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Abstract 

Background The substantial heterogeneity of clinical presentations in patients with severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) pneumonia still requires robust chest computed tomography analysis to identify 
high-risk patients. While extension of ground-glass opacity and consolidation from peripheral to central lung fields 
on chest computed tomography (CT) might be associated with severely ill conditions, quantification of the central-
peripheral distribution of ground glass opacity and consolidation in assessments of SARS-CoV-2 pneumonia remains 
unestablished. This study aimed to examine whether the central-peripheral distributions of ground glass opacity 
and consolidation were associated with severe outcomes in patients with SARS-CoV-2 pneumonia independent 
of the whole-lung extents of these abnormal shadows.

Methods This multicenter retrospective cohort included hospitalized patients with SARS-CoV-2 pneumonia 
between January 2020 and August 2021. An artificial intelligence-based image analysis technology was used to seg-
ment abnormal shadows, including ground glass opacity and consolidation. The area ratio of ground glass opacity 
and consolidation to the whole lung (GGO%, CON%) and the ratio of ground glass opacity and consolidation areas 
in the central lungs to those in the peripheral lungs (GGO(C/P)) and (CON(C/P)) were automatically calculated. Severe 
outcome was defined as in-hospital death or requirement for endotracheal intubation.

Results Of 512 enrolled patients, the severe outcome was observed in 77 patients. GGO% and CON% were higher 
in patients with severe outcomes than in those without. Multivariable logistic models showed that GGO(C/P), 
but not CON(C/P), was associated with the severe outcome independent of age, sex, comorbidities, GGO%, 
and CON%.

Conclusion In addition to GGO% and CON% in the whole lung, the higher the ratio of ground glass opac-
ity in the central regions to that in the peripheral regions was, the more severe the outcomes in patients 
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Main text
Introduction
The global pandemic of novel coronavirus disease 2019 
(COVID-19) caused by severe acute respiratory syn-
drome  coronavirus 2 (SARS-CoV-2) has generated an 
unprecedented health burden, with over 680 million 
cases and 6.9 million deaths worldwide as of June 22, 
2023 [1]. Although many cases of COVID-19 remit spon-
taneously, some cases present a rapid deterioration from 
the onset of symptoms into severe illness [2–4]. The 
heterogeneity of clinical courses still requires the estab-
lishment of methods for identifying high-risk patients 
to appropriately use medical resources and improve 
outcomes.

Chest computed tomography (CT) is widely used for 
the diagnosis of COVID-19 and to predict the sever-
ity and prognosis of the disease. [5–11] Bilateral patchy 
ground-glass opacification/opacity (GGO) and con-
solidation (CON) are CT findings often observed in 
pneumonia caused by SARS-CoV-2. Initially, GGOs are 
localized in the subpleural or peripheral area, particu-
larly in the lower lobes. Then, GGOs increase in size and 
extend to the central area with a crazy paving pattern and 
consolidation (CON) [10–12]. Studies have reported that 
GGOs, CON, air bronchograms, central lung involve-
ment, and pleural effusion were associated with adverse 
clinical outcomes such as intensive care unit (ICU) 
admission or mortality [10, 13, 14]. Others have shown 
that semiquantitative visual scoring and quantification 
of GGO and CON may reflect disease severity and allow 
the prediction of adverse clinical outcomes [15–18]. 
However, quantitative analyses beyond visual inspection 
have yet to be fully established. No study has quantified 
the spatial distribution of abnormal CT patterns in cen-
tral and peripheral lungs and calculated their central-to-
peripheral ratio in relation to the severity and prognosis 
of COVID-19.

