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Abstract
Background  Pulmonary ionocytes have been identified in the airway epithelium as a small population of ion 
transporting cells expressing high levels of CFTR (cystic fibrosis transmembrane conductance regulator), the gene 
mutated in cystic fibrosis. By providing an infinite source of airway epithelial cells (AECs), the use of human induced 
pluripotent stem cells (hiPSCs) could overcome some challenges of studying ionocytes. However, the production of 
AEC epithelia containing ionocytes from hiPSCs has proven difficult. Here, we present a platform to produce hiPSC-
derived AECs (hiPSC-AECs) including ionocytes and investigate their role in the airway epithelium.

Methods  hiPSCs were differentiated into lung progenitors, which were expanded as 3D organoids and matured 
by air-liquid interface culture as polarised hiPSC-AEC epithelia. Using CRISPR/Cas9 technology, we generated a 
hiPSCs knockout (KO) for FOXI1, a transcription factor that is essential for ionocyte specification. Differences between 
FOXI1 KO hiPSC-AECs and their wild-type (WT) isogenic controls were investigated by assessing gene and protein 
expression, epithelial composition, cilia coverage and motility, pH and transepithelial barrier properties.

Results  Mature hiPSC-AEC epithelia contained basal cells, secretory cells, ciliated cells with motile cilia, pulmonary 
neuroendocrine cells (PNECs) and ionocytes. There was no difference between FOXI1 WT and KO hiPSCs in terms of 
their capacity to differentiate into airway progenitors. However, FOXI1 KO led to mature hiPSC-AEC epithelia without 
ionocytes with reduced capacity to produce ciliated cells.

Conclusion  Our results suggest that ionocytes could have role beyond transepithelial ion transport by regulating 
epithelial properties and homeostasis in the airway epithelium.
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Background
Pulmonary ionocytes were described in 2018 as a small 
population of airway epithelial cells (AECs) that express 
high levels of ion channels and transporters, including 
CFTR (cystic fibrosis transmembrane conductance regu-
lator), the protein mutated in cystic fibrosis (CF) [1–3]. 
Thus, it has been hypothesised that ionocytes might have 
a role in the pathogenesis of CF and understanding their 
function could be key in identifying new therapies for CF 
and other respiratory diseases. So far, available informa-
tion on ionocytes and their function in the human airway 
epithelium is limited. Specific markers for this cell type 
include FOXI1 (forkhead box I1), high CFTR expression, 
ASCL3 (achaete-scute family BHLH transcription factor 
3) and STAP1 (signal transducing adaptor family member 
1) [2]. Ionocytes also express high levels of the vacuolar 
H+ ATP-ase (VATPase), barttin (BSND)/ClC-K chan-
nels and the large conductance Ca2+-activated K+ chan-
nel (KCa1.1) [2]. They seem to be more abundant in the 
nasal epithelium and proximal airways [4, 5] where they 
are more commonly found in the ducts of submucosal 
glands [3].

Lineage tracing analysis suggests that ionocytes differ-
entiate from basal cells [2]. By showing that knock out 
(KO) of POU2F3 leads to air liquid interface (ALI) cul-
tures with decreased numbers of ionocytes and pulmo-
nary neuroendocrine cells (PNECs), Goldfarbmuren et 
al. [6] suggested that tuft cells give rise to both ionocytes 
and PNECs. By contrast, Plasschaert et al. [1] showed 
that the transcription factor FOXI1 is sufficient to drive 
ionocyte differentiation, while the inhibition of Notch 
signalling in ALI cultures leads to a reduction in their 
number. This pathway for ionocyte differentiation seems 
to be conserved between species [7]. More recently, 
Wang et al. [8] reported no changes in ionocyte marker 
expression after they overexpressed NOTCH in AECs 
derived from human induced pluripotent stem cell (hiP-
SCs). This could indicate that lower levels of Notch sig-
nalling are needed for ionocyte specification than those 
required by secretory cells and that signalling is finely 
tuned to achieve the complex composition of the airway 
epithelium [9–11]. Finally, Cai et al. [12] demonstrated 
that the Sonic hedgehog pathway is involved in ionocyte 
specification by showing that the inhibition of this path-
way reduces the amount of ionocytes in culture, while 
its activation using the chemical agonist SAG (Sonic 
hedgehog agonist) increases their numbers. Thus, cross-
talk between these two signalling pathways seems to be 
involved in ionocyte specification.

