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Abstract
Background  Computer Aided Lung Sound Analysis (CALSA) aims to overcome limitations associated with standard 
lung auscultation by removing the subjective component and allowing quantification of sound characteristics. In this 
proof-of-concept study, a novel automated approach was evaluated in real patient data by comparing lung sound 
characteristics to structural and functional imaging biomarkers.

Methods  Patients with cystic fibrosis (CF) aged > 5y were recruited in a prospective cross-sectional study. CT scans 
were analyzed by the CF-CT scoring method and Functional Respiratory Imaging (FRI). A digital stethoscope was 
used to record lung sounds at six chest locations. Following sound characteristics were determined: expiration-to-
inspiration (E/I) signal power ratios within different frequency ranges, number of crackles per respiratory phase and 
wheeze parameters. Linear mixed-effects models were computed to relate CALSA parameters to imaging biomarkers 
on a lobar level.

Results  222 recordings from 25 CF patients were included. Significant associations were found between E/I ratios 
and structural abnormalities, of which the ratio between 200 and 400 Hz appeared to be most clinically relevant due 
to its relation with bronchiectasis, mucus plugging, bronchial wall thickening and air trapping on CT. The number of 
crackles was also associated with multiple structural abnormalities as well as regional airway resistance determined 
by FRI. Wheeze parameters were not considered in the statistical analysis, since wheezing was detected in only one 
recording.

Conclusions  The present study is the first to investigate associations between auscultatory findings and imaging 
biomarkers, which are considered the gold standard to evaluate the respiratory system. Despite the exploratory 
nature of this study, the results showed various meaningful associations that highlight the potential value of 
automated CALSA as a novel non-invasive outcome measure in future research and clinical practice.

Exploring the link between a novel approach 
for computer aided lung sound analysis 
and imaging biomarkers: a cross-sectional 
study
Eline Lauwers1,7*, Toon Stas2, Ian McLane3,9, Annemiek Snoeckx4,6, Kim Van Hoorenbeeck1,5, Wilfried De Backer6,7,8, 
Kris Ides1,2,5,8, Jan Steckel2 and Stijn Verhulst1,5

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12931-024-02810-5&domain=pdf&date_stamp=2024-4-19


Page 2 of 9Lauwers et al. Respiratory Research          (2024) 25:177 

Background
Respiratory sounds contain valuable information for 
the diagnosis and progression of pulmonary diseases. 
Standard auscultation, however, is a subjective process 
depending on the examiner’s hearing and experience. In 
addition, no permanent records can be made and breath-
ing patterns or changes over time cannot be quantified. 
Over the last decades electronic stethoscopes and digi-
tal signal processing techniques have been developed 
to overcome these limitations. Computer Aided Lung 
Sound Analysis (CALSA) provides objective information 
and can be used as a noninvasive, low-cost, bedside mea-
sure. Various methods for computational analysis have 
been proposed in previous research, ranging from clas-
sical signal-processing methods to data-science methods 
that build upon features to create classifiers using deep 
learning strategies [1, 2]. To date, most automated algo-
rithms have been directed at the presence of one or more 
adventitious respiratory sounds in the patient’s recording 
to support physicians in making an accurate diagnosis. 
By contrast, continuous parameters to indicate the sever-
ity level of a patient’s disease are lacking in current litera-
ture. These continuous output values could facilitate the 
comparison of recordings and monitor disease progres-
sion over time. In this paper, a novel automated analysis is 
performed to characterize respiratory sounds in subjects 
with cystic fibrosis (CF), focusing on automated respira-
tory cycle detection, inspiratory and expiratory sound 
power, crackle and wheeze analysis. As this approach is 
novel to the field, a better understanding of the relation 
between the obtained respiratory sound characteristics 
and existing outcome measures to evaluate respiratory 
health in real patient data is needed. At present, Com-
puted Tomography (CT) is the gold standard to evaluate 
structural airway and lung parenchymal abnormalities 
in CF, such as mucus plugging, air trapping, bronchiec-
tasis and bronchial wall thickening [3]. In addition, CT 
datasets offer the potential of data analysis with differ-
ent algorithms. Functional Respiratory Imaging (FRI) is 
a 3D-imaging technique combined with Computational 
Fluid Dynamics (CFD), providing patient-specific infor-
mation on a lobar level related to airflow and airway 
resistance [4]. The generation and transmission of lung 
sounds can be linked to airflow, geometry of the bron-
chial tree, narrowing of the airways, airway wall stabil-
ity, density of the lung parenchyma, etc [5]. Therefore, 
we would expect from a physiological point of view that 
results obtained by automated CALSA will be associated 
with certain regional imaging parameters. A search of the 
literature revealed no previous studies that explored the 

