Sampling strategy. d: days 
after admission. (C) Summary of the collected samples. (D) Abundance of bacteria in CAP patients and negative controls. The top 15 bacteria with the 
highest average relative abundance in CAP patients are shown. Bacteria that are more enriched in CAP patients than in all three HCs are labeled in red, 
while those enriched in HCs are labeled in blue
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Association between sputum microbiota and disease 
severity
We then investigated the association between clinical 
and demographic features and the sputum microbiota. 
To minimize the impact of antibiotic use and other medi-
cal interventions after admission, only 238 samples col-
lected on the first day after admission were used for the 
subsequent analyses. We found that disease severity 
(diagnosed by the clinician, see Methods), as well as five 
clinical indicators that correlated with disease severity, 
including CURB65 scores, PSI scores, duration of oxy-
gen supplementation, length of hospital stay, and clini-
cal outcome, were all significantly correlated with the 

sputum microbiota, after controlling for the possible 
confounders (Table  1, confounders: variables 1–10). In 
individual geographic sites, the correlation with disease 
severity remained statistically significant in Wuhan, 
with the largest sample size (n = 142, PERMANOVA, 
R2 = 0.021, p < 0.05), suggesting that the correlation was 
not influenced by the differences in patient enrollment 
across various geographic locations. Notably, the use of 
antibiotics and immunosuppressive drugs before admis-
sion, as well as days from onset, showed no significant 
impact on the microbiota composition (Table  1). This 
might be attributed to the limited sample size in this 
study. Nevertheless, variables 1–10 in Table  1 were all 

Table 1  Metadata of study subjects and their correlations with the sputum microbiota on admission
All CAP subjects (n = 350) CAP subjects with day1 samples (n = 238)

Variables Median (IQR)/
n (%)

No. of subjects Median (IQR)/
n (%)

No. of subjects R2 (uni)c R2 (multi)d

1. Age 58 (41–69) 303 58(43–70) 211 0.038**
2. Sex, male 207(66.6) 311 155(69.2) 224 0.003
3. BMI 22.5 (20.6–24.5) 339 22.5(20.3–24.5) 230 0.001
4. Current smoker 94 (32.0) 294 70(32.7) 214 0.002
5. Chronic pulmonary diseasea 41 (12.0) 341 33(14.3) 231 0.005
6. Antibiotic use (before admission), 66 (19.5) 338 48(20.9) 230 0.004
7. Immunosuppressant use (before admission) 15 (5.5) 275 7(3.5) 200 0.008
8. Days between onset and admission 6 (3–7) 284 7 (4–7) 192 0.009
9. City
Wuhan 161 (46.0) 142 (59.7)
Harbin 70 (20.0) 26 (10.9)
Xi’an 48(13.7) 350 42 (17.7) 238 0.138**
Shenzhen 44 (12.6) 15 (6.3)
Nanjing 22 (6.3) 10 (4.2)
Fuzhou 5 (1.4) 3 (1.3)
10. Possible pathogensb

Bacteria 90 (39.6) 227 58 (36.0) 161 0.043
Viruses 88 (38.8) 67 (41.6)
Mix 38 (16.7) 26 (16.1)
11. Severity, severe 55 (16.3) 337 39(17.0) 230 0.030** 0.012*
12. Invasive mechanical ventilation 18 (5.7) 314 13(5.7) 227 0.011** 0.009
13. CURB65 score
0 170 (49.9) 108 (46.6)
1 118 (34.6) 341 82 (35.3) 232 0.021** 0.018*
2 44 (12.9) 35 (15.1)
3 7 (2.1) 6 (2.6)
4 2 (0.1) 1 (0.4)
14. PSI score 58.5 (33–82) 338 64 (41.5–84) 231 0.012* 0.016*
15. Duration of oxygen supplementation 1 (0–9) 305 3.5(0-9.25) 220 0.021** 0.033*
16. Length of hospital stay 11 (8–16) 130 10.5 (8–15) 68 0.015* 0.022*
17. Clinical outcome, death 7 (2.1) 339 7(3.0) 230 0.023* 0.021*
a Chronic pulmonary disease includes COPD, asthma, and bronchiectasis;
b The pathogens identified through the FTD assay in the initial positive sample collected within three days after admission for each subject. Mix represents bacterial-
viral coinfection;
c R2 (uni) denotes the proportion of variance explained by the variable in the univariate PERMANOVA analysis of 238 CAP sputum samples on admission
d R2 (multi) denotes the proportion of variance explained by each patient’s clinical status indicators (variables 11–17) in the multivariate PERMANOVA analysis of 238 
CAP sputum samples on admission, adjusted for all the possible confounders (variables 1–10)