Early studies of the function of ionocytes by Plasschaert 
et al. showed that reduction of the number of ionocytes 
could affect CFTR-mediated Cl− currents in Ussing 
chamber assays [1], which was recently verified by the 
study of Cai et al. [12]. Additionally, a more recent study 

demonstrated ionocyte-specific regulation of CFTR by 
the phosphodiesterase PDE1C [13]. In a Foxi1 KO mouse 
model, absence of Foxi1 led to higher mucus viscosity 
and ciliary beat frequency (CBF), indicating that iono-
cytes could have a role in regulating airway physiology 
[2]. This has been further studied in a recent report by 
Lei et al. [14]. , where they describe a role of ionocytes in 
fluid and electrolyte absorption, and in a study by Yuan et 
al. [15] that demonstrates a pivotal role for ionocytes in 
homeostatic mechanisms regulating airway surface liquid 
(ASL) volume, pH and viscosity and mucociliary clear-
ance. Furthermore, the observation that ionocytes have 
cellular extensions [2, 16], suggests the hypothesis that 
they could interact directly with other AEC types. How-
ever, the precise mechanisms by which ionocytes control 
these multiple functions are still not fully understood.

The challenge to further understand ionocyte function 
in human lungs is aggravated by the lack of appropri-
ate models and the limited availability of primary tissue. 
AECs derived from hiPSCs (hiPSC-AECs) could pro-
vide unique opportunities for respiratory research since 
hiPSCs can grow indefinitely while maintaining their 
capacity to differentiate into any cell type. However, the 
differentiation of hiPSCs into AECs lacks standardised 
protocols and different methods often lead to divergent 
results [17–19]. Until recently, protocols failed to consis-
tently produce rare AECs such as ionocytes [18]. Hor et 
al. published a protocol to generate PNECs from hiPSCs 
in vitro, without identifying ionocytes in their cultures 
[20]. In a recent report, Wang et al. [8] identified iono-
cytes in their hiPSC-AEC cultures using a protocol with 
3 sorting steps which extended the length of the protocol 
to almost 80 days. Here, we present a platform to study 
the role of ionocytes in the airway epithelium in vitro 
using hiPSCs. We describe a protocol which produces 
AECs including ionocytes within 60 days and then per-
form loss of function experiments. Our results show that 
the KO of FOXI1 in hiPSCs using CRISPR/Cas9 reduced 
the number of ciliated cells after hiPSC-AEC maturation, 
indicating that ionocytes could be important in lung lin-
eage specification and homeostasis.

Methods
Full descriptions of the methods used to differentiate 
hiPSCs into AECs and evaluate them biochemically and 
functionally are provided in the Supplementary Materials 
and Methods.

hiPSC differentiation to AECs
To derive AECs from hiPSCs, we used FS13B hiPSC lines 
generated as described previously [21] and the CF17/
NKX2.1-GFP hiPSC line (kindly gifted by UTHEALTH 
and Dr.  Jed Mahoney, Cystic Fibrosis Foundation lab, 
Lexington, MA, USA). hiPSCs were differentiated by 
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driving cells through definitive endoderm and anterior 
foregut endoderm to reach a lung progenitor state. At 
day 16 of differentiation, cells were sorted to enrich for 
NKX2.1 expressing progenitors using anti-carboxypep-
tidase-M (CPM) antibody [17], anti-CD26/anti-CD47 
sorting strategy [22] or sorting for GFP: NKX2.1 reporter 
cells [18]. Sorted cells were seeded in 3D Matrigel domes 
for expansion and cryopreservation. After at least 8 days 
of growth under expansion conditions, cells were seeded 
on Transwell® inserts to form mature polarised airway 
epithelia. Once cells were confluent in the Transwell®, 
medium bathing the apical membrane was removed 
to form an ALI. After 28 days of ALI culture, hiPSC-
AEC epithelia were characterised biochemically and 
functionally.

Analysis of mRNA and protein expression
Reverse transcription-quantitative polymerase chain 
reaction (RT-qPCR), immunofluorescence staining and 
Western blotting were performed to characterise mRNA 
and protein expression at different stages of the protocol 
and to investigate the effects of FOXI1 KO.

Lung progenitor transplantation into a mouse model of 
airway injury
Experiments using a mouse model of airway injury were 
approved by local ethical review committees and con-
ducted according to Home Office project license PPL 
PEEE9B8E4 (Emma L. Rawlins, University of Cam-
bridge). For these experiments, 9 male 9-week-old 
immune-compromised NOD-scid-IL2rg−/− (NSG; RRID: 
IMSR_JAX:005557) mice were used [23, 24]. Mice were 
treated with 2% polidocanol oropharyngeally and trans-
planted with a suspension of 1  million GFP + hiPSC-
derived lung progenitor cells on the next day. At different 
time points (1, 7 or 10 days) after cell transplantation, 
mice were sacrificed and tracheas harvested for whol-
emount immunofluorescence staining to visualise cells.