Recent advances in artificial intelligence (AI) have 
developed applications in various health care fields, 
including AI-based radiological diagnostic technology 
[19–21]. Deep learning is an AI method that employs 
artificial neural networks and allows for diagnostic assis-
tance and prognosis prediction in patients with lung dis-
eases, including interstitial lung disease and SARS-CoV-2 
pneumonia [16, 22, 23]. Indeed, artificial intelligence-
based quantitative CT image analysis software (AIQCT) 
was developed to automatically recognize and quantify 

abnormal parenchymal lesions on CT from patients with 
diffuse lung diseases [24].

It was hypothesized that the spatial distribution of 
GGO and CON would be associated with clinical out-
comes in patients with SARS-CoV-2 pneumonia inde-
pendent of the whole lung extents of GGO and CON. 
With the use of AIQCT, this study aimed to develop an 
automatic calculation system for the rate of lung paren-
chyma occupied by target CT patterns such as GGO 
and CON according to the distance from the pleura. We 
believe that the established system for quantification of 
the spatial distribution pattern of target radiological fea-
tures could be the foundation of a clinically relevant plat-
form for appropriate assessment of the evolved type of 
pneumonia caused by future strains of SARS-CoV-2 and 
even pneumonia caused by unknown pathogens.

Study design and methods
Patients
This retrospective study consecutively included adult 
patients with COVID-19 who underwent chest CT after 
admission at 9 tertiary hospitals in Japan between Janu-
ary 2020 and August 2021. The period corresponded 
to the first to fifth waves of COVID-19 in Japan [25]. 
B.1.1.284 and B.1.1.214 were the predominant lineages 
seen between March and October 2020 and between 
October 2020 and February 2021, respectively, in Japan. 
Then, B.1.1.7 (Alpha) and B.1.617 (Delta) prevailed 
between February and July 2021 and after August [26]. 
COVID-19 was diagnosed based on positive results of 
polymerase chain reaction and loop-mediated isothermal 
amplification assay for SARS-CoV-2. Severe outcomes 
were defined as either death or the need for endotra-
cheal intubation. The exclusion criteria included (1) the 
absence of symptoms on admission, (2) missing pre-
determined clinical data such as age, sex, and comor-
bidities (chronic cardiovascular disease, chronic kidney 
disease, and diabetes), (3) the absence of pneumonia on 
CT by visual inspection, (4) age less than 16  years old, 
and (5) CT scan performed before the onset or more 
than 15 days after symptom onset. The research was con-
ducted in compliance with the Declaration of Helsinki 
and was approved by the Ethics Committees of Kyoto 
University Hospital (approval No. R2407-1 and R2866-1). 
Written informed consent was waived due to the retro-
spective nature of the analysis.

with SARS-CoV-2 pneumonia were. The proposed method might be useful to reproducibly quantify the extension 
of ground glass opacity from peripheral to central lungs and to estimate prognosis.

Keywords COVID-19, Pneumonia, Quantitative analysis, Ground glass opacity, Peripheral area, Central area
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Data acquisition
We collected clinical data regarding age, sex, body mass 
index (BMI), smoking history, underlying diseases and 
laboratory data at admission, and outcome. Data were 
obtained from registries of participating hospitals.

CT image analysis
The study analyzed chest full-inspiratory CT obtained 
at the closest to the date of admission. Images were 
reconstructed with sharp kernels, and the slice thick-
ness ranged from 0.5 to 5.0  mm. CT scans with a slice 
thickness greater than 5  mm or the presence of medi-
astinal emphysema, pneumothorax, pleural effusion, 
and lung cancer were excluded because of limited ver-
tical consecutiveness of lung field images and the pos-
sibility that AIQCT could not appropriately identify the 
parenchymal structure around mediastinal emphysema, 
respectively. For CT analyses, the whole lung field was 
segmented based on AIQCT, and each pixel was assigned 
to either GGO, CON, reticulation (RET), honeycomb-
ing (HON), hyperlucent lung (LUC) mainly representing 