association between auscultatory findings and CT imag-
ing. Therefore, this proof-of-concept aimed to assess 
to what extent digital lung sounds using an automated 
approach are related to structural and functional imaging 
biomarkers in subjects with CF lung disease. Addition-
ally, associations between lung sound characteristics and 
spirometry as a classical pulmonary function test were 
explored as well.

Methods
Study population
In this prospective cross-sectional study, patients were 
recruited at the Antwerp University Hospital from May 
2017 to January 2020. All patients that were scheduled 
for a chest CT during this enrollment period were con-
sidered for participation to limit additional radiation 
exposure. Indications to perform a chest CT included a 
control CT to follow up on disease progression, or par-
ticipation in another clinical study requiring a chest CT. 
When subjects were recruited participating in another 
study, they needed to be on a stable treatment regimen 
for the past four weeks. It is important to note that all 
study assessments were performed according to the same 
protocols as outlined below and they were all organized 
on the same day. Subjects were eligible for inclusion if 
they met the following criteria: CF diagnosis, age > 5 
years, and clinically stable at inclusion. Patients were 
considered clinically stable if they were on a stable regi-
men for CF medication for four weeks prior to the study 
assessments. Patients with cognitive impairment were 
excluded. Prior to participation, signed informed con-
sent was obtained from all subjects and their parents/
guardians in case the subject was a minor. The study was 
approved by the Ethics Committee of the Antwerp Uni-
versity Hospital (BE300201630558).

Study assessments
Lung function, demographic and anthropometric data
Demographic data, including date of birth, sex and eth-
nicity were collected first. Body length and weight were 
measured to calculate Body Mass Index (BMI). Spirom-
etry was performed using the Jaeger Masterscreen PFT 
(CareFusion, San Diego, USA) or the Spirostik (Gerath-
erm Respiratory, Germany) according to ERS standards 
[6].

CT imaging
Unenhanced chest CT scans were acquired with a GE 
VCT LightSpeed 64-slice scanner at two breathing lev-
els, Total Lung Capacity (TLC) and Functional Residual 
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Capacity (FRC), monitored by a pneumotachograph. 
Specific settings of the scanning protocol can be found 
in the supplementary material. Structural abnormalities 
were quantified using the CF-CT score by two indepen-
dent observers blinded to subject ID, of whom one expe-
rienced chest radiologist and one certified researcher [7, 
8]. Following components were scored on a lobar level: 
bronchiectasis (0–12), bronchial wall thickening (0–9), 
mucus plugging (0–6), parenchymal abnormalities (0–9), 
and air trapping (0-4.5), which resulted in an overall 
severity score (0-40.5).

FRI
A 3D reconstruction of the airways and lung lobes is per-
formed via segmentation of the CT scans. Images at two 
lung levels, TLC and FRC, allow the assessment of geo-
metric changes over the breathing cycle. After segmenta-
tion and postprocessing, the models were used for CFD 
to simulate airflow by solving Reynolds-averaged Navier-
Stokes equations to add a functional element to the static 
images. The following parameters were extracted from 
the analysis: airway volume, air trapping and airway 
resistance. Airway resistance within the patient-specific 
airway model was calculated by CFD taking into account 
the relative internal airflow distribution to the respective 
lung lobes. A more detailed description of the FRI tech-
nology can be found in the supplementary material and 
in previously published work [4, 9].

