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Abstract
Background Small airways disease (SAD) is a major cause of airflow obstruction in COPD patients and has been 
identified as a precursor to emphysema. Although the amount of SAD in the lungs can be quantified using our 
Parametric Response Mapping (PRM) approach, the full breadth of this readout as a measure of emphysema and 
COPD progression has yet to be explored. We evaluated topological features of PRM-derived normal parenchyma and 
SAD as surrogates of emphysema and predictors of spirometric decline.

Methods PRM metrics of normal lung (PRMNorm) and functional SAD (PRMfSAD) were generated from CT scans 
collected as part of the COPDGene study (n = 8956). Volume density (V) and Euler-Poincaré Characteristic (χ) image 
maps, measures of the extent and coalescence of pocket formations (i.e., topologies), respectively, were determined 
for both PRMNorm and PRMfSAD. Association with COPD severity, emphysema, and spirometric measures were assessed 
via multivariable regression models. Readouts were evaluated as inputs for predicting FEV1 decline using a machine 
learning model.

Results Multivariable cross-sectional analysis of COPD subjects showed that V and χ measures for PRMfSAD and 
PRMNorm were independently associated with the amount of emphysema. Readouts χfSAD (β of 0.106, p < 0.001) and 
VfSAD (β of 0.065, p = 0.004) were also independently associated with FEV1% predicted. The machine learning model 
using PRM topologies as inputs predicted FEV1 decline over five years with an AUC of 0.69.

Conclusions We demonstrated that V and χ of fSAD and Norm have independent value when associated with lung 
function and emphysema. In addition, we demonstrated that these readouts are predictive of spirometric decline 
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Background
Chronic obstructive pulmonary disease (COPD) is a lead-
ing cause of death and healthcare burden in the United 
States and worldwide. Accounting for over 3  million 
deaths globally in 2015 [1], this disease is expected to rise 
in prevalence as the world population ages [2]. COPD is 
understood to be a complex heterogeneous disease pre-
senting clinically diverse phenotypes [3, 4]. Major causes 
of airflow obstruction are attributed to chronic bronchi-
olar obstruction, a.k.a small airways disease (SAD), and 
emphysema. Although SAD and emphysema are treated 
as separate COPD subtypes, studies have shown strong 
quantitative evidence that SAD exists as an intermediate 
state between healthy lung tissue and emphysema—i.e., 
irreversible lung damage—in COPD pathogenesis [5–7]. 
At present, little has been done to better quantify the 
onset of SAD from healthy lung parenchyma.

The Parametric Response Map (PRM) is a CT-based 
voxel-wise computational technique that can identify 
and quantify functional small airways disease (fSAD; 
an indirect measure of SAD) even in the presence of 
emphysema [8]. The percent volume of PRM-derived 
fSAD (PRMfSAD), i.e., the amount of fSAD in the lungs, 
has improved COPD phenotyping and the prediction of 
spirometric decline in subjects at risk of COPD [9]. To 
determine the value of spatial features from each PRM 
classification, we developed topological PRM (tPRM) as 
an extension of the PRM algorithm [10]. These radio-
graphic tPRM readouts were shown to improve upon 
commonly used whole-lung PRM measures with respect 
to COPD characterization and progression [11, 12], and 
correlate to structural changes in lung tissue samples 
from lung transplant recipients diagnosed with bronchi-
olitis obliterans [13, 14].

In this study, we evaluated the PRM topologies vol-
ume density (V), a measure of extent, and Euler-Poincaré 
Characteristic (χ), a measure of pocket formation, of nor-
mal lung and fSAD as independent readouts of COPD 
severity, pulmonary function, and extent of emphysema 
using the Phase 1 COPDGene cohort [15]. We also inves-
tigated the potential of these topologic readouts as pre-
dictors of spirometric decline using a machine-learning 
model. This study demonstrates how tPRM readouts may 
be used as possible measures of early emphysema and 
COPD progression.

Methods
Study sample
Our study was a secondary analysis of data from COPD-
Gene (ClinicalTrials.gov: NCT00608764), a large Health 
Insurance Portability and Accountability Act-compliant 
prospective multi-center observational study. In Phase 
1 (2007–2012) and Phase 2 (2013–2017), 5-year follow-
up, written and informed consent was obtained from all 
participants and the study was approved by local insti-
tutional review boards of all 21 centers. Ever-smokers 
with greater than or equal to 10 pack-year smoking his-
tory, with and without airflow obstruction, were enrolled 
between January 2008 and June 2011. Participants were 
non-Hispanic white or African American. Participants 
underwent volumetric inspiratory and expiratory CT 
using standardized protocol; images were transferred to 
a central lab for protocol verification and quality control 
(QC) [15]. Exclusion criteria included a history of other 
lung disease (except asthma), prior surgical excision 
involving a lung lobe or greater, present cancer, metal 
in the chest, or history of chest radiation therapy. Par-
ticipants were excluded from the present study due to 
inadequate CT for computing tPRM, such as missing an 
inspiration/expiration scan, or failing QC implemented 
specifically for the present study. Our QC protocol is 
described in Additional File 1 (Supplemental Methods 1). 
Data for participants evaluated here have been utilized 
in numerous previous studies and a list of COPDGene 
publications can be found at [16]. Our study is the first 
to report tPRM analysis across the whole Phase 1 cohort 
and predict spirometric decline over 5 years in the Phase 
2 subset of COPDGene participants.