* p.adj < 0.05, ** p.adj < 0.01, *** p.adj < 0.001
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included as covariates whenever applicable in subsequent 
multivariate analyses.

First, we found that the alpha diversity of sputum 
microbiotas in non-severe patients was less deviated 
from the three healthy cohorts compared to severe 
patients (Fig. 3A). Moreover, the microbiotas in 53.8% of 
severe patients were dominated by bacteria with abun-
dances greater than 50%, whereas the fraction was 22.0% 
and 0% in non-severe patients and healthy individuals, 
respectively (Fig.  3B). Additionally, dominant bacteria 
with abundances greater than 50% comprised more pos-
sible pathogens, especially in severe patients (Fig. 3C).

The composition of sputum microbiota differed con-
siderably between severe and non-severe patients (mul-
tivariate PERMANOVA R2 = 0.02, p < 0.05; Fig.  3D), 
which were both distinct from healthy individuals (PER-
MANOVA, p < 0.001; Fig. S3A). Microbiotas in severe 
patients were more disrupted relative to healthy indi-
viduals than those in non-severe patients (Fig. 3E). LEfSe 
analysis revealed increased abundance of possible patho-
gens, including Enterobacteriaceae, Acinetobacter, and 
Enterococcus in severe cases, while commensal bacteria, 
including Haemophilus, Neisseria, and Prevotella were 
more abundant in non-severe cases (p < 0.05, Fig.  3F). 
MaAsLin2 analysis identified enrichment of Enterobac-
teriaceae in severe cases, and its abundance was also 
positively correlated with the duration of oxygen sup-
plementation, while adjusting for covariates (Fig. S3B). 
Additionally, a classifier utilizing the L1 regularized logis-
tic regression model could distinguish the severe cases 

from non-severe cases using microbiota with moderate 
accuracy (AUC = 0.74; Fig. 3G). Key features selected for 
identifying severe cases included high abundances of 
Enterobacteriaceae and Corynebacterium, along with a 
low abundance of Neisseria. Furthermore, the analysis of 
patients from individual cities confirmed the enrichment 
of Enterobacteriaceae in severe patients (in Wuhan), sug-
gesting that the identified signature was not an artifact 
due to variations in the patients enrolled from different 
cities.

The functional potential of the sputum microbiota 
was predicted using PICRUSt analysis [23]. Five of the 
top 10 pathways enriched in the severe cases (MaAs-
Lin2 analysis) were related to menaquinol biosynthesis 
(Fig. S3C and D), with all five pathways contributed by 
Enterobacteriaceae. Menaquinones are involved in the 
post-translational modifications of proteins needed for 
blood coagulation [24], and their dysfunction has been 
proposed as a risk factor for the severity of CAP [25, 26]. 
Meanwhile, four pathways involving the fermentation of 
butanoate, primarily contributed by Porphyromonas and 
Fusobacteria, were enriched in non-severe cases (Fig. 
S3E). Butanoate has been shown to enhance T cell pro-
liferation and activation while suppressing inflammatory 
reactions [27, 28]. 