emphysema, other lung parenchyma, and outside lung 
using SYNAPSE VINCENT software (FUJIFILM, Tokyo, 
Japan). The software was initially validated using CT 
images of patients with idiopathic pulmonary fibrosis 
[24]. Then, the labeled images were exported as Digital 
Imaging and Communications in Medicine (DICOM) 
data and analyzed using a custom-made program based 
on Python modules. The segmented lung fields were 
divided into peripheral and central areas for each axial 
slice (see Fig. 1). The boundary was determined based on 
two methods: the distance from the pleura (length-based 
condition; 5, 10, 15, 20, 25 mm) and the prespecified per-
centage of the peripheral area to the total lung area for 
each axial slice (ratio-based condition; 25, 40, 60, 75% for 
the peripheral area). The latter could normalize intersub-
ject variation in lung sizes. Furthermore, lungs were also 
vertically divided into 3 regions and GGO, CON, RET, 
HON, and LUC in each region for subanalyses (see Addi-
tional file 1).

The ratios of GGO, CON, RET, HON, and LUC were 
calculated individually as follows: the number of pixels in 

Fig. 1 Representative images of SARS-CoV-2 pneumonia. A and B indicate two representative CT images of the nonsevere and severe cases, 
respectively. C and D are corresponding images after segmentation of lungs, ground-glass opacification/opacity (GGO) and consolidation (CON). 
The blue and pink colored areas indicate the area of GGO and CON respectively. In the nonsevere case (A, C), the percentages of whole, peripheral, 
and central lungs occupied by GGO (GGO%, GGO%(P), GGO%(C)) were 5.61%, 11.0%, and 2.22%, respectively. The percentage of whole, peripheral, 
and central lungs occupied by CON (CON%, CON%(P), CON%(C)) were 5.37%, 3.54%, and 6.52%, respectively. In the severe case (B, D), GGO%, 
GGO%(P), GGO%(C) were 9.68%, 10.8%, 8.31%, and CON%, CON%(P), CON%(C) were 12.1%, 15.0%, 8.70%
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the specified regions in each slice was counted and added 
together from the apex to the base of the lung. Lungs 
were craniocaudally divided into 3 parts, including the 
apex, middle, and base regions occupying 10%, 80%, and 
10% of the total lung volume, respectively. CT images in 
the apex and base regions were excluded from this analy-
sis because the lung fields at the apex and base were too 
small to be analyzed in the central and peripheral areas 
separately. The total number of pixels obtained from 
the calculation was divided by the total number of pix-
els in the lung field area, which is defined as the “lesion 
ratio (GGO%, CON%, RET%, HON%, LUC%)” in this 
study. Additionally, to assess the combined effect of the 
parenchymal lesion ratio from both peripheral and cen-
tral areas, the lesion ratio in the central area was divided 
by that in the peripheral area for GGO%, CON%, and 
RET%, which were defined as “GGO(C/P)”, “CON(C/P)”, 
or “RET(C/P)”, respectively.

Statistical analysis
Statistical analyses were performed using Python sta-
tistical software 3.10.11. Data are expressed as the 
mean ± standard deviation (SD) unless indicated. The 
details of the statistical analysis are described in the Sup-
plemental Materials. Clinical and radiological data of the 
CT scans were compared between patients who devel-
oped severe outcomes (severe outcome group) and those 
who did not (nonsevere outcome group). Categorical and 
continuous variables were compared using a chi-square 
test and Wilcoxon’s rank sum test, respectively. Correla-
tions between two continuous variables were evaluated 
using the Pearson or Spearman correlation test. Three 
multivariable logistic regression models were constructed 
to explore factors associated with severe outcomes. The 
first model included age, sex, chronic heart disease, 
chronic kidney disease, diabetes mellitus and timing 
of CT acquisition as covariates (Model 1). The second 
model was constructed by adding GGO% and CON% 
to Model 1 (Model 2). The third model was constructed 
by adding the parenchymal ratio of abnormal shadows 
in the peripheral-central area (GGO(C/P), CON(C/P)) 
to Model 2 (Model 3). Moreover, for subanalysis includ-
ing patients whose data of BMI and smoking status were 
available, multivariable models were constructed by add-
ing BMI and smoking status to the variables used in the 
original models as covariates. A two-sided p value less 
than.05 was considered statistically significant.