Spirometry was performed in the COPDGene study 
before and after the administration of a bronchodilator, 
specifically 180 mcg of albuterol (Easy-One spirometer; 
NDD, Andover, MA). Post-bronchodilator values were 
used in our analyses. COPD was defined by a post-bron-
chodilator FEV1/FVC of less than 0.7 at the baseline visit, 
as specified in the Global Initiative for Chronic Obstruc-
tive Lung Disease (GOLD) guidelines [17]. GOLD grades 
1–4 were used to define disease severity. GOLD 0 clas-
sification, i.e., “at-risk,” was defined by a post-broncho-
dilator FEV1/FVC ≥ 0.7 at the baseline visit, alongside 
FEV1% predicted ≥ 80%. Participants with FEV1/FVC ≥ 0.7 
with FEV1% predicted < 80% were classified as hav-
ing preserved ratio impaired spirometry (PRISm) [18]. 
Demographic and spirometric measures used in this 
study included age, sex, race, smoking history, scanner 
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manufacturer, body mass index (BMI), FEV1% predicted, 
FEV1/FVC and forced mid-expiratory flow (FEF25 − 75).

Computed tomography and Topological PRM Analysis
All computed tomography (CT) data were obtained from 
multiple sites associated with the COPDGene project 
at Phase 1. Whole-lung volumetric multidetector CT 
acquisition was performed at full inspiration and nor-
mal expiration at functional residual capacity using a 
standardized previously published protocol [15]. Data 
reconstructed with the standard reconstruction kernel 
were used for quantitative analysis. All CT data were pre-
sented in Hounsfield units (HU), where stability of CT 
measurement for each scanner was monitored monthly 
using a custom COPDGene phantom [15]. For reference, 
air and water attenuation values are − 1,000 and 0 HU, 
respectively.

PRM were determined from paired CT scans using 
Lung Density Analysis (LDA) software (Imbio, LLC, 
Minneapolis, MN). LDA segmented the lungs from the 
thoracic cavity with airways removed. Inspiratory CT 
scans were spatially aligned to the expiratory geometric 
frame using deformable image registration. Lung vox-
els were classified using pre-determined HU thresholds 
as: normal (PRMNorm, -950 < inspiration HU ≤ -810, and 
expiration HU ≥ -856), functional small airways disease 
(PRMfSAD, -950 < inspiration HU ≤ -810, expiration HU 
< -856), emphysema (PRMEmph, inspiration HU < -950, 
expiration HU < -856), or parenchymal disease (PRMPD, 
inspiration HU > -810) [19, 20]. Only voxels between 
− 1,000 HU and − 250 HU at both inspiration and expi-
ration were used for PRM classification. Each PRM clas-
sification was quantified as the percent volume, which is 
defined as the sum of a PRM classification normalized 
to the total lung volume at expiration multiplied by 100. 
There were a few noisy voxels that were considered inde-
terminate by PRM (inspiration < -950 HU, expiration > 
-856 HU) that were excluded from our analysis as they 
did not form consolidated regions of interest within the 
parenchyma.

Topological analysis of PRM was performed using 
methods previously described [10]. tPRM metrics were 
defined through application of Minkowski measures on 
3D binary voxel distributions: volume density (V) and 
Euler-Poincaré Characteristic (χ) [21]. Maps of V and χ 
were computed for each PRM class (Norm, fSAD, Emph, 
and PD) using a 3D moving window of size 21 × 21 × 21 
voxels evaluated on a grid of every 5th voxel. V was nor-
malized by the Minkowski estimate of the mask within 
the same local window volume (rather than a direct cal-
culation of the mask volume in the window as previously 
described) and χ by the masked window voxel count. Lin-
ear interpolation was applied to determine V and χ values 
for all segmented voxels.

To indicate the PRM class associated with a Minkowski 
measure, the class is presented as a superscript (e.g., 
VfSAD is the volume density of PRMfSAD). tPRM analysis 
was performed using open-source and in-house software 
developed in MATLAB R2019a (MATLAB, The Math-
Works Inc., Natick, MA). A detailed overview and dia-
gram, of computing tPRM from raw imaging data, was 
made by Hoff et al. [10]. Because the focus of this study is 
the relationship between normal parenchyma and SAD, 
and its association with emphysema, all analyses were 
performed using V and χ for PRM classifications Norm 
and fSAD. For completeness, V and χ for PRM classifica-
tions Emph and PD are provided.