Dynamics of the sputum microbiota and its association 
with the disease severity
We further investigated how microbiota dynamics var-
ied between non-severe cases and severe cases. First, the 

Fig. 2  The composition of sputum microbiota clusters in CAP patients. (A) The compositions of bacteria in different clusters. Bacteria with average 
relative abundances greater than 5% in at least one cluster are shown. The sample numbers in each cluster and NCs were labeled above the figure. (B) 
Shannon index of each cluster and HCs. (C) JSD distance between different CAP clusters and healthy individuals. The microbiota composition of the three 
HC groups was averaged and used as the HC to calculate the distance. (D) JSD distance between different CAP clusters and NCs. In B and C, statistical 
significance was determined by comparing each cluster with all the HCs, and the color of the plot in B, C, and D denotes the proportion of severe cases 
in each CAP cluster. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001
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alpha diversity of microbiota in non-severe cases was 
significantly higher than that in severe cases at the first 
three time points (Fig.  4A), with no significant differ-
ence observed between different time points within the 
same group. Second, severe cases showed a larger longi-
tudinal change in the microbiota composition (Fig.  4B), 
becoming more deviated from the initial state during 
hospitalization (Fig. 4C). Third, neither the severe nor the 
non-severe patients’ sputum microbiota altered toward a 
healthy state during hospitalization (Fig. S4A).

Then, we explored the CS transition pattern between 
Day 1 and Day 5, which encompassed the largest num-
ber of sample pairs (33 severe cases and 172 non-severe 
cases). First, cluster switching occurred more frequently 
in severe cases (66.7% vs. 43.6%, Fisher’s exact test, 
p < 0.05, Fig.  4D). Furthermore, transmissions between 
different CSs were likely non-random, as all three CS8 
samples on Day 1 switched to CS5 on Day 5 in severe 

cases, whereas other CSs were rarely transmitted to CS5 
(100% vs. 10.5%, Fisher’s exact test, p < 0.01, Fig.  4D). 
Specifically, all those three CS8 samples were dominated 
by Enterobacteriaceae (abundance > 62.8%) on Day 1, 
with abundance decreasing to less than 28.1% on Day 
5, while Acinetobacter increased from less than 1.2% 
to more than 54% (NJ17037, NJ17043, and NJ17054 in 
Fig. 4E). Besides, all six severe patients with CS5 micro-
biota on Day 5 received invasive mechanical ventilation 
during hospitalization, suggesting that the expansion of 
Acinetobacter might be associated with secondary infec-
tion following the use of invasive mechanical ventila-
tion. However, not all intubated patients transmitted to 
CS5 (6 out of 11; Fig. 4F) despite that the probability is 
much higher than that in non-intubated patients (54.6% 
vs. 2.1%, Fisher’s exact test, p < 0.01).

To explore the association between the dynamics 
of microbial interaction and disease severity in CAP, 

Fig. 3  Difference in the sputum microbiota between CAP patients with varying degrees of severity and healthy individuals. (A) Shannon index 
of the microbiota of CAP patients on admission and healthy individuals. (B) Distribution of the abundance of the predominant bacterium in CAP patients 
and HCs. The y-axis indicates the proportion of patients with a dominating bacterium whose abundance is greater than that indicated on the x-axis. The 
number of patients with a dominating bacterium whose abundance is greater than 0, 25%, 50%, 75%, and 100% is shown below the x-axis. The p-value 
was calculated by log-rank test. (C) Proportion of dominant bacteria in CAP patients and HCs. Bacterial genera and families containing at least one known 
(opportunistic) pathogen, are highlighted with red boxes. The numbers in brackets on the x-axis indicate the number of samples. A list of pathogenic 
bacteria is provided in Table S4. Samples with dominating bacterium abundance higher than 50% and lower than 50% were shown separately. (D) PCoA 
plot of samples from severe and non-severe patients based on the JSD distance. R2 was calculated by PERMONAVA analysis. (E) JSD distance to healthy 
individuals of severe and non-severe CAP patients. The microbiota composition of the three HC groups was averaged and used as the HC to calculate the 
distance. (F) Bacteria correlated with the disease severity identified by LEfSe (LDA score > 4, p < 0.05). (G) ROC curve for the disease severity classifier based 
on the L1 regularized logistic regression model. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001
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Fig. 4 (See legend on next page.)
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correlation networks were constructed for samples col-
lected at different time points and in different groups. 
We found that the interactions between bacteria were 
remarkably sparser (with a small number of edges and 
degrees in the network) in severe patients than in non-
severe patients at all time points (Fig.  4G, Fig. S4B). 
Meanwhile, we noted that the network contained more 
potential pathogens, such as Enterobacteriaceae, in 
severe patients compared to non-severe patients and HCs 
(Fig. S4B and C), suggesting a possible dysbiotic state of 
the sputum microbiota in severe patients. Furthermore, 
the number of network connections in the severe group 
decreased markedly but remained unchanged in the 
non-severe group, indicating that the sputum microbiota 
in severe patients may become more disordered during 
hospitalization.