CRISPR/Cas9-basedFOXI1KO and phenotypical assays
Single guide RNA (sgRNA) and CRISPR/Cas9 were used 
to KO FOXI1 in hiPSCs. The functional consequences of 
FOXI1 KO were evaluated using hiPSC-AEC epithelia 
and pH and transepithelial resistance (Rt) measurements, 
high-speed microscopy analysis of ciliary dynamics and 
Ussing chamber studies of epithelial ion transport.

Statistical analysis
Results are expressed as means ± SD of n observations. 
Statistical analyses were performed either using Prism 9 
(GraphPad Software Inc., San Diego, CA, USA) or Sig-
maPlot 14 (Systat Software Inc., San Jose, CA, USA). The 
type of statistical analysis performed in each experiment 
and the number of replicates used are described in the 

figure legends. Differences were considered statistically 
significant when P < 0.05. Significance in each analysis 
is represented by * P < 0.05, ** P < 0.01, *** P < 0.001, **** 
P < 0.0001, ns = not significant.

Results
Method to differentiate hiPSCs into AECs including 
ionocytes
For this study, we used two different hiPSC lines or 
genetic backgrounds: the previously described FS13B 
hiPSCs [21] and the CF17/NKX2.1-GFP, which has a GFP 
reporter for NKX2.1. We first differentiated these two 
hiPSCs lines into AECs following a natural path of devel-
opment including definitive endoderm, anterior foregut 
endoderm and lung progenitors (Fig. 1A). RT-qPCR anal-
yses confirmed the mRNA expression of specific mark-
ers for each stage (Fig.  1B and S1A) and cells formed a 
characteristic network pattern after 16 days of differen-
tiation (Fig.  1C and D). The resulting lung progenitors 
were then sorted using anti-CPM staining to enrich for 
NKX2.1 expressing cells in FS13B cells (Fig.  1E and F) 
while CF17/NKX2.1-GFP cells were sorted for NKX2.1-
GFP expression. To expand lung progenitors, sorted 
cells were grown as 3D organoids (Fig.  2A) in medium 
supplemented with the GSK3b inhibitor CHIR-99021, 
the Rho-associated protein kinase inhibitor Y-27632 and 
fibroblast growth factor 10 (FGF10). These organoids 
could be cryopreserved and thawed for further experi-
ments while maintaining the expression of lung progeni-
tor markers (Figure S1B). In some instances, organoids 
were maintained for up to 8 passages or + 6 passages after 
thawing without losing NKX2.1 expression (Figure S1C). 
Overall, our approach allowed the production and the 
expansion of lung progenitors in vitro thereby bypassing 
the need to systematically differentiate hiPSCs.

AEC maturation was performed by dissociating the 
organoids and seeding lung progenitors in Transwell® 
inserts. Once confluent, ALI was established and cells 
were differentiated for an additional 28 days (Fig. 2B and 
C). To promote the differentiation of ciliated cells, the 
Notch pathway inhibitor (2  S)-N-[2(3,5-Difluorophenyl)
acetyl]-L-alanyl-2-phenyl-glycine 1,1-Dimethylethyl 
ester (DAPT) was added to the Maturation Medium for 
the first 14 days after initiating ALI culture. From day 
14, PneumaCult™-ALI (PALI) Medium was used to fur-
ther promote ciliation. The resulting epithelia showed 
an increase in the expression of TP63, CFTR, FOXJ1, 
MUC5AC and SCGB3A2 (Fig.  2D) and maintained 
expression of epithelial markers (Figure S1D). The pres-
ence of basal cells (CK5, p63), secretory cells (MUC5AC, 
SCGB3A2), ciliated cells (FOXJ1, acetylated tubulin 
(AcTub)), PNECs (ASCL1, CRP) and ionocytes (FOXI1, 
CFTR high expression, BSND) was confirmed by immu-
nostaining (Fig. 2E and S1E). Importantly, the epithelium 
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was polarised, with cilia (AcTub) located on the apical 
side and basal cells (CK5) at the basal side of the epithe-
lium (Fig. 2F). Finally, functional analyses confirmed that 
the hiPSC-AEC epithelium had Rt values comparable 
to that of primary AECs [25] (Fig. 2G). Analysis of CBF 
by a robust Fourier Transform method [26], described 
in the Supplementary Materials and Methods, showed 
that the cilia in hiPSC-AEC cultures beat at a frequency 
comparable to that of primary human bronchial epithe-
lial cells (HBECs) (Fig. 2H). The same analysis indicated 
that hiPSC-AECs were covered by fewer cilia than HBEC 

cultures (Fig.  2I), consistent with RT-qPCR results for 
FOXJ1 expression (Fig. 2D). Taken together, these results 
show that our protocol allows the production of a polar-
ised airway epithelium containing a diversity of cell types, 
including ionocytes.