Phase 1 data and statistical analysis
Data in this study are presented as mean and standard 
deviation unless stated otherwise. Correlations between 
V and χ for PRMNorm and PRMfSAD were calculated 
using Spearman rank-order correlation coefficients (ρ
). The total Phase 1 cohort was separated into two sub-
sets based on spirometry-confirmed COPD: non-COPD 
(FEV1/FVC ≥ 0.7) and COPD (FEV1/FVC < 0.7). Cross-
sectional multivariable regression analysis was per-
formed on both subsets using a stepwise approach with 
V and χ for PRM classifications Norm and fSAD as inde-
pendent variables and selected pulmonary function test-
ing and clinical features as outcome variables, controlling 
for age, gender, race, BMI, smoking (pack years) and CT 
vendor. These control variables were included as com-
pulsory independent variables in all regression models. 
Statistical work was conducted using IBM SPSS Statistics 
v27 (SPSS Software Products). In all tests, significance 
was defined by p < 0.05.

Predict spirometric decline
We evaluated baseline V and χ for PRM classifications 
Norm and fSAD as predictors of FEV1 decline over 5 
years using a machine learning (ML) model. A total of 
4483 cases from the Phase 2 cohort of the COPDGene 
longitudinal trial, a subset of Phase 1, had FEV1 measure-
ments at baseline and 5-year follow up. Our ML model is 
a sparse dictionary learning algorithm [22–26] that clas-
sifies image patch features as “normal” or “abnormal”. In 
our method, we used the tPRM maps VNorm, VfSAD, χNorm, 
and χfSAD of each case as inputs for training and testing 
the algorithm. For training our ML model, individual 
cases were stratified based on the change in FEV1 over 
5 years [= (FEV1 at yr 5 – FEV1 at yr 0)/5 years] as fast 
(ΔFEV1/yr ≤ -60  ml/yr; n = 1516) and slow progressors 
(ΔFEV1/yr > -60  ml/yr; n = 2967). We used 35% of the 
data for training and 65% for testing the model [27, 28]. 
Training was performed on a randomly selected subset 
of 1569 cases, with n = 531 fast progressors and n = 1038 
slow progressors. The remaining 2914 cases, consisting 
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of n = 985 fast progressors and n = 1929 slow progres-
sors, were used for testing the algorithm. In brief, our ML 
model is designed to associate unique features from the 
input image patches with fast and slow progressors. This 
is achieved by randomly selecting image patches from 
within the lung and extracting the information from the 
inputs (tPRM maps VNorm, VfSAD, χNorm, and χfSAD given 
as inputs to the ML algorithm) at these image patch loca-
tions and comparing their underlying patch features with 
the compiled class dictionaries of features, which are 
determined during training. It is important to note that 
no previous knowledge about the case and lung tissue 
features, such as emphysema, are provided for the algo-
rithm to delineate “normal” from “abnormal” lung tissue. 
Details on model design and methods for training and 
testing are provided in Additional File 1 (Supplemen-
tal Fig.  1 and Supplemental Methods 2). To determine 
the contribution of each feature to the model selection, 
we used the minimum redundancy maximum relevance 
feature selection algorithm [29] to rank the tPRM inputs 
used in the dictionary learning algorithm. The algorithm 
quantifies the redundancy and relevance using mutual 
information of variables [30, 31]. We also investigated 
the selection bias for each input in the ML model and 
obtained the prediction accuracy for 10 different choices 
of training image patches, considering each input sepa-
rately in the model. The prediction accuracy for each 
training run is fit to a Gaussian probability density func-
tion [32, 33]. All processing and analyses were performed 
using in-house algorithms developed in MATLAB ver-
sion 2020a (MathWorks, Natick, MA). To determine the 
contribution of our ML model to account for spatial fea-
tures in predicting FEV1 decline, we determined if whole 
lung mean values of VNorm, VfSAD, χNorm, and χfSAD were 

predictive of FEV1 decline using a logistic regression 
classifier.

Case Study: spatial analysis
To better understand the relationship between PRMfSAD 
and PRMEmph, we evaluated the spatial dependance of V 
and χ for these PRM classifications from a single subject. 
The case is a female subject, 48 years of age, diagnosed 
with GOLD 4 COPD. On a single axial slice, profiles of 
V and χ for PRMfSAD and PRMEmph were generated by 
selecting points from high emphysema (VEmph > 0.6) and 
low emphysema (VEmph < 0.2). A line plot (Additional 
File 1: Supplemental Fig. 4) was produced for V and χ vs. 
distance along each point of the profile. The distance, in 
units of centimeters, along the image profile was deter-
mined using the voxel dimensions of the CT scan. All 
processing and analyses were performed using in-house 
algorithms developed in MATLAB version 2020a (Math-
Works, Natick, MA).