CALSA
Respiratory sounds were recorded using a digital stetho-
scope (Thinklabs One, Thinklabs Medical LLC) at six 
chest locations: two posterior basal, two anterior (2nd 
intercostal space, mid-clavicular line) and two lat-
eral (4th-5th intercostal space, mid-axillary line). Each 
recording was made for 25–30 s with the patient in a sit-
ting position, while breathing through the mouth. The 
stethoscope was connected to the sound card of a lap-
top with commercial software (Audacity, version 2.1.2.). 
Respiratory sounds were acquired in accordance with the 
CORSA guidelines for short-term acquisition [10].

All CALSA analyses were performed in MATLAB 
(The MathWorks, Inc.). In general, automated CALSA 
consisted of four main components: pre-processing and 
denoising steps to enhance the quality of the record-
ings, wavelet packet decomposition to separate discon-
tinuous adventitious sounds from the signal, respiratory 
cycle extraction, and crackle peak detection. A detailed 
outline of the analysis was published by McLane et al. 
[11], and a schematic overview of the processing steps 
can be found in the supplementary material (Figure E1). 
A semi-automated approach was applied for the respira-
tory cycle detection to allow visual corrections if needed. 
The signal power during in- and expiration was used to 

calculate the expiration-to-inspiration (E/I) ratio for dif-
ferent frequency bands, i.e. 100–200  Hz, 200–400  Hz, 
400–800  Hz, and 800–1600  Hz. The average crackle 
count was determined per respiratory phase. Apart from 
the approach proposed by McLane et al., wheeze analysis 
was performed to provide a more comprehensive over-
view of the most prevalent lung sound characteristics. 
A Fast Fourier Transform approach was used to ana-
lyze wheeze segments as described by Nabi et al. [12]. 
Parameters of interest were: mean frequency, frequency 
quartiles in a normalized power spectrum, and wheeze 
occupation rate.

Statistics
Statistical analyses were performed in R for statistical 
computing (version 4.1.0, R Core Team 2021, Austria), 
using the following R packages: ‘stats’, ‘irr’, ‘blandr’, ‘nlme’, 
and ‘ggplot2’. Histograms and QQ plots were computed 
to evaluate the distribution of the data. Mathemati-
cal transformations to the variables were performed to 
match normal distribution, if applicable. Interobserver 
reliability of the CF-CT scoring was examined by Bland-
Altman plots and intraclass correlation coefficients 
(ICCs) using a two-way mixed-effects model for average 
measures [13]. To investigate the association between 
lung sound characteristics and imaging parameters per 
zone, linear mixed-effects models were computed with 
subject and zone as random effects. The left and right 
anterior recordings were compared to the respective 
upper lobes, posterior recordings to the respective lower 
lobes, and the right lateral recording was compared to 
the right middle lobe. Similar mixed-effects models with 
only subject as a random effect were computed for the 
comparison between average values of the six recordings 
and spirometry. No power calculation was performed, 
since no prior information was available on expected 
sample variance. Statistical significance was accepted 
when P < 0.05.

Results
Study population
Since all eligible CF patients scheduled for a chest CT 
during the enrollment period were considered for partic-
ipation, some patients entered the study more than once. 
None of the patients underwent the study assessments 
more than twice, and the period between repeated mea-
surements ranged from 3 months to 2 years. As explained 
in the statistics, dependency of the data was accounted 
for using mixed effects models with subject ID as a ran-
dom effect.

In total, 41 study assessments were performed in 26 
participants. Prior to further analyses, four study assess-
ments were excluded due to bad quality of the record-
ings. These recordings were not considered clinically 
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relevant as electronical interference, friction and/or 
ambient noise hampered the recognition of any breath 
sounds. As a result, 37 study assessments were included 
from 25 (16 M/9F) participants with a median age of 22 
[6;46] years, a median BMI of 20.9 [12.2;27.0] kg/m2 and 
a median forced expiratory volume in one second (FEV1) 
of 68 [26;123] % predicted. Twelve patients received 
CFTR modulator therapy (Orkambi®) at the time of the 
study assessments.