The engraftment capacity of hiPSC-derived lung 
progenitors
hiPSC-derived lung progenitors have been previously 
successfully transplanted into the respiratory airways 
of murine models [27–29], highlighting their potential 

Fig. 1  hiPSCs differentiate into lung progenitors in 16 days. A: Diagram of the differentiation protocol, fluorescence activated cell sorting, expansion in 
3D organoids and maturation at an ALI to form hiPSC-AECs. Abbreviations: AFE, anterior foregut endoderm; BMP4, bone morphogenetic protein 4; CHIR, 
CHIR-99021; DAPT, (2 S)-N-[2(3,5-Difluorophenyl)acetyl]-L-alanyl-2-phenyl-glycine 1,1-Dimethylethyl ester; DE, definitive endoderm; FGF7/10, fibroblast 
growth factor 7/10; IBMX, 3-isobutyl-1-methylxanthine; LP, lung progenitor; PALI, PneumaCult™-ALI Medium; RA, retinoic acid; SB, SB431542; Y, Y-27632. 
B: Relative mRNA expression of key markers at different time points during differentiation. The control (CTL) is human trachea total mRNA. Filled circles 
represent individual values and columns are means ± SD (n = 4 independent experiments). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 vs. D0; one-
way ANOVA with Tukey’s post-test. C: Brightfield image of cells after 16 days of differentiation. The scale bar is 1000 μm. D: Immunofluorescence staining 
showing lung progenitor marker NKX2.1 expression (red) and nuclear marker DAPI (blue) on day 16 of differentiation. The scale bar is 100 μm. E: Flow 
cytometry panel showing levels of expression of CPM at day 16 of differentiation (red). The population labelled CPM + was sorted for enrichment of 
NKX2.1-expressing lung progenitors. HiPSCs stained with anti-CPM antibody served as a negative control (blue). F: Enrichment of NKX2.1 mRNA expres-
sion after sorting of CPM + cells. Filled circles represent individual values and columns are means ± SD (n = 5 independent experiments). **P < 0.01 vs. 
pre-sorted; Student’s t-test
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Fig. 2 (See legend on next page.)
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in regenerative medicine. To further demonstrate the 
functionality of our cells, we explored the engraftment 
potential of our hiPSC-derived airway progenitors in 
vivo with a short-term transplantation experiment. We 
generated lung progenitors from GFP-expressing hiPSC 
lines (FS13B GFP) and GFP + CPM + sorted cells were 
cultured as 3D organoids for 8 days before cryopreserva-
tion. After thawing and expansion for at least 8 additional 
days, GFP + organoids expressed similar levels of the lung 
progenitor and basal cell markers NKX2.1 and TP63 
when compared to passage 0 organoids (Figure S2A). 
These organoids were then dissociated into a single cell 
suspension and 1 million cells were transplanted oropha-
ryngeally into the tracheas of mice that had been topi-
cally treated with polidocanol 18 h before transplantation 
(Fig. 3A). Tracheas were harvested at 1, 7 or 10 days after 
transplantation and we observed GFP + cells in the tra-
cheas of the 9 mice that had received hiPSC-derived cells 
(Fig.  3B and Figure S2B). The appearance of clusters of 
cells indicates that the cells replicated after engraftment 
(Fig. 3B left). Interestingly, GFP + cells co-expressed CK5 
at 7 and 10 days after transplantation (Fig. 3B right), indi-
cating that lung progenitors generated with our approach 
can not only survive in a mouse model of acute airway 
injury, but also differentiate towards basal cells. Although 
longer time points would be needed to assess the full 
regeneration and differentiation potential of these cells, 
these results confirm their engraftment capacity.