Results
Population characteristics
The original COPDGene Phase 1 cohort consisted of 
10,300 individuals. We excluded 1,344 participants for: 
inadequate CT data, such as missing an expiration or 
inspiration scan, to conduct tPRM analysis (n = 1,125); 
missing clinical data (n = 16); or failing to pass our CT-
based QC testing (n = 203). Further details of CT QC are 
provided in Additional File 1 (Supplemental Methods 
1). The resulting complete subset used for analyses thus 
consisted of 8,956 participants. Baseline demographics 
and lung function for all Phase 1 participants, grouped 
based on FEV1% predicted and FEV1/FVC—that is, by 
GOLD grade or PRISm as described in the Methods—are 
reported in Table 1. Due to the COPDGene recruitment 

Table 1 Clinical characterization of the study population
Non-COPD COPD

Variable GOLD 0 PRISm GOLD 1 GOLD 2 GOLD 3 GOLD 4
Participants (N) 3867 1088 699 1732 1041 529
Age (yrs) 56.7 (8.36) 57.1 (8.20) 61.6 (8.96) 62.6 (8.86) 64.3 (8.27) 64.1 (7.53)
Sex (M/F) 2048/1819 496/592 399/300 933/799 604/437 314/215
BMI (kg/cm2) 29.0 (5.79) 31.9 (7.31) 27.1 (4.89) 28.7 (6.06) 28.1 (6.33) 25.3 (5.56)
Smoking (Pack-Years) 37.2 (20.0) 42.6 (24.2) 45.0 (24.4) 50.9 (26.8) 55.1 (27.1) 56.7 (28.7)
FEV1% Predicted (%) 97.4 (11.4) 70.6 (7.89) 90.8 (8.70) 65.0 (8.51) 40.2 (5.69) 22.6 (4.84)
FEV1/FVC 0.79 (0.05) 0.77 (0.05) 0.65 (0.04) 0.58 (0.08) 0.44 (0.09) 0.31 (0.07)
FEF25 − 75(L/s) 2.81 (1.00) 1.79 (0.66) 1.31 (0.50) 0.80 (0.35) 0.39 (0.16) 0.21 (0.08)
PRMNorm(%) 61.7 (13.0) 53.8 (14.6) 56.9 (12.1) 49.1 (13.5) 33.0 (12.5) 21.1 (9.13)
PRMfSAD(%) 9.90 (9.31) 8.88 (8.25) 17.0 (10.8) 21.3 (11.5) 30.9 (11.0) 36.0 (8.94)
PRMEmph(%) 0.80 (1.42) 0.73 (2.29) 3.00 (3.49) 5.40 (6.95) 14.7 (12.2) 26.0 (14.0)
PRMPD(%) 26.3 (12.8) 35.8 (16.4) 20.8 (8.44) 22.2 (9.04) 19.6 (9.29) 15.7 (5.43)
Notes Participant characteristics of the entire study population separated in subsets of those with (FEV1/FVC < 0.7) and without (FEV1/FVC ≥ 0.7) COPD. Values are 
displayed as mean (standard deviation). GOLD, Global Initiative for Chronic Obstructive Lung Disease; PRISm, preserved ratio impaired spirometry; GOLD 0, at-risk 
smokers with normal spirometry; BMI, body mass index; FEV1, forced expiratory volume in one second; FVC, forced vital capacity; FEF25 − 75, forced mid-expiratory 
flow; PRM, parametric response map; Norm, Normal; fSAD, functional small airways disease; Emph, emphysema; PD, parenchymal disease
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strategy, the proportion of GOLD 0 (FEV1/FVC ≥ 0.7, 
FEV1% predicted ≥ 80%) participants [15] account for 
almost half of the study population (43%; 3,867 of 8,956 
participants). Increasing percent volume of PRM-
derived fSAD (PRMfSAD) and PRM-derived emphysema 
(PRMEmph), with decreasing PRMNorm, was observed 
with higher GOLD grades. This is consistent with previ-
ously published work. PRM-derived parenchymal disease 
(PRMPD) was found to be elevated in PRISm and GOLD 
0 participants (35.8 ± 16.4% and 26.3 ± 12.8% of the total 
lung volume, respectively) as compared to the COPD 
subset.

Topological readouts of PRM
Presented in Fig. 1 is a case with elevated fSAD (PRMfSAD 
= 40%). Representative coronal slices of the expiration 
CT scan and PRMfSAD, overlaid on CT scan, are pro-
vided. To illustrate the dependence of χ on the arrange-
ment of PRMfSAD, we have included VfSAD and χfSAD maps 

indicating regions with similar values of VfSAD (blue and 
magenta boxes). As expected, VfSAD (Fig.  1C) is depen-
dent on the amount of fSAD (yellow voxels in Fig.  1B). 
Averaged over the lungs, VfSAD is proportional to the 
percent volume of PRMfSAD by a factor of 100. However, 
χfSAD > 0 (magenta box in Fig. 1D) corresponds to the for-
mation of fSAD pockets (magenta box Fig. 1B), whereas 
χfSAD < 0 (blue box in Fig. 1D) is the consolidation of these 
pockets into a mesh with holes (blue box in Fig. 1B).