The interobserver variability analysis of the CF-CT 
score showed moderate to excellent absolute agreement 
between observers with ICCs between 0.41 (bronchial 
wall thickening) and 0.91 (bronchiectasis). These results 
are consistent with previous research concerning visual 
scoring methods [14]. A comprehensive overview of all 
ICCs and Bland-Altman plots can be found in the supple-
mentary material (Table E1, Figures E2-7).

Automated CALSA
Six recordings per study assessment were acquired, 
resulting in a total of 222 recordings to analyze. In 68/222 
(31% of total) recordings adjustments were made to the 
respiratory cycle annotation, and 18/222 (8% of total) 
required substantial changes of the cycle times. Median 
values of the frequency band analysis and crackle detec-
tion are shown in Table  1. Although it is widely recog-
nized that age and body height influence the intensity 
and frequency of normal breath sounds [15, 16], neither 

age nor body height were significantly associated with 
any of the E/I ratios. In only one recording wheezing 
was present. Two expiratory wheezes were detected with 
a wheeze occupation rate of 22.8 and 3.4% and a mean 
frequency of 206.2 and 181.1  Hz, respectively. Wheeze 
characteristics were not considered for additional statis-
tical analyses, since no cross-sectional comparison could 
be made.

Automated CALSA versus CF-CT
The linear mixed-effects models showed multiple sig-
nificant associations between lung sound characteris-
tics and CF-CT scores on a lobar level. Of the E/I ratios, 
the power ratio between 200 and 400  Hz showed a sig-
nificant positive association with the total CF-CT score 
(p < 0.001) and bronchiectasis (p = 0.013), mucus plugging 
(p = 0.003), bronchial wall thickening (p = 0.002), and air 
trapping (p = 0.003). Significant associations were also 
found for other frequency ranges, showing that increased 
E/I ratios were related to the extent of air trapping, bron-
chial wall thickening and the CF-CT total score. Consid-
ering the crackle analysis, the average number of crackles 
was related to the total score (p = 0.025), the extent of 
parenchymal abnormalities (p = 0.006) and air trapping 
(p = 0.030). Inspiratory crackles showed more significant 
associations, as this feature was also related bronchiec-
tasis (p = 0.038) and mucus plugging (p = 0.036). By con-
trast, the number of expiratory crackles could only be 
associated with the extent of parenchymal abnormalities 
(p = 0.003). An overview of all pairwise comparisons can 
be found in Table 2 and significant associations are pre-
sented as scatterplots in Fig. 1A-H.

Automated CALSA versus FRI
When comparing FRI parameters (i.e. airway volume, 
airway resistance and air trapping) to E/I ratios, only a 
significant positive association was found between E/I 
200–400 Hz and air trapping (p = 0.007), and between E/I 
800–1600 and airway volume (p = 0.017). On the other 

Table 1  CALSA results (n = 222)
E/I ratio 100–200 Hz 0.25 [0.02; 1.17]

200–400 Hz 0.17 [< 0.01; 2.03]
400–800 Hz 0.24 [< 0.01; 5.37]
800–1600 Hz 0.36 [0.01; 6.71]

Crackle count Full cycle 6.00 [0.00; 24.00]
Inspiration 2.27 [0.00; 13.50]
Expiration 3.43 [0.00; 13.00]

Data are presented as median [range]. E/I ratio, expiration-to-inspiration signal 
power ratio.