KO of FOXI1 in hiPSCs leads to hiPSC-AECs lacking 
ionocytes
Based on the results generated above, we decided to use 
our platform to study the importance of ionocytes during 
the formation of the human airway epithelium. Of note, 
genetic studies in the mouse have shown that FOXI1 is 
necessary for the generation of ionocytes in vivo [2]. 
Thus, we hypothesised that the absence of FOXI1 will 
stop the production of ionocytes in vitro (Fig. 4A). Using 
CRISPR/Cas9 genome editing, we generated two hiPSC 
KOs for the FOXI1 gene by designing sgRNAs that tar-
get the DNA binding domain of FOXI1, which is found 

in exon 1 and is shared by both transcript variants of the 
gene (Fig. 4B). This approach generated hiPSC lines car-
rying a loss of function mutation caused by an early stop 
codon (Figure S3A) as confirmed by genotyping using 
PCR and Sanger sequencing. Importantly, each of the 
hiPSC lines was targeted with a different sgRNA to rule 
out off-target effects, while unedited clones that had gone 
through the same targeting and clone isolation process 
were used as isogenic controls (Fig.  4B). The resulting 
FOXI1−/− hiPSCs were then differentiated in parallel with 
their isogenic wild-type (WT) counterparts. There were 
no statistically significant differences in the expression 
of specific markers at key timepoints between the WT 
and KO up to day 16 of differentiation (Fig.  4C). Thus, 
the absence of FOXI1 does not affect lung progenitor 
production. Lung progenitor cells were then enriched by 
sorting (Fig. 4C) and the resulting organoids were further 
differentiated using ALI cultures after expansion. After 
28 days of culture, WT and KO epithelia showed similar 
levels of airway markers including NKX2.1, TP63, CFTR, 
SCGB3A2, FOXJ1 and MUC5AC (Fig. 4D). However, the 
absence of FOXI1 seemed to induce a limited decrease 
in the expression of FOXJ1 in ALI cultures (Fig. 4D and 
S3B). Of note, we could not detect changes in FOXI1 
expression by RT-qPCR as ionocytes represent only 0.5–
1.5% of the epithelium. Immunofluorescence analyses 
showed the absence of ionocytes in the FOXI1 KO ALI 
cultures in contrast to the presence of FOXI1 + CFTR 
high-expressing ionocytes in WT ALI cultures (Fig.  4E 
and F). Furthermore, Western blotting indicated absence 
of FOXI1 protein in FOXI1 KO ALI cultures compared to 
its presence in WT epithelia (Fig. 4G and S3C). Together, 
these data show that FOXI1 KO leads to hiPSC-AEC epi-
thelia without ionocytes and that their absence does not 
affect the early differentiation of the lung epithelium.

KO of FOXI1 reduces ciliation of hiPSC-AECs
We next tested whether the KO of FOXI1 could affect the 
function of hiPSC-AECs beyond that of CFTR function, 
which has already been extensively studied [1, 2, 12–14]. 
In this study, we first assessed the effect of FOXI1 KO 

(See figure on previous page.)
Fig. 2  ALI culture induces differentiation towards mature AECs with similar properties to HBECs. A: Brightfield image of lung progenitors in 3D organoid 
culture. The scale bar is 250 μm. B: Schematic of ALI culture. Organoids were dissociated and cells seeded in Transwell® inserts and cultured with medium 
on both sides. Once cells were confluent, medium from the top compartment was removed to form an ALI with the apical membrane of cells in contact 
with air. DAPT was added to the maturation medium in the bottom compartment and the cells cultured for a further 14 days, followed by another 14 
days of culture with PALI medium. C: Brightfield image of hiPSC-AECs in a Transwell® insert after establishing an ALI. The scale bar is 500 μm. D: mRNA 
expression of AEC markers in cells in expansion conditions (D0) and in ALI culture (D28). ALI cultured HBECs were used as a control. Filled circles represent 
individual values and columns are means ± SD (n = 3 independent experiments); *P < 0.05 vs. D0; one-way ANOVA with Tukey’s post-test. E: Immunocyto-
chemical analysis of mature AEC markers in ALI cultures. The scale bars are 50–100 μm as indicated. F: Immunofluorescence staining of a histological sec-
tion through an ALI culture showing polarization of the airway epithelium. Cilia at the apical side are labelled with Acetylated tubulin (AcTub) and mature 
basal cells on the basal side are labelled with CK5. G: Rt measurements of polarized epithelia formed by hiPSC-AECs. Filled circles represent the average 
of three readings of the same sample and columns are means ± SD (n = 3 independent experiments). H: Ciliary beat frequency (CBF) measurements in 
hiPSC-AECs and HBECs. Filled circles represent the average of 20 FOVs from one sample and columns are means ± SD (n = 3 independent experiments); 
Student’s t-test. I: Area covered by cilia in hiPSC-AECs ALI cultures is significantly smaller compared to HBECs. Filled circles represent the average of 20 
FOVs from one sample and columns are means ± SD (n = 3 independent experiments); **P < 0.01; Student’s t-test
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on the pH of the ASL in hiPSC-AEC ALI cultures and 
we confirmed that there were no statistical differences 
between FOXI1 WT and KO cultures (Fig. 5A). We next 
evaluated whether the KO of FOXI1 impaired the bar-
rier properties in hiPSC-AEC ALI cultures by measur-
ing Rt. Although FOXI1 KO epithelia had significantly 
reduced Rt values compared to those of FOXI1 WT epi-
thelia (Fig.  5B), Ussing chamber studies revealed that 
they functionally expressed the epithelial Na+ channel 
(ENaC), the Ca2+-activated Cl− channel TMEM16A and 
CFTR (Figure S6). Next, we assessed cilia coverage and 
motility as described in Supplementary Materials and 
Methods. FOXI1 KO ALI cultures showed a similar CBF 
to their WT counterparts (Fig. 5C and S4). Intriguingly, 
the coverage of cilia in FOXI1 KO epithelia was reduced 
(Fig. 5D and S4). Although this difference was not statis-
tically significant, it suggested that either the number or 
function of ciliated cells was decreased in FOXI1 KO ALI 
cultures. To distinguish between these possibilities, we 
performed flow cytometry analyses and observed that the 
absence of ionocytes resulted in a significant reduction in 