The volume density of PRMNorm and PRMfSAD dem-
onstrated an inverse relationship with increasing COPD 
severity (Fig. 2A), consistent with previous work. A simi-
lar inverse relationship was observed for χ of both nor-
mal lung and fSAD (χNorm and χfSAD). Values of χNorm and 
χfSAD were found to flip about zero (e.g., χfSAD changes 
from positive to negative values) from GOLD 2 to GOLD 
4 (Fig. 2B). From Fig. 2B we observe that χNorm and χfSAD 
had means (standard deviations) of -0.0084 (0.0071) 
and 0.0047 (0.0074), respectively, for cases diagnosed 

Fig. 1 Illustration of Volume Density (V) and Euler-Poincaré Characteristic (χ) for PRMfSAD. Presented are representative coronal slices for the (A) expira-
tory CT scan with associated (B) PRMfSAD overlay (yellow). Included are the (C) volume density and (D) Euler-Poincaré Characteristic of PRMfSAD. Blue and 
Magenta boxes indicate two lung regions with elevated VfSAD that have negative and positive χfSAD, respectively. The subject is a GOLD 3 female aged 53 
with FEV1% predicted of 32% and percent volume of PRMfSAD of 40%
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as GOLD 2. For those with severe COPD, i.e., GOLD 4, 
χNorm and χfSAD are 0.0039 (0.0055) and − 0.0036 (0.0048), 
respectively. Mean values of χEmph and χPD were found to 
be positive and similar across GOLD. We did not con-
sider mean breadth and surface area of PRMNorm and 
PRMfSAD in our analysis, as we did not see such a strong 
relationship between them (Additional File 1: Supple-
mentary Fig. 2).

We further evaluated the relationship of PRMNorm 
and PRMfSAD with respect to V (Fig. 3A) and χ (Fig. 3B). 
Both V and χ demonstrated strong correlations between 
Norm and fSAD (ρ = -0.666, p < 0.001 and ρ = -0.745, 
p < 0.001, respectively) over the Phase 1 cohort. Here 
the GOLD stages are coded by color and the relative 
amount of emphysema, quantified by VEmph, by size of 
the marker. As observed in Fig.  3A, VNorm versus VfSAD 

had more scatter in the data compared to χNorm versus 
χfSAD (Fig. 3B). As expected, GOLD 4 cases with elevated 
emphysema (VEmph) demonstrated a drop in VNorm and 
VfSAD values. In contrast, χNorm consisted of primarily 
positive values, whereas positive and negative values were 
observed for χfSAD (Fig. 3B). Although VfSAD was found to 
be strongly correlated to VEmph (ρ = 0.845, p < 0.001), only 
a weak correlation was observed between χfSAD and χEmph 
(ρ = -0.155, p < 0.001).

Multivariable regression analysis
Presented in Table  2 are results from multivariable 
regression analyses that demonstrate the contribution of 
V and χ to PRMNorm and PRMfSAD when modeling spi-
rometric measures and the volume density of emphy-
sema, controlling for age, sex, race, BMI, pack-years, 

Fig. 3 Scatter plots of all study sample participants for (A) VNorm versus VfSAD and (B) χNorm versus χfSAD. Individual points are color coded based on COPD 
classifications. The size of the points indicates the amount of emphysema as measured by the volume density of PRMEmph (VEmph)

 

Fig. 2 Boxplots for topological measures of PRM maps PRMNorm (green), PRMfSAD (yellow), PRMEmph (red) and PRMPD (magenta) across all GOLD stages, 
“at-risk” (GOLD 0), and PRISm. Plots of (A) volume density, describing class magnitude (relative amounts of voxels) and (B) Euler-Poincaré characteristic, 
describing class homology, determined by number and type of holes within class volumes. Box plots were computed following standard protocol for box 
and whiskers; box lines determined by lower quartile (Q1), middle quartile / median (Q2) and upper quartile (Q3), and whiskers are drawn out to Q1–1.5 
x IQR and Q3 + 1.5 x IQR for lower and upper limits, respectively. IQR = Q3-Q1. Outliers are defined as points beyond the given upper and lower limits and 
illustrated as black points with a random bounded horizontal perturbation beyond box whiskers
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and CT vendor. Among those with spirometrically 
confirmed COPD, VNorm was found to be significantly 
associated with multiple clinical measures includ-
ing FEV1% predicted, FEV1/FVC, FEF25 − 75 and VEmph 
(see Table  2). VfSAD and χfSAD were found to indepen-
dently and significantly contribute to FEV1% predicted 
(β = 0.065, p = 0.004 and β = 0.106, p < 0.001). Only the 

Norm topological measures were found to contribute to 
FEV1/FVC (β = 0.668, p < 0.001 for VNorm and β = -0.120, 
p < 0.001 for χNorm), whereas V and χ for both Norm 
and fSAD were found to be significant parameters for 
FEF25 − 75. With respect to VEmph, extent of emphysema, 
V and χ for Norm and fSAD were highly significant but 
demonstrated similar trends irrespective of PRM clas-
sification. For completeness, the same analyses were 
performed on the non-COPD cohort (Additional File 
1: Supplemental Table  1). As compared to the COPD 
cohort, statistical models generated from the non-COPD 
cohort demonstrated significant parameters but with 
weaker correlations (i.e., adjusted R2).