Table 2  Automated CALSA vs. CF-CT
CF-CT score (%)
BE Mucus BWT Parenchyma Air trapping Total

E/I ratio (log)
100–200 Hz P = 0.146 P = 0.076 P = 0.052 P = 0.328 ↗, P = 0.041* P = 0.073
200–400 Hz ↗,P = 0.013* ↗, P = 0.003* ↗,P = 0.002* P = 0.329 ↗,P = 0.003* ↗,P < 0.001*
400–800 Hz P = 0.078 P = 0.056 ↗,P = 0.008* P = 0.584 ↗,P = 0.038* ↗,P = 0.015*
800–1600 Hz P = 0.053 P = 0.126 ↗,P = 0.031* P = 0.982 ↗,P = 0.022* ↗,P = 0.027*
Crackle count (sqrt)
Full cycle P = 0.090 P = 0.242 P = 0.209 ↗,P = 0.006* ↗,P = 0.030* ↗,P = 0.025*
Inspiration ↗,P = 0.038* ↗,P = 0.036* P = 0.082 ↗,P = 0.035* ↗,P = 0.021* ↗,P = 0.008*
Expiration P = 0.173 P = 0.900 P = 0.358 ↗,P = 0.003* P = 0.070 P = 0.078
P-values of the mixed-effects models are presented. Abbreviations: ↗, positive association; BE, bronchiectasis; BWT, bronchial wall thickening; E/I ratio, expiration-
to-inspiration signal power ratio; sqrt, square root; *, P < 0.05.
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hand, the average number of crackles was negatively 
associated with the total airway volume per lung lobe 
(p = 0.002) and positively associated with airway resis-
tance and air trapping (both p < 0.001). When considering 

the number crackles during inspiration and expiration 
separately, similar associations could be found. Results of 
the mixed-effects models comparing automated CALSA 
to FRI are shown in Table 3; Fig. 2A-D.

Automated CALSA versus spirometry
To compare lung sounds to spirometry, the average of 
each parameter was calculated across all six chest loca-
tions. No significant correlations were found between E/I 
ratios and spirometry. The average number of inspiratory 
crackles showed a significant negative association with 
FEV1%pred (p = 0.028) and MEF25 − 75%pred (p = 0.011). 
Results can be found in Table 4.

Discussion
In this proof-of-concept, a novel approach for automated 
CALSA was evaluated in real patient data. To obtain 
more insight into the clinical value of respiratory sound 
analysis, the relationship between multiple CALSA 
parameters and imaging biomarkers was investigated in a 

Table 3  Automated CALSA vs. FRI
FRI
iVaw (mL) iRaw (kPa*s, log) Air trapping (%)

E/I ratio (log)
100–200 Hz P = 0.318 P = 0.337 P = 0.061
200–400 Hz P = 0.067 P = 0.897 ↗,P = 0.007*
400–800 Hz P = 0.447 P = 0.912 P = 0.075
800–1600 Hz ↗,P = 0.017* P = 0.332 P = 0.082
Crackle count (sqrt)
Full cycle ↘,P = 0.002* ↗,P < 0.001* ↗,P < 0.001*
Inspiration ↘,P = 0.001* ↗,P = 0.003* ↗,P < 0.001*
Expiration ↘,P = 0.010* ↗,P = 0.002* ↗,P = 0.001*
P-values of the mixed-effects models are presented. Abbreviations: ↗, positive 
association; ↘, negative association; E/I ratio, expiration-to-inspiration sound 
power ratio; iVaw, airway volume; iRaw, airway resistance; sqrt, square root; *, 
P < 0.05.

Fig. 2  A-D. Lung sound characteristics vs. FRI parameters with the regression lines of the mixed-effects models. E/I, expiration-to-inspiration signal power 
ratio; iVaw, airway volume; iRaw, airway resistance

 

Fig. 1  A-H. Lung sound characteristics vs. CF-CT scores with the regression lines of the mixed-effects models. E/I, expiration-to-inspiration signal power 
ratio
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heterogeneous group of CF patients. Results of the statis-
tical analysis showed significant associations between E/I 
power ratios within several frequency ranges and struc-
tural abnormalities shown on CT. The average number 
of crackles was also associated with multiple structural 
abnormalities on CT and airway resistance determined 
by FRI.