the number of FOXJ1 expressing cells (Fig. 5E and S5A). 
The reduced number of ciliated cells in FOXI1 KO cells 
was validated with hiPSC-AECs from two other FOXI1 
KO hiPSC clones of the same genetic background (Fig-
ure S5B and S5C) and with the clones from the second 
genetic background (Figure S5D and S5E). Because the 
FOXJ1 + cell number decrease was not as striking in the 
second genetic background (Figure S5D and S5E), we 
further investigated this phenotype in CF17/NKX2.1-
GFP cells by assessing the expression of mature ciliated 
cell markers both at protein and mRNA levels. Western 
blot analysis indicated a decrease of DNAI1 in FOXI1 KO 
cells compared to their WT controls (Fig. 5F). RT-qPCR 
analysis showed decreased expression of the ciliated cell 
markers NEK10, DNAH5 and CP110, but only the differ-
ences in DNAH5 and CP110 expression were statistically 
significant (Figure S5F). Finally, immunofluorescence 
staining confirmed the presence of FOXJ1 + AcTub + cili-
ated cells in FOXI1 KO ALI cultures, but these had a 
more scattered distribution compared to their WT con-
trols (Fig.  5G). Taken together, these results suggest 

Fig. 3  hiPSC-derived lung progenitors engraft in an in vivo mouse model of airway injury. A: Schematic of the cell transplantation procedure. Mice were 
anesthetized and 30 µl of 2% Polydocanol was administered oropharyngeally. After 18 h, mice were anesthetised again and 30 µl of sterile PBS with 1% 
BSA and 1 million GFP + hiPSC-derived lung progenitors were administered to the back of the throat. Tracheas were harvested at different time points for 
analysis. B: Representative wholemount immunofluorescence staining showing GFP and DAPI at 7 days after transplantation (left) and GFP, human CK5 
and DAPI at 10 days after transplantation (right). The scale bars are 50 μm
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Fig. 4 (See legend on next page.)
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that ionocytes and/or the expression of FOXI1 could be 
involved in the production of functional ciliated cells and 
could be necessary to establish the normal cellular com-
position of the lung epithelium.

Discussion
In this study, we described a protocol to differentiate 
hiPSCs not only into the most abundant cell types of the 
airway epithelium (basal, ciliated and secretory cells) but 
also into PNECs and ionocytes. To our knowledge, this is 
the first report of hiPSC-AECs including these rare cell 
types in the same culture system.

To date, only one other protocol for hiPSC-AEC dif-
ferentiation producing ionocytes has been published 
[8]. In that study, Wang et al. reported the presence of 
FOXI1 + ionocytes using a protocol that requires 3 subse-
quent sorting steps. Thus, the generation of hiPSC-AEC 
cultures with ionocytes has proven challenging. One of 
the reasons for this might be the use of specialised media 
developed to produce highly ciliated cultures, which 
probably contain inhibitors of Notch that could reduce 
the presence of ionocytes [1]. By contrast, our protocol 
is based on a chemically defined medium combined with 
short-term culture with PneumaCult™-ALI Medium. This 
combination leads to hiPSC-AEC cultures that might be 
less ciliated, but that contain ionocytes expressing FOXI1 
and high levels of CFTR or co-expressing FOXI1 and 
BSND.