Prediction model of spirometric decline
Representative axial slices of expiration CT scan, PRM, 
VfSAD, χfSAD and corresponding patch probability maps 
from a fast progressor (with ΔFEV1/yr of -249 ml/yr) are 
provided in Fig. 4. Our ML model correctly classified this 
subject as a fast progressor. This case is a 63-year-old 
male, diagnosed at baseline with GOLD 2 COPD. Using 
V and χ from PRMfSAD and PRMNorm as inputs, the ML 
model was able to determine regions of emphysema, 
discernible from existing fSAD, observed in the right 
upper lung as “abnormal” (blue patches in the probability 
maps). In contrast, the dorsal lung regions were classi-
fied as “normal” (red patches in the probability maps) due 
to the absence of fSAD and emphysema. For complete-
ness we have provided in Additional File 1 (Supplemental 
Fig.  3) representative axial slices of expiration CT scan, 
PRM, VfSAD, χfSAD and corresponding patch probability 
maps from a slow progressor (with ΔFEV1/yr of 101 ml/
yr).

Table 2 Multivariable regression for COPD subset
Performance FEV1% 

predicted
FEV1/FVC FEF25 − 75 

(L)
VEmph

Adjusted R2 0.516 0.602 0.526 0.778
SE 15.8 0.084 0.331 0.057
Age (yrs) 0.085** 0.021 (0.06) -0.184** 0.035**
Sex (M/F) 0.018 (0.08) -0.283** -0.035**
BMI (kg/cm2) -0.110** 0.033* 0.024** -0.232**
Smoking (Pack 
Years)

-0.046** -0.013 (0.22) -0.051** -0.015 
(0.06)

CT vendor 0.111**
Race 0.113** -0.033*
VNorm 0.727** 0.668** 0.688** -1.01**
VfSAD 0.065* 0.138** -0.408**
χNorm -0.120** 0.134** 0.150**
χfSAD 0.106** 0.175** 0.118**
Notes Multivariable regression modelling using volume density (V) and Euler-
Poincaré Characteristic (χ) for PRM-derived Normal and fSAD (introduced 
stepwise) to model pulmonary function testing measures in the COPD subset. 
Each column presents results for a different regression model. FEV1, forced 
expiratory volume in one second; FVC, forced vital capacity; FEF25 − 75, forced 
mid-expiratory flow; Emph, emphysema; SE, standard error of the estimate; 
BMI, body mass index; Norm, Normal; fSAD, functional small airways disease. 
Model performance is reported as adjusted R2 and standard error of the 
estimate. Feature association is reported as standardized beta coefficients (β); 
cells for stepwise variables removed from final model. All regression models 
were controlled for age, sex, race, BMI, pack years and CT vendor. P values ≥ 0.01, 
< 0.01 and ≥ 0.001, and < 0.001 are presented as values in parentheses, *, and **, 
respectively

Fig. 4 The dictionary learning results for a 63-year-old male diagnosed at baseline with GOLD 2 COPD and declared a fast progressor with ΔFEV1/yr of 
-249 ml/yr. Representative axial slice of an expiratory CT scan acquired at baseline, its associated PRM map, the tPRM maps VfSAD and χfSAD of PRMfSAD, and 
their image patch probability maps from the dictionary learning model
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As seen in Fig. 5A and B, our ML model had an over-
all classification accuracy of 70.6% and Area Under the 
Curve (AUC) of 0.69 of the receiver operating charac-
teristic (ROC) curve. We compared our ML model with 
a simple logistic regression model using whole lung 
mean values of VNorm, VfSAD, χNorm, and χfSAD. Figure 5B 
shows that the logistic regression model only achieved an 
AUC of 0.55. The contribution of each of the inputs to 
the model (VNorm, VfSAD, χNorm, and χfSAD) are shown in 
Fig. 5C and D. V and χ of PRMfSAD are dominant inputs, 
followed by V and χ of PRMNorm (Fig. 5C). Using a fea-
ture rank analysis performed on our test set, we observed 
that V and χ of PRMfSAD are important to achieve higher 
prediction accuracy. In fact, χfSAD was found to have 

the smallest spread/variance (Fig.  5D), indicating highly 
desirable robustness to the choice of training image 
patches and its usefulness as an input in the ML model. 
As reported in Table  3, “normal” patches, on average, 
consisted primarily of PRMNorm, elevated VNorm (abun-
dant) and negative χNorm (consolidated), with negligible 

Table 3 Image patch topological PRM metrics in the ML model
tPRM Metrics Normal Abnormal
VNorm 0.5458 (0.1587) 0.3798 (0.0897)
VfSAD 0.1059 (0.0935) 0.3299 (0.1008)
χNorm -0.0065 (0.0084) -0.0031 (0.0058)
χfSAD 0.0041 (0.0061) -0.0019 (0.0062)
Note Data are presented as the mean (standard deviation)