The intensity of normal breath sounds peaks between 
100 and 200  Hz with an energy drop above 300  Hz. 
Generally, breath sounds are audible at the chest during 
inspiration, while the expiratory sound has a much lower 
intensity [15, 17]. In our study, in- and expiratory sound 
power could not be considered individually, as the digital 
stethoscope applies a build-in algorithm to amplify the 
sound of the recording depending on the overall inten-
sity of the signal. Therefore, only the power ratios were 
retained to allow comparison between recordings. An 
increased E/I ratio can either be related to a decreased 
inspiratory sound or an increased expiratory sound. As 
sound intensity is directly related to respiratory flow, 
diminished inspiratory breath sounds could indicate 
poor ventilation of the respective lung region [16, 18]. On 
the other hand, a relative increase in expiratory sound, 
often named ‘bronchial breathing’, has been reported 
previously to be related to morphological changes of the 
airways and lung parenchyma resulting from broncho-
constriction, airway inflammation and/or consolidation 
[17, 19, 20]. Therefore, it was expected that increased 
E/I ratios within the frequency range of normal breath 
sounds could be related to pulmonary disease. Although 
the intensity of normal breath sounds is the highest 
between 100 and 200  Hz, these sounds are mixed with 
cardiovascular and muscle sounds [16], which makes it 
more difficult to distinguish between sounds. This could 
explain why the E/I ratios in higher frequency ranges 
showed more associations with imaging biomarkers 

compared to E/I 100–200  Hz. Our results suggest that 
E/I 200–400 Hz is the most promising parameter of the 
frequency band analysis to indicate the severity level of 
CF lung disease, as most associations were found within 
this range. This ratio has already been pointed out in 
previous research to be an indicator of airway narrow-
ing and inflammation in asthma [21, 22]. As the majority 
of the CF-CT subscores were associated with E/I 200–
400 Hz, the power ratio cannot be used to discriminate 
between different pulmonary manifestations. However, 
this could be due to the interdependency of abnormali-
ties, e.g. bronchiectasis will most often be accompanied 
by increased mucus plugging. Only the extent of paren-
chymal abnormalities was not associated with E/I 200–
400  Hz, although a significant result would have been 
expected due to changes in sound transmission follow-
ing consolidation or atelectasis. The interdependency of 
the CF-CT subscores was verified by computing Spear-
man correlations between these scores, considering only 
the first scan of the subjects. As such, the highest cor-
relations were found between bronchiectasis and mucus 
(R = 0.74, p < 0.05), between bronchiectasis and air trap-
ping (R = 0.74, p < 0.05), and between bronchiectasis and 
bronchial wall thickening (R = 0.73, p < 0.05). Overall, 
lower correlations were found between parenchymal 
abnormalities and all other subscores with correlation 
coefficients ranging from 0.46 to 0.65 (all p < 0.05). When 
considering the mixed effects models of CALSA and air 
trapping, a difference can be seen in associations with air 
trapping as reported by CF-CT vs. FRI. Although both 
endpoints aim to reflect the same respiratory condition, 
both methods differ substantially. On the one hand air 
trapping according to CF-CT is a subjective score based 
on the extent and pattern of this abnormality, while air 
trapping calculated by FRI is a density measure.

In addition to the frequency band analysis, the average 
number of crackles also showed several significant asso-
ciations with structural as well as functional abnormali-
ties. CF lung disease is typically associated with coarse 
crackles that can be heard during early to mid-inspiration 
and to a lesser extent throughout expiration [22]. The 
origin of crackles has been attributed to elastic stress in 
the airway walls related to sudden opening or closing of 
collapsed airways, movement of thin secretions and rup-
ture of fluid menisci [17, 23]. Keeping these physiological 
principles in mind, it is not surprising that especially the 
number of inspiratory crackles could be related to lung 
structure and function. The average number of crackles 
during both in- and expiration were significantly associ-
ated with all three FRI parameters: airway volume, air-
way resistance and air trapping. In contrast to all other 
imaging biomarkers, a negative association was found 
with total airway volume per lung lobe. In other words, 
a decrease in airway volume was associated with a higher 

Table 4  Automated CALSA vs. Spirometry
Spirometry (% predicted)
FEV1 FVC PEF MEF25 − 75 