We used our hiPSC-AEC cultures to study the impact 
of FOXI1 KO on the development and functionality of the 
airway epithelium. Although ionocytes constitute a rare 
population in the epithelium, several studies have shown 
that their impairment can lead to significant phenotypes 
[1, 2, 12–14]. Consistent with previous results [2], we 
found that the KO of FOXI1 does not impact the pH of 
ASL in ALI cultures. By contrast, we found that FOXI1 
KO impacts Rt values of hiPSC-AEC epithelia. The lower 
Rt values of FOXI1 KO epithelia might be due to impaired 
epithelial barrier function and/or increased numbers/
activity of ion channels. According to Pou Casellas et al. 
[30], transcriptional analysis of ionocytes revealed their 
involvement in various signalling pathways, including 

those involving occludin and junctional adhesion mol-
ecules, which could potentially explain why their absence 
affects the formation of a tight epithelial barrier. Addi-
tionally, Yuan et al. [15] reported the compensatory over-
expression of ion and water channel encoding genes in 
airway cultures from a FOXI1 KO ferret model. Although 
our results differ from those published by Goldfarbmuren 
et al. [6] and Lei et al. [14], who reported increased Rt 
in FOXI1 KO cultures, their data are based on mosaic 
KOs, while Yuan et al. [15] did not report Rt measure-
ments. The different Rt values of FOXI1 KO airway epi-
thelia are reminiscent of earlier reports about the effects 
of the predominant CF-causing CFTR variant F508del 
on Rt. LeSimple et al. [31] found that epithelia heterolo-
gously expressing F508del-CFTR had reduced Rt values 
compared to those expressing wild-type CFTR, whereas 
Li et al. [32] found the converse. As with these previous 
studies, differences in the cells studied and the experi-
mental conditions used likely explain the distinct results 
obtained with FOXI1 KO airway epithelia.

We found that ALI cultured hiPSC-AECs without 
ionocytes show reduced cilia motility properties com-
pared to cultures with ionocytes. More importantly, 
we showed that cultures without ionocytes displayed a 
smaller number of ciliated cells. This could be the reason 
for the slower movement of cilia in FOXI1 KO cultures 
and it suggests that ionocytes could play a role in muco-
ciliary clearance by influencing the production of ciliated 
cells. These results do not contradict the previous report 
by Montoro et al. showing that the absence of Foxi1 in 
mice led to more viscous mucous secretions in the air-
way epithelium and, in turn, higher CBF [2]. Our ALI 
cultured hiPSC-AECs do not produce abundant mucus, 
and CBF measurements did not change after washing the 
epithelia with PBS. Therefore, we cannot exclude the pos-
sibility that the absence of FOXI1 expression could also 
increase mucus viscosity. However, it could be interesting 
to confirm if the number of ciliated cells is also decreased 
in a mouse KO for Foxi1. In the study by Goldfarbmuren 
et al. [6], FOXI1 KO did not significantly affect FOXJ1 
mRNA expression, consistent with our RT-qPCR results. 
However, changes in ciliated cell numbers or expression 

(See figure on previous page.)
Fig. 4  FOXI1 knock-out (KO) in hiPSCs leads to hiPSC-AEC cultures lacking ionocytes. A: FOXI1 gene targeting and differentiation strategy. Following FOXI1 
KO in hiPSCs, WT and KO clones were selected from the targeted pool and differentiated in parallel towards AECs. FOXI1 KO cells were not expected to 
generate ionocytes. Targeted but unedited WT cells served as an isogenic control. B: Each hiPSC line was targeted with a different sgRNA (Strategy #1 
for FS13B and Strategy #2 for CF17/NKX2.1-GFP), testing two different genetic backgrounds and two different targeting strategies in the same study. 
The diagram shows the sgRNA used on each line to target the DNA binding domain in Exon 1, the PAM region highlighted in blue and the indels in the 
selected KO clones in red. C: Relative mRNA expression of key markers at different time points during the first stages of differentiation. Filled circles repre-
sent individual data points and bars are means ± SD (n = 3 independent experiments); two-way ANOVA with Sidak multiple comparison test. The dotted 
line indicates the level of the normalized reference-gene expression average value. D: Relative mRNA expression of key mature AEC markers of cells in 
expansion (D0) and after maturation in ALI cultures (D28). Filled circles represent individual data points and bars are means ± SD (n = 3 independent 
experiments), two-way ANOVA with Sidak multiple comparison test. E: Representative immunocytochemical staining of FOXI1, CFTR and DAPI in mature 
hiPSC-AECs after 28 days in ALI culture in FOXI1 WT and KO cells. The scale bar is 20 μm. F: Z-stack panel with orthogonal views of FOXI1 WT cells from E. G: 
Cropped representative Western blot images of FOXI1 expression in WT and KO hiPSC-AECs (right panel), undifferentiated hiPSCs were used as a negative 
control and MCF7 cells were used as a positive control (left panel). Vinculin was used as a loading control
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of key markers at a protein level were not tested in their 
study. Importantly, our results are reinforced by studies 
in Xenopus laevis epidermis [33] which reported that 
the almost complete absence of Foxi1 led to a reduced 
number and aberrant morphology of cilia. Interest-
ingly, engraftment of Foxi1 WT epidermis patches res-
cued the ciliation of the nearby KO epidermis. Thus, the 

importance of ionocytes in the production of ciliated 
cells could be conserved between species and tissues.