Results
Patient characteristics
Of 816 patients initially evaluated, 512 were included in 
the present analyses (Fig. 2). As shown in Table 1, severe 
outcomes were observed in 77 (15.0%) patients (death, 

n = 28, and endotracheal intubation, n = 61). The average 
time interval between symptom onset and CT acquisition 
was 5.9 (SD, 3.3) days. Age, and prevalence of underlying 
diseases such as chronic cardiovascular disease, chronic 
kidney disease, and diabetes mellitus differed between 
the severe and nonsevere outcome groups, while sex, 
BMI, smoking history, and the period between symptom 
onset and CT acquisition did not differ (Table 1).

Distribution pattern of lesion ratio
A comparison of each finding between the two groups 
is shown in Fig.  3. GGO%, CON%, and RET% were 
higher, and normal parenchymal region % was lower in 
the severe outcome group than in the nonsevere out-
come group (GGO%: P < 0.001, CON%: P < 0.001, RET%: 
P < 0.001, normal %: P < 0.001). In contrast, HON% and 
LUC% did not differ between them. Comparisons of 
GGO and CON with discrimination of the peripheral 
area and the central area, the boundary placed at 5 mm 
from the pleura, between the two groups are shown in 
Fig. 4. GGO% and CON% in both the peripheral and cen-
tral areas were higher in the severe outcome group than 
in the nonsevere outcome group (GGO%(P): P < 0.001, 
GGO%(C): P < 0.001, CON%(P): P < 0.001, CON%(C): 
P < 0.001). Regarding the central-peripheral distribu-
tion, GGO(C/P) was higher, and CON(C/P) was lower 
in the severe outcome group than in the nonsevere out-
come group. (GGO(C/P): P < 0.001, CON(C/P): P = 0.002) 
There was a positive correlation between GGO(C/P) and 
GGO% (r = 0.68, P < 0.001). Moreover, RET% in both the 
peripheral and central areas and RET(C/T) were also 
higher in the severe outcome group (RET%(P): P < 0.001, 
RET%(C): P < 0.001, RET(C/P): P < 0.001) (Additional 
file 1: Fig. S1).

Clinical and CT imaging parameters associated with severe 
outcomes
As shown in Table  2, multivariable logistic regression 
models were constructed to evaluate the association of 
clinical and CT parameters with severe outcomes while 
placing the boundary from the pleura at 5 mm from the 
pleura. Among the clinical parameters, age and sex were 
associated with the development of severe outcomes (sex 
(male): odds ratio [OR], 1.99; 95% CI; 1.12, 3.53, P = 0.02, 
age: OR, 1.06; 95% CI; 1.04, 1.08, P < 0.001; Table  2 and 
Additional file  1: Fig. S2A, Model 1). Among the CT 
parameters, both higher GGO% and CON% in the whole 
lung area were associated with severe outcomes (GGO%: 
OR, 1.09; 95% CI; 1.06, 1.12, P < 0.001, CON%: OR, 1.12; 
95% CI; 1.05, 1.20, P = 0.001) (Table  2 and Additional 
file  1: Fig. S2B, Model 2). Furthermore, GGO(C/P) but 
not CON(C/P) was associated with severe outcomes 
independent of GGO% and CON% in the whole lung 
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Fig. 2 Patient flow chart. DICOM  digital imaging and communications in medicine. AIQCT  novel artificial intelligence-based quantitative CT image 
analysis software