Sputum microbiotas varied between patients infected by 
different pathogens
Possible pathogens were identified in 548 samples from 
256 patients by the FTD® Respiratory Pathogens 33 assay 
(Fig.  5A). Notably, there was good consistency between 
the result of 16  S rRNA gene sequencing and the FTD 
assay (Fig. S5A). To avoid secondary infection, only 216 
patients with a positive FTD result within the first three 
days after admission were used in subsequent analy-
ses (11 patients positive for Pneumocystis jirovecii were 
excluded due to the small sample size). Ninety patients 
were suspected to be infected by at least one bacte-
rial pathogen, 88 patients were suspected to be infected 
by viruses, and Thirty-eight patients were coinfected by 
both bacterial and viral pathogens (mix). We observed 
a significant difference in the microbiota composition 
between bacterial and viral infections, as well as between 
viral and mixed infections, and microbiotas under the 
three conditions were all different from that in HCs 
(PERMANOVA, p < 0.05, Fig. S5B), with the bacterial 
infection samples showed greater deviations (Fig.  5B). 
Different bacteria were enriched in three distinct types 
of infections, whereas some commensal bacteria, such 
as Fusobacterium, were significantly depleted in all three 
types (Fig. S5C).

We then classified the infections into subgroups 
based on the pathogen detected, considering only those 

infecting more than fifteen patients (Rhinovirus, Myco-
plasma pneumoniae, Klebsiella pneumoniae, and Influ-
enza A) after excluding coinfection samples. Out of 18 
patients detected with Mycoplasma pneumoniae, only 
three exhibited a predominance of Mycoplasma in their 
sputum microbiota (CS7, median Mycoplasma abun-
dance = 42.4%), while the remaining samples were domi-
nated by respiratory commensals (14 from CS2-4, one 
dominated by Lautropia, median Mycoplasma abun-
dance = 2.6%). Similarly, only one of the 18 Klebsiella 
pneumoniae-positive patients was assigned to Entero-
bacteriaceae-dominant CS5, indicating that the patho-
gen was not obligatory as the predominant bacterium. 
The microbiota composition (excluding the pathogen 
itself ) in all four infections differed from that in HCs 
(PERMANOVA, p < 0.05, Fig. S5D). Although no signifi-
cant difference in alpha diversity was observed between 
patients infected with different pathogens (Fig. S5E), the 
microbiota alterations relative to the HCs in Mycoplasma 
pneumoniae infections was less significant than in other 
infections (Fig. 5C). Specifically, we noted that rhinovirus 
infections were enriched with Enterococcus and Stenotro-
phomonas, influenza A infections with Acinetobacter and 
Pseudomonas, Mycoplasma pneumoniae with Rothia and 
Carnobacteriaceae, while Acinetobacter was enriched 
in Klebsiella pneumoniae infections (Fig.  5D). The 
microbiota composition differed between Mycoplasma 
pneumoniae infections and the Klebsiella pneumoniae 
infections, as well as between Mycoplasma pneumoniae 
infections and rhinovirus infections (PERMANOVA, 
R2 = 0.0.81 and 0.078, p < 0.05, Fig. S5D).

Discussion
Recent studies proposed that respiratory microbiota dys-
biosis, especially low community diversity, was impli-
cated in pneumonia development [9, 19]. However, due 
to the small sample size and the underrepresentation of 
immunocompetent patients in previous studies, char-
acteristics of the lower respiratory microbiota in CAP 
patients remain largely unknown. In this study, we 
revealed key features of sputum microbiota in 350 CAP 
patients through an examination of 917 longitudinal spu-
tum samples.