Various mechanisms could be driving the decrease of 
ciliated cells in the absence of FOXI1. First, the KO of 
FOXI1 could be directly interfering with differentiation of 
ciliated cells. However, FOXI1 is not expressed during the 
production of these cells [1, 2] and there is no evidence 
that the lineage of these two cell types is interdependent 

Fig. 5  Functional assays reveal that FOXI1 KO leads to decreased numbers of ciliated cells in hiPSC-AECs. A: Airway surface liquid (ASL) pH of mature 
FOXI1 WT and KO hiPSC-AECs. Filled circles represent individual values and bars are means ± SD (n = 6 consists of 3 independent experiments, 2 biological 
replicates per experiment); Mann-Whitney test. B: Transepithelial resistance (Rt) of mature FOXI1 WT and KO hiPSC-AEC ALI cultures. Filled circles represent 
the average of 3 technical replicates (measurements) and bars are means ± SD (n = 6 ALIs from 3 independent experiments, 2 biological replicates per 
experiment). * P < 0.05; Mann-Whitney test. C: Ciliary beat frequency (CBF) of FOXI1 WT and KO hiPSC-AEC ALI cultures. Filled circles represent the average 
of values obtained from 5–20 FOVs with > 5% of coverage from one sample and bars are means ± SD (n = 3 independent experiments); Student’s t-test. 
D: Area covered with motile cilia in FOXI1 WT and KO hiPSC-AEC ALI cultures. Filled circles represent the average of up to 20 FOVs from one sample and 
bars are means ± SD (n = 3 independent experiments); Student’s t-test. E: Flow cytometry analysis of the amount of FOXJ1 + ciliated cells in FOXI1 WT and 
KO hiPSC-AEC ALI cultures. Gating was performed compared to stained hiPSC controls. Filled circles represent individual values and bars are means ± SD 
(n = 4 independent experiments); *P < 0.05; Mann-Whitney test. F: Cropped representative Western blot images show the expression of the ciliated cell 
marker DNAI1 in mature FOXI1 WT and KO hiPSC-AECs. Primary basal cells and HBEC ALI cultures served as negative and positive controls, respectively. 
Vinculin served as a loading control. G: Representative immunofluorescence staining of FOXJ1, acetylated tubulin (AcTub) and DAPI in FOXI1 WT and KO 
hiPSC-AECs. The scale bar is 100 μm
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even if they both originate from basal cells [2, 6]. Second, 
cell-to-cell contact could be necessary between ionocytes 
and ciliated cells for the proper differentiation of the lat-
ter. This hypothesis would fit with the results obtained 
with Xenopus laevis epidermis [33]. Furthermore, iono-
cyte and ciliated cell differentiation is tightly controlled 
by Notch signalling. Thus, Notch-related crosstalk 
between the two cell types could play a role in the matu-
ration of ciliated cells. Finally, it has been shown that ion 
channels and transporters highly expressed in ionocytes, 
such as the VATPase, are important in the regulation of 
Wnt signalling [34–36]. Interestingly, canonical Wnt/
beta-catenin signalling has a role in the activation of the 
cilia development machinery via the regulation of FOXJ1 
expression [37–39], while the Wnt planar cell polar-
ity signalling pathway is responsible for actin organisa-
tion and cilia beat alignment and coordination [40, 41]. 
The lack of ionocytes could affect the acidification of the 
microenvironment thereby blocking Wnt signalling and 
ciliated cell differentiation. Further investigation of AECs 
will help elucidate how such pathways can be controlled 
by pulmonary ionocytes.

Conclusion
Overall, our study confirms that hiPSCs can be differ-
entiated into an airway epithelium containing ionocytes 
and that FOXI1 KO leads to a depletion of these cells. We 
show that the absence of ionocytes leads to impairment 
of epithelial barrier properties and ciliated cell homeo-
stasis, revealing their potential role in the formation of 
the airway epithelium. This information represents an 
important step toward understanding the function of 
these cells in normal homeostasis and in lung disease, 
paving the way for new therapeutic applications focusing 
on ionocytes control.
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