Table 1 Patient characteristics

Data are presented as the means ± standard deviations or N (%). Data of body mass index (BMI), smoking status, white blood cell (WBC), neutrophil-to-lymphocyte 
ratio (NLR), lactate dehydrogenase (LDH), C-reactive protein (CRP), and creatinine (Cr) are available in 309, 449, 508, 493, 510, 509, and 508 patients, respectively. CT 
scan date = interval between symptom onset and CT acquisition

Characteristic All cases Nonsevere cases Severe cases P value

N 512 435 77 –

Age, y 60.6 ± 17.4 58.6 ± 17.5 71.9 ± 11.6  < 0.001

Sex, male 304 (59.4) 252 (57.9) 52 (67.5) 0.145

BMI 24.5 ± 4.30 24.5 ± 4.46 24.4 ± 3.47 0.687

Smoking status, current 65 (12.7) 59 (13.6) 6 (7.79) 0.223

Chronic heart disease 46 (8.98) 34 (7.82) 12 (15.6) 0.048

Chronic kidney disease 27 (5.27) 18 (4.14) 9 (11.7) 0.014

Diabetes 105 (20.5) 81 (18.6) 24 (31.2) 0.018

WBC [/µL] 5634 ± 2406 5429 ± 2072 6778 ± 3575 0.006

NLR [%] 31.1 ± 24.5 33.3 ± 24.8 18.6 ± 18.0  < 0.001

LDH [U/L] 307 ± 125 284 ± 101 436 ± 163  < 0.001

CRP [mg/dL] 5.88 ± 5.74 5.14 ± 5.10 10.0 ± 7.24  < 0.001

Cr [mg/dL] 1.01 ± 1.27 0.96 ± 1.05 1.33 ± 2.09 0.039

CT scan date, days 5.93 ± 3.29 5.92 ± 3.30 5.95(3.31) 0.967

Mortality 28(5.47) 0(0) 28(36.4) –

Endotracheal intubation 61(11.9) 0(0) 61(79.2) –
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area. (GGO(C/P): OR, 8.67; 95% CI; 2.30, 32.6, P = 0.001) 
(Table 2 and Additional file 1: Fig. S2C, Model 3). RET% 
in the whole lung area, but not RET(C/P), was also asso-
ciated with severe outcomes (Additional file 1: Table S4, 
Model 2, Model 3). Additionally, the sooner the 1st CT 
was acquired from the date of hospitalization, the more 
severe the outcome was.

Sensitivity analyses were performed in multivari-
able logistic regression models including GGO(C/P) 
and CON(C/P) based on different boundary conditions. 
The association of GGO(C/P) with the severe outcome 
independent of the whole lung GGO% and CON% was 
confirmed in models where the boundary distance 
from the pleura was set as 5  mm, 10  mm, 15  mm, and 
20 mm but not 25 mm (Additional file 1: Table S3). The 
association was also confirmed even when defining the 
central-peripheral boundaries based on the ratio-based 
condition (cutoff value = 25%, 40%, 60%) (Additional 
file  1: Table  S3). Additionally, when GGO(C/P) and 
CON(C/P) were quantified in the upper, middle, and 
lower lung areas separately, GGO(C/P) in the upper and 
lower lung areas, but not the middle areas, was associ-
ated with severe outcomes independent of the whole 
lung GGO% and CON% for all length-based condi-
tions (distance from the pleura = 5 mm, 10 mm, 15 mm, 
20 mm) (Additional file 1: Table S3). Moreover, in suba-
nalyses including patients whose BMI and smoking sta-
tus available, GGO(C/P) was significantly associated with 
severe outcomes (OR, 11.9; 95% CI; 1.38, 103, P = 0.02) 

independent of GGO% and CON% in the whole lung area 
(Additional file 1: Table S4).

Greater GGO%, CON%, GGO(C/P), and CON(C/P) on 
CT were associated with higher white blood cell (WBC), 
neutrophil-to-lymphocyte ratio (NLR), lactate dehydro-
genase (LDH), and c-reactive protein (CRP) (Additional 
file  1: Fig. S3). GGO%, CON%, and GGO(C/P), but not 
CON(C/P), were higher in subjects with comorbidities 
of chronic heart disease and diabetes than those without 
(Additional file 1: Fig. S4).