Fig. 5 Results and relevance of the different features (tPRM metrics as inputs) used in the dictionary learning method. (A) Confusion Matrix showing the 
sensitivity and specificity of the ML model classifications for both the fast progressor (n = 985) and the slow progressor (n = 1929) classes in the test set. 
Green colored and red colored fields in the matrix represent agreement and disagreement, respectively, of the ML model with the actual decision. (B) 
Receiver Operating Characteristic (ROC) curve for our ML model and the logistic regression classifier with the corresponding Area Under the Curve (AUC) 
statistics. (C) Bar plot showing the feature importance score and feature ranking using the minimum redundancy maximum relevance method. (D) Plot 
showing the distribution of the features and their prediction accuracy over ten different training runs
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PRMfSAD, low VfSAD (depleted) and positive χfSAD (sparse 
pockets). In “abnormal” patches, similar values of V and χ 
for PRMNorm and PRMfSAD were observed (Table 3). Posi-
tive and negative values in χfSAD were found for “normal” 
and “abnormal” patches, respectively. This is consistent 
with the inverse relationship seen with increasing COPD 
severity shown in Fig. 2.

Dependence between topologies of PRMfSAD and PRMEmph

As the topologies of PRM were determined as averages 
over the whole lungs, we provide a case study illustrat-
ing the relationship between V and χ of PRMfSAD and 
PRMEmph at the local level. Presented in Additional File 
1 (Supplemental Fig.  4) are the profiles of V and χ of 
PRMfSAD and PRMEmph from a region of the right lung 
with elevated and reduced VEmph (orange circle and star, 
respectively; Supplemental Fig. 4A and C). The case is a 
female subject, 48 years of age, diagnosed with GOLD 
4 COPD. The subject was found to have on average 
high levels of VfSAD (0.37) with relatively elevated VEmph 
(0.1). Mean values for the whole lungs of χ were 0.008 
and − 0.009 for PRMEmph and PRMfSAD, respectively. As 
seen in Additional File 1 (Supplemental Fig.  4C), VfSAD 
increased while VEmph decreased further from lung with 
the highest level of VEmph (~ 0.6 at orange circle in Addi-
tional File 1: Supplemental Fig.  4A and C). At approxi-
mately 1.8  cm, volume densities between PRMfSAD and 
PRMEmph transitioned. In addition, χfSAD was found to 
increase with decreasing χEmph with transition occurring 
at ~ 1.2 cm.

Discussion
The topological parametric response map is an exten-
sion of the well-established PRM method, a quantita-
tive imaging marker of SAD [8]. In this study, we have 
demonstrated that inclusion of topological features, in 
this case the Euler-Poincaré Characteristic (χ), improved 
characterization and interpretation of fSAD in COPD as 
a complimentary readout of volume density (V), which 
is equivalent to traditional percent volume of PRM clas-
sifications [10]. This study also evaluated the role of 
PRM-defined normal parenchyma (PRMNorm) and fSAD 
(PRMfSAD) as lone indicators of COPD severity. We 
observed distinct patterns in topological metrics with 
respect to GOLD grades and identified a complete inver-
sion in topology, characterized by Euler-Poincaré Charac-
teristic χ, between normal lung and fSAD, in mid-to-late 
stages of COPD. We also found V and χ of PRMNorm and 
PRMfSAD to have statistically significant correlation with 
spirometric measures and emphysema and to be predic-
tive of spirometric decline.

Our study builds on previous work by Hoff et al. [10] on 
tPRM characterization in COPD. This study used a much 
smaller population (n = 88) to demonstrate the trends 

of all four topological features (volume density, surface 
area, mean curvature and Euler-Poincaré Characteristic) 
with increasing COPD severity [10]. Limited in statisti-
cal power, it instead focused on the surface area of fSAD. 
Access to a notably larger population (n = 8,956) in the 
current study allowed us to evaluate the volume density 
(V) and Euler-Poincaré Characteristic (χ) of PRMNorm 
and PRMfSAD and relate our findings to the field’s current 
understanding of COPD progression, i.e., normal paren-
chyma transitions to emphysema through SAD.

A key finding of our study is the ability to quantify 
parenchymal lung health, based not only on the extent 
but also on the arrangement of local lung abnormali-
ties, i.e., fSAD. This is rooted in the concept that the 
lungs are healthy (i.e., PRMNorm) and COPD progresses 
through SAD (i.e., PRMfSAD), an intermediate between 
normal and emphysematous lung tissue, to emphysema. 
The nature of this transition suggests χ may be captur-
ing a fundamental mechanism in the emergence of fSAD. 
Based on our observation, fSAD appears to develop as 
distinct pockets, which are represented as positive val-
ues in χfSAD within healthy lung tissue, as depicted in 
the blue box in Fig. 1B. With increasing COPD severity, 
fSAD pockets coalesce to a mesh, which is represented by 
negative values in χfSAD (magenta box in Fig.  1B). On a 
whole lung level, this transition occurs on average from 
GOLD stages 2 to 4. By quantifying the amount and 
arrangement of normal and fSAD parenchyma, one can 
assess the severity of COPD. As fSAD is an intermediate 
between healthy lung and emphysema, increasing levels 
of emphysema have a direct effect on V and χ of fSAD. 
This is observed in Fig. 3 and Additional File 1 (Supple-
mental Fig. 4), where increasing values of VEmph resulted 
in a drop in VfSAD and increase in χfSAD. These trends 
were reflected in our multivariable model for VEmph as 
well (Table 2).