(log)
MEF25 
(log)

E/I ratio (log)
100–200 Hz P = 0.160 P = 0.475 P = 0.816 P = 0.163 P = 0.203
200–400 Hz P = 0.302 P = 0.705 P = 0.808 P = 0.232 P = 0.242
400–800 Hz P = 0.583 P = 0.339 P = 0.116 P = 0.780 P = 0.876
800–1600 Hz P = 0.329 P = 0.877 P = 0.769 P = 0.242 P = 0.274
Crackle count (sqrt)
Full cycle P = 0.282 P = 0.756 P = 0.621 P = 0.109 P = 0.331
Inspiration ↘, 

P = 0.047*
P = 0.214 P = 0.191 ↘, 

P = 0.013*
P = 0.077

Expiration P = 0.808 P = 0.632 P = 0.825 P = 0.445 P = 0.793
P-values of the mixed-effects models are presented. Abbreviations: ↗, positive 
association; ↘, negative association; E/I ratio, expiratory/inspiratory ratio; FEV1, 
forced expiratory volume in one second; FVC, forced vital capacity; MEF25−75, 
mean expiratory flow between 25 and 75% of FVC; MEF25, maximal expiratory 
flow when 25% of FVC remains to be exhaled; sqrt, square root; *, P < 0.05.
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number of crackles. A decreased airway volume can 
result from the presence of mucus, inflammation, and/or 
bronchoconstriction. Since airway volume determined by 
FRI only considers intraluminal air, these abnormalities 
reduce the volume even in enlarged airways due to bron-
chiectasis. This reasoning is strengthened by the positive 
relation between the number of crackles and regional 
airway resistance. In particular, the presence of mucus, 
inflammation, and bronchoconstriction are expected to 
result in an increase in airway resistance. However, it’s 
important to note that airway resistance, as calculated by 
FRI, is based only on the airways visible on CT, which is 
limited by the resolution of the scan. The number of gen-
erations included in the airway model differ for each indi-
vidual depending on the point where no distinction can 
be made anymore between intraluminal and alveolar air.

Although these results are promising and can overall be 
explained from a physiological point of view, they should 
be interpreted with caution. An important limitation of 
research in the field of computerized respiratory sound 
analysis in general is that no gold standard is available to 
evaluate new automated approaches. Most algorithms 
at present are validated against manual annotations, 
but this subjective method is inevitably associated with 
considerable inter- and intra-observer variability [24]. 
In addition, often only a relatively small dataset is fea-
sible to annotate, preventing the algorithms to be gen-
eralized to a more heterogeneous group of subjects [25]. 
For this reason, the approach applied in this study was 
recently validated by McLane et al. using a large dataset 
of simulated lung sounds, such that the exact timing of 
respiratory phases and crackle peaks were known [11]. 
The performance of the cycle extraction and crackle 
peak detection was 96% and 95% (expressed as F-scores), 
respectively. Notwithstanding the advantages of a simu-
lated dataset, real patient data are more complex, which 
has an impact on the accuracy of the algorithms. There-
fore, minor adjustments to respiratory cycle annotations 
were made as all lung sound parameters depend on the 
timing of the respiratory phases. Also, a link was found 
between the quality of the recordings and the number 
of crackles detected, despite the implementation of a 
denoising algorithm. Since crackles, friction and motion 
artifacts are all discontinuous explosive sounds, the latter 
two features are often incorrectly recognized as crackles. 
However, it would not have been feasible to manually 
review the crackle detection due to the resemblance of 
crackles and friction, the overlap of subsequent crackles 
and the dominance of louder breath sounds or ambient 
noise. Fortunately, the number of crackles was related to 
various pulmonary manifestations, which suggests that 
the clinical value of the detected crackles was sufficient to 
overcome the introduced errors. Considering the statis-
tical approach, CALSA endpoints were compared 1-by-1 

to imaging endpoints, which resulted in multiple mixed-
effects models. The p-values were reported for each 
mixed model individually, but this may have increased 
the risk for type I errors. An adapted significance level 
could be applied to compensate for the multiple com-
parisons by dividing 0.05 by the number of endpoints for 
CF-CT, FRI and spirometry, respectively. Consequently, 
mainly the comparisons between E/I 200–400 against 
the CF-CT scores, and the comparisons of the num-
ber of crackles against the FRI endpoints would remain 
significant.