Discussion
This study localized GGO and CON on CT using AIQCT 
and showed that GGO% and CON% were higher and 
normal parenchymal region % was lower in patients with 
severe outcomes than in those without, whereas HON% 
and LUC% did not differ between them. Moreover, mul-
tivariable models showed that GGO (C/P), but not CON 
(C/P), was associated with a severe outcome independent 
of GGO% and CON% in the entire lungs. These findings 
suggest that the central-peripheral distribution of GGOs 
and CON may complement the overall severity of GGOs 
and CON in terms of prognostic evaluation and help per-
form more personalized management of patients with 
SARS-CoV-2 pneumonia.

The pathology of severe pneumonia due to SARS-
CoV-2 infection is characterized by acute and organizing 
diffuse alveolar damage [27–30]. This may be radiologi-
cally identified as CON or a mixed pattern of GGO and 
CON on CT in critically ill cases with poor prognosis. 
Indeed, previous studies have shown that GGOs and 
CON in the whole lungs could predict disease deterio-
ration and mortality [10], and the extension of GGOs 
along the subpleural area is associated with hypoxemia 
and SARS-CoV-2 viremia [31, 32]. Nonetheless, further 
improvement in radiological models for estimating the 
risk of poor prognosis is still warranted due to large clini-
cal heterogeneity [33]. Therefore, this study is significant 
because it succeeded in automatically labeling multi-
ple abnormal parenchymal lesions and quantifying each 
lesion in central and peripheral areas in relation to severe 
outcomes in patients with SARS-CoV-2 pneumonia.

This study determined the cutoff value of the distance 
from the pleura to define the boundary between cen-
tral and peripheral areas and calculated GGO(C/P) and 
CON(C/P). GGO(C/P) was positively correlated with 
GGO% in the entire lung, but the correlation was not 
strong. Indeed, the multivariable models showed that 
both GGO(C/P) and GGO% in the entire lung were 
independently associated with severe outcomes. This 
extends previous studies showing that the extents of 
GGO or CON in the entire lung, as estimated by either 

Fig. 3 The distribution of parenchymal lesions in the whole 
lung area. The percentages of lungs occupied by each CT 
pattern was compared between nonsevere and severe cases. 
Normal  normal parenchymal, GGO  ground-glass opacification/
opacity, CON  consolidation, RET  reticulation, HON  honeycomb 
lung, GRA   granular opacities, LUC  hyperlucent lung. P values were 
calculated by the Wilcoxon rank-sum test and Pearson correlation 
test [P < 0.05 (*); P < 0.01 (**); P < 0.001 (***)]
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semiquantitative scores or AI, including deep learning, 
were predictive of disease severity [16, 34].

CON%, but not CON(C/P), was associated with severe 
outcomes in this study. This seems inconsistent with a 
previous study showing that the extent of CON in the 
central region was associated with severe outcomes [14]. 
It is well known that GGO was replaced by CON [8, 10, 
35]. In this study, the timing of chest CT in this study 
was relatively earlier (the mean value was 5  days from 
the in-hospitalization date), and in this early phase, the 
larger lesion ratio of GGO/CON was associated with the 
severity of the disease. Given that GGO(C/P) was asso-
ciated with a severe outcome but CON(C/P) was not, 
it is conceivable that in the early phase, the more GGO 
extended to the central region, the more likely the lesion 

that would develop into diffuse alveolar damage was to 
distribute not only in the peripheral region but also more 
broadly. CON might not continuously extend from the 
pleura to the central region. It is also possible that CON 
may not originate from the pleura or subpleural region 
within 20  mm, as defined in our analysis. These factors 
might explain the observed lack of associations between 
CON(C/P) and the severe outcomes in this study.