(See figure on previous page.)
Fig. 4  Dynamics of the sputum microbiota and its association with disease severity. (A) Shannon index of sputum microbiota in severe cases and 
non-severe cases at different time points after admission. (B) Differences in JSD distance between two consecutive samples from severe and non-severe 
cases. (C) JSD distance between samples on admission and samples collected at different sampling time points. (D) The transitional Sankey diagram of 
different microbiota clusters from day1 to day5 in severe and non-severe CAP cases. Outliers are samples that could not be assigned to any of the nine 
clusters. (E) The microbiota composition of six severe patients whose microbiota belonged to CS5 on day5. (F) The transitional Sankey diagram of micro-
biota clusters in 11 patients underwent invasive mechanical ventilation from day1 to day5. (G) Giant component of concurrent networks constructed by 
SpiecEasi in severe and non-severe CAP cases at different time points. Each node denotes a bacterial microbe and the size of nodes represents the mean 
abundance of microbes. Black lines represent positive correlations between microbes while green lines represent negative correlations. The thickness of 
the lines denotes the magnitude of the correlation. The number of edges (E) and nodes (N) are shown in the Figure. The same networks with microbial 
labels of nodes were shown in Fig. S4B. * p.adj < 0.05, ** p.adj < 0.01, *** p.adj < 0.001, **** p.adj < 0.0001
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The sputum microbiota in CAP patients is highly 
diverse. In contrast to previous studies that identi-
fied a limited number of microbiota community types 
in healthy populations and patients with pneumonia 
or other pulmonary diseases [7, 29, 30], we identified a 
more heterogeneous microbiota composition in CAP 
patients in this study, with nine distinct microbiota clus-
ters being identified, which may be attributed to a larger 
sample size, better sample representation, and diverse 
pathogen types. The commensal bacteria that are typi-
cally found in the respiratory tract of healthy populations 
make up the majority of the sputum microbiota in most 
patients, suggesting potential resistance or resilience 
of the respiratory microbiota against acute infection. 
Meanwhile, a sizeable proportion of samples (14.0%) had 
microbiota with unusually high abundances of possible 
pathogens, including Enterobacteriaceae, Pseudomonas, 
Acinetobacter, Mycoplasma, and Stenotrophomonas, all 
previously proposed as pneumonia-causing pathogens 
[19, 31–34], suggesting abnormal pathogen growth. In 
addition, 10.3% of samples had a microbiota predomi-
nated by non-typical pathogenic bacteria, such as Cory-
nebacterium, Rothia, and Haemophilus, highlighting the 
complexity of the CAP microbiota (Fig. S2I). A special 
group of patients with a relatively sterile microbial com-
munity was also identified, a phenomenon previously 
observed in the bronchoalveolar lavage fluid of healthy 
individuals and COPD patients [5, 29]. However, the 

presence of such a low microbial load in CAP patients is 
unexpected, given that CAP is typically associated with 
the proliferation of invasive or colonized bacteria, trig-
gering an inflammatory response [5, 35]. The severity 
rate of those patients was similar to that of commensals-
dominated patients (CS2-4), and lower than that of the 
patients dominated by possible pathogens (CS1,5,7,8,9). 
We hypothesize that a stronger immune response or lack 
of sufficient resources might have suppressed the growth 
of both commensal and pathogenic microbes in these 
patients.

Second, the degree of sputum microbiota dysbiosis 
correlated with disease severity in CAP patients. In line 
with previous findings, severe CAP patients exhibited 
lower alpha diversity compared to healthy controls upon 
admission [6, 8, 9]. However, we noticed that the spu-
tum microbiota in non-severe cases had alpha diversity 
less deviated from healthy controls, despite that their 
microbiota was still more likely to be predominated by 
a specific bacterium. Meanwhile, their microbiota com-
positions were more similar to those of healthy controls 
compared to severe cases. The most significant enriched 
bacterium in the sputum of severe cases is Enterobacte-
riaceae, commonly found in the gastrointestinal tract 
[36]. This increase may be due to the growth of coloniz-
ing bacteria or the translocation of gut bacteria to the 
respiratory tract, triggering systemic inflammation [37]. 
Furthermore, we observed a high transition rate from an 