As this is a proof-of-concept study, various improve-
ments to the methodology are required and a number 
of questions remain to be answered in future research. 
First, recordings at six standardized chest locations were 
performed in accordance with the CORSA guidelines 
[10]. However, the locations were not ideal for one-on-
one comparison with imaging biomarkers on a lobar 
level. As such, the right lateral recording was matched 
with the right middle lobe, although the right upper and 
lower lobe can be auscultated at this point as well. There-
fore, it would have been interesting to include additional 
recordings that better reflect individual lung lobes. Sec-
ondly, airflow was not standardized during the record-
ing, while airflow and lung volume have a considerable 
impact on the generation of normal breath sounds as 
well as adventitious respiratory sounds [10, 26]. It was 
decided to perform the recordings during spontane-
ous tidal breathing, as this approach is the most feasible 
in clinical practice. Next, we did not include a healthy 
control group and we were therefore not able to com-
pare our results to a reference population. Nevertheless, 
a heterogeneous group of patients was included with an 
FEV1 ranging from 26 to 123% predicted, which allowed 
us to assess lung sound characteristics at different stages 
of disease. Further work is required to set an upper limit 
of normal for each parameter, ideally adjusted for differ-
ent age categories, body height and sex, since these fac-
tors are known to influence normal breath sounds [15]. 
Besides an upper limit of normal, variability over time of 
the parameters acquired by this novel automated analy-
sis should be verified. This would enable these character-
istics to be used as endpoints in research or for clinical 
follow-up in a later stage. For future research it would be 
recommended to use an alternative digital stethoscope 
that does not alter the sound power as mentioned previ-
ously. Lastly, only the number of crackles was considered, 
but it would be interesting to obtain additional informa-
tion about the characteristics of crackles, such as inten-
sity and coarseness. Characterization of crackles would 
provide physicians and health providers more insight 
into the pathophysiological processes that generate these 
crackles [27].
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Overall, this study offers a first step towards clinical 
validation of the parameters derived from automated 
CALSA. The continuous output values provide objec-
tive and regional information that might contribute to a 
better understanding of disease severity and progression. 
As mentioned in the introduction, CT imaging is the 
gold standard to evaluate the respiratory system, but this 
measure is only available in a hospital setting and is not 
suitable for frequent assessment due to the associated 
radiation dose. Digital auscultation, on the other hand, 
can be adopted in various settings, since the process is 
non-invasive, requires only a minimal setup and can be 
performed without patient cooperation. In this regard, 
automated CALSA could be a valuable tool for CF, as 
this population is in need for early and intensive follow-
up to minimize the negative consequences related to the 
vicious cycle of inflammation and infection. Further-
more, automated CALSA could provide additional infor-
mation to conventional pulmonary function tests (e.g. 
spirometry) by assessing the lungs on a regional level.

Conclusions
To conclude, to our knowledge this is the first study that 
correlated digital lung sound characteristics to imag-
ing biomarkers. Multiple significant associations were 
found between E/I power ratios, the number of crackles 
and structural and functional features on a lobar level. 
Considering the power ratios, an increased E/I ratio at 
a frequency range of 200–400  Hz appeared to be most 
clinically relevant due to its association with abnormali-
ties including bronchiectasis, mucus plugging, bronchial 
wall thickening and air trapping. The number of crack-
les were, besides structural abnormalities, also related to 
pulmonary function, such as regional airway resistance, 
FEV1 and MEF25 − 75. These results show the poten-
tial value of automated CALSA as outcome measure in 
research and clinical practice. Future research is required 
to improve the methodology and to determine its role as 
clinical outcome measure.
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