In a seminal study, McDonough and colleagues [7] 
provided pathological evidence demonstrating the role 
of SAD in COPD progression. Using high resolution 
(~ 10 μm) microCT to analyze frozen lung samples from 
lung transplant recipients with end-stage COPD, they 
found that widespread narrowing and destruction of the 
smaller airways (i.e., SAD) occurred before emphysema-
tous lesions became large enough to be visible on stan-
dard CT imaging. They concluded that SAD might serve 
as an emphysema precursor. Based on their observation, 
we postulated that the transition observed between χNorm 
and χfSAD (Figs. 2 and 3) should be observed for χfSAD and 
χEmph. Using mean values of χ over the lungs, χEmph was 
found to be relatively stable, generating positive values 
across GOLD (Additional File 1: Supplemental Fig.  2), 
as well as demonstrating a weak correlation to χfSAD (ρ 
= -0.155, p < 0.001). Nevertheless, evaluating χfSAD and 
χEmph at the local level, we observe a strong association 
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between these two readouts (Additional File 1: Supple-
mental Fig.  4), which may be linked to the structural 
changes in the terminal airways observed using microCT 
of lung explants.

In a recent study, Bhatt and colleagues evaluated a CT 
readout, referred to as the mean Jacobian determinant 
of normal voxels, at varying distances from emphysema-
tous tissue [34]. When measured at 2 mm from CT vox-
els designated emphysema (i.e., voxel HU <-950 HU), this 
CT-based readout was found to be predictive of spiro-
metric decline. Our spatial analysis of a single case clearly 
demonstrates a transition in topologies of PRMfSAD and 
PRMEmph, 1.8  cm and 1.2  cm for V and χ, respectively 
(Additional File 1: Supplemental Fig. 4). It is the associa-
tion of topologies between PRMfSAD and PRMEmph at the 
local level that allows our machine learning model to pre-
dict spirometric decline, with an accuracy of 70%, in the 
absence of any emphysema readout as an input (Fig. 4). 
Although the readouts reported by Bhatt and colleagues 
lacked quantification of SAD, there is clear agreement 
that lung tissue along the periphery of emphysematous 
tissue provides potential insight into COPD progression. 
Using only topologies of PRMNorm and PRMfSAD, our 
patch-based ML model outperformed the whole-lung 
logistic regression model (Fig. 5B). This result highlights 
the importance of the spatial relationship of χfSAD to 
χEmph to predict spirometric decline (Figs. 4 and 5).

We acknowledge several notable limitations. COPD-
Gene comprises over 20 study sites, making scanner vari-
ation and reconstruction kernel inconsistency inevitable. 
Sensitivity of PRM to scanner variability was addressed 
previously [35] and although effort was made to apply 
PRM only to soft kernels, variability in scanner type was 
unavoidable. However, we included scanner vendor in 
our multivariable regressions and found that it did not 
significantly confound models. Another limitation is vari-
ation in levels of inspiration and expiration during CT 
acquisition. Earlier work demonstrated that even small 
perturbations from functional residual capacity (FRC) 
have an observable effect on threshold-based techniques 
such as PRM [35]. To limit this, we implemented QC 
that excluded participants based on erroneous volume 
changes or strong discordance with correlation between 
PRMNorm and FEV1% predicted.

Conclusions
In this paper, we have demonstrated that topological 
features, V and χ, are able to enhance the sensitivity of 
PRM classifications, notably Norm and fSAD, to extent of 
emphysema and COPD severity. These data support the 
concept that as pockets of small airways disease coalesce, 
surrounding normal tissue is lost. Pockets of fSAD are 
seen to correlate with increasing presence of emphy-
sema, independent of the amount of fSAD present. We 

further demonstrated that local levels of χfSAD and χEmph 
correlate, which may be explained by bronchiolitis along 
the periphery of emphysematous tissue observed by 
McDonough and colleagues using microCT. In addi-
tion, we demonstrated that local values of V and χ for 
PRMNorm and PRMfSAD provide sufficient information to 
predict spirometric decline, even in the absence of any 
prior knowledge of emphysema. Our study provides a 
unique strategy to detect subtle changes in lung paren-
chyma that may progress to emphysema. This approach 
to monitoring extent and arrangement of Norm and 
fSAD offers insight into COPD phenotypes and provides 
improved prognostic information that has relevance in 
clinical care and future clinical trials.
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