Fig. 5  Microbiota features in patients infected with different pathogens. (A) Number of patients infected by different pathogens. (B) JSD distance 
to HCs for patients infected by bacteria, viruses, and mixed infection. (C) JSD distance to HCs for samples infected by Rhinovirus, Influenza A, Mycoplasma 
pneumoniae, and Klebsiella pneumoniae. (D) Bacteria that associated with different types of infections identified by LEfSe (|LDA| score > 4, p < 0.05). The 
LDA score denotes the extent of enrichment of the bacterium in the infection type that is labeled in red on the x-axis. * p < 0.05, ** p < 0.01, *** p < 0.001, 
**** p < 0.0001
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Enterobacteriaceae-dominant microbiota to an Acineto-
bacter-dominant microbiota post-mechanical ventilation, 
suggesting increased vulnerability to ventilation-induced 
secondary infection in Enterobacteriaceae-dominant 
cases. Thus, a high level of Enterobacteriaceae in the spu-
tum seems to predict a poor prognosis in CAP patients.

Third, the sputum microbiota in severe cases was more 
vulnerable and susceptible to significant changes during 
hospitalization, evidenced by higher compositional alter-
ation, more frequent cluster switching, and more sig-
nificant changes in the microbial network. This pattern 
resembles observations in other respiratory diseases like 
COPD and COVID-19 [16, 38], potentially influenced by 
both medical intervention and disease progression [12, 
19]. However, distinguishing the specific impact of each 
factor is challenging. Moreover, the duration of altered 
microbiota and its relationship with the persistence of 
respiratory symptoms remain unknown, warranting a 
longer follow-up study for clarification.

Fourth, the alteration of sputum microbiota was asso-
ciated with the infected pathogen. Rhinovirus infections 
exhibited enrichment of Enterococcus and Stenotroph-
omonas, aligning with previous studies reporting coinfec-
tion of Rhinovirus with Stenotrophomonas maltophilia 
or Enterococcus faecium [39, 40]. Meanwhile, influenza 
A infections showed enrichment of Acinetobacter and 
Pseudomonas, indicating a possible increased susceptibil-
ity to Acinetobacter baumannii and Pseudomonas aerugi-
nosa after infection influenza A [41–43]. The underlying 
mechanism may involve viral infections damaging respi-
ratory airways and concurrently impairing both innate 
and acquired immune responses. This creates a favor-
able environment for bacterial growth, adherence, and 
invasion into healthy sites of the respiratory tract [44]. 
Besides, Klebsiella pneumoniae infections, which were 
associated with a higher incidence of severe illness, 
showed more deviation from HCs (more dysbiotic) com-
pared to Mycoplasma pneumoniae infections, which 
had a lower risk of severe illness. However, it is unclear 
to what extent the accompanying microbiota change, in 
addition to the pathogen’s direct influence, affects disease 
progression, as most cases with Klebsiella pneumoniae-
positivity or Mycoplasma pneumoniae-positivity still 
possessed sputum microbiotas dominated by respira-
tory commensal. Such analysis is constrained by a small 
sample size and a diverse background microbiota, which 
could be overcome by conducting intervention experi-
ments in animal models.

Our study has several limitations. First, pneumonia 
is a lung infection caused by various pathogens, hence 
the samples from the lungs (e.g., biopsy, bronchoal-
veolar lavage fluid) are particularly valuable. However, 
obtaining such samples involves invasive procedures, 
and longitudinal sampling is challenging. While sputum 

is commonly used as a proxy for lung samples [45], it 
inevitably contains upper respiratory tract microbes. 
The accuracy of sputum microbiota in reflecting lung 
microbiota is still debated [46, 47]. Second, the healthy 
microbiota data were obtained from three previous stud-
ies on the Chinese population, potentially differing from 
the population investigated in this study. We compared 
the CAP microbiota to different healthy datasets and 
reported only consistent results, making our conclusions 
more robust. Third, the use of antibiotics may influence 
sputum microbiota during hospitalization, but control-
ling this confounding factor is challenging as patients 
were not treated following the same protocol. Therefore, 
our analyses primarily focused on the samples taken 
upon admission when limited medical intervention had 
been applied. Fourth, the utilization of 16 S rRNA gene 
sequencing restricted our study to primarily assessing 
the relationship between the abundance of genus-level 
microorganisms and the disease, while the functional 
attributes of the sputum microbiota were merely pre-
dicted by the bioinformatic method. Further investiga-
tions employing metagenomic and metatranscriptomic 
technologies are warranted to elucidate the more precise 
role exerted by airway microorganisms in respiratory 
infectious diseases.

Conclusion
In summary, our study demonstrated diverse sputum 
microbiota compositions in CAP patients, with many, 
especially in non-severe patients, resembling those in 
healthy individuals. Severe CAP cases were more likely 
to have microbiota dominated by potentially pathogenic 
bacteria and underwent greater changes during hospi-
talization. Further studies, especially prospective and 
intervention studies, are needed to decipher the causality 
between the respiratory microbiota change and disease 
severity.

Methods
Patients and sample collection
Spontaneous sputum samples were collected on days 1, 3, 
5, 7, and 9 after admission from 367 CAP inpatients from 
six hospitals (Tongji Hospital, The Second Affiliated Hos-
pital of Harbin Medical University, The First Affiliated 
Hospital of Xi’an Jiaotong University, The Third People’s 
Hospital of Shenzhen, ZhongDa Hospital, Fujian Provin-
cial Hospital) located in different cities representing dis-
tinct geographical locations in mainland China between 
2014 and 2017 (Fig. 1A). Sputum quality was assessed by 
the presence of polymorphonuclear neutrophils (PMNs) 
and squamous epithelial cells (SECs) per low-power 
(microscopic) field (LPF) [×10 objective]. Only qualified 
samples (> 25 PMNs and < 10  s per LPF) were included 
in the study [48]. The sputum samples were immediately 
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placed into a viral transport medium and stored at -80℃ 
until transported to the lab for processing (normally 
within a year).

Patients in this study were diagnosed with CAP 
through guidelines for the diagnosis and treatment of 
community-acquired pneumonia [49], meeting inclu-
sion criteria included clinical manifestations of acute 
infection, respiratory symptoms, inflammatory changes 
revealed by chest X-rays or computed tomography, and 
no history of healthcare system exposure. In addition, 
the study primarily included patients who developed 
symptoms within 7 days. Patients who had been ill for 
more than 7 days and experienced a sudden worsening 
of symptoms during treatment, suggestive of a possible 
secondary infection, were also included. Cases of pneu-
monia caused by non-infectious factors were excluded. 
The severity of the patients was determined following the 
Guideline of the American Thoracic Society and Infec-
tious Diseases Society of America [50]. Specifically, CAP 
patients must meet one primary criterion or three sec-
ondary criteria to be classified as clinically severe CAP 
cases. Primary criteria included 1). requirement for inva-
sive mechanical ventilation; 2). presence of septic shock 
necessitating vasopressor therapy. Secondary criteria 
were 1). respiratory rate ≥ 30 breaths/minute; 2). PaO2/
FiO2 ratio ≤ 250; 3). Multilobar infiltrates; 4). altered 
mental status or disorientation; 5). Renal dysfunction 
(blood urea nitrogen level ≥ 20  mg/dL); 6). Leukopenia 
(white blood cell count < 4 × 10^9/L); 7). Thrombocytope-
nia (platelet count < 100 × 10^9/L); 8). Hypothermia (core 
body temperature < 36.0  °C); 9). Hypotension requiring 
aggressive fluid resuscitation. Patients diagnosed with 
severe pneumonia at any time during hospitalization are 
recorded as severe cases.

Statistical analysis
The alpha diversity was calculated by the estimate_rich-
ness function in R package phyloseq(v.1.38.0) [51]. Beta 
diversity represented by Jensen-Shannon Divergence 
(JSD) distance was calculated by Phyloseq R package 
(v4.0.3) [51]. Permutational multivariate analysis of vari-
ance (PERMANOVA) was used to compare the micro-
biota composition between different groups [52], p-value 
was calculated based on 999 permutations. All the possi-
ble confounders (variables 1–10 in Table 1) were used for 
multivariate PERMANOVA. Wilcoxon signed-rank test 
was used to compare continuous variables in different 
groups. Fisher’s exact test was used to test the correlation 
between categorical variables. P-values were adjusted for 
multiple testing using the Benjamini-Hochberg method.

Additional methods applied in the study were 
described in the supplementary methods.
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