Coexisting lung diseases, such as interstitial lung dis-
ease and COPD, could affect severe outcomes in patients 
with COVID-19 [36, 37]. While lung function tests and 
CT data before COVID-19 onset were unavailable for 
all patients, the AIQCT system allowed for segment-
ing fibrotic changes such as honeycomb and reticula-
tion and emphysematous changes (hyperlucent lung). 

Fig. 4 The distribution of the ratio of GGOs and CON in the peripheral or central lung region. A and B The percentage of lungs occupied 
by ground-glass opacification/opacity and consolidation were calculated in the peripheral and central regions (GGO%(P), GGO%(C), CON%(P), 
and CON%(C), respectively). C The central to peripheral ratio for GGO% and CON% were calculated (GGO(C/P) and CON(C/P)). D A correlation 
between GGO% and GGO(C/P). The boundary between the central and peripheral regions was set as 5 mm from the pleura. These variables were 
compared between patients with severe outcomes and those with nonsevere outcomes. P values were calculated by the Wilcoxon rank-sum test 
[P < 0.05 (*); P < 0.01 (**); P < 0.001 (***)]
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Consequently, there was no difference in HON% and 
LUC% between patients who developed severe outcomes 
and those who did not. Therefore, we estimate that the 
influences of the underlying lung comorbidities on the 
present findings would be minimal.

One would argue that the reticular shadow may affect 
the observed association between GGO and a severe out-
come because GGO could change into linear or multi-
focal reticular shadows during the course of the disease 
[38]. However, we think that this possibility is less likely. 
In the multivariable logistic regression model includ-
ing both the parenchymal ratio of reticulation in the 
peripheral-central lung area RET(C/P) and GGO(C/P), 
RET(C/P) was not associated with a severe outcome 
(Additional file 1: Table S4).

GGO%, CON%, GGO(C/P) and CON(C/P) were cor-
related with WBC, NLR, LDH, CRP, and comorbidities 
such as chronic heart disease and diabetes. Moreover, 
multivariable models in Table 2 showed that GGO(C/P) 
was associated with severe outcomes independent of 
the presence of chronic heart disease and kidney dis-
ease. While smoking history and higher BMI have been 
shown to be associated with poor outcomes in SARS-
CoV-2 infection [39, 40], the subanalyses in this study 
showed that GGO(C/P) was associated with severe out-
comes independent of BMI and smoking history. Taken 

together, we postulate that GGO(C/P) could reflect 
previously-reported factors for severe pneumonia [41, 
42], but still have independent impacts on severe out-
comes in patients with SARS-CoV-2 pneumonia.

The data in this study did not include cases with 
omicron infection or those with pneumonia induced 
by other pathogens. Since omicron is currently a com-
mon mutant and the severe cases are less frequent in 
omicron infection than in previous forms of mutant 
infection, CT patterns in omicron infection might be 
different from those analyzed in this study. Because of 
lack of data, we could not examine whether the present 
findings can be directly applied to CT in cases with 
current SARS-CoV-2 mutant infection. Nonetheless, 
we believe our proposed method is clinically relevant. 
The method is based on a combination of AI-based seg-
mentation of various abnormal shadow patterns and 
allows automatic calculation of spatial distribution pat-
terns for specific target shadows, not limited to GGO 
and consolidation. Therefore, it can be readily tailored 
to apply for cases with pneumonia induced by various 
pathogens. With this method, further studies should 
be performed to explore whether similar findings are 
observed in cases with current SARS-CoV-2 mutant 
infection and to define specific CT features of SARS-
CoV-2 pneumonia by comparing CT findings of SARS-
CoV-2 infection to those induced by other pathogens.

Table 2 Multivariable logistic regression models for factors associated with severe outcomes in SARS-CoV-2 pneumonia

Values indicate Odds ratio (95% confidence interval). GGO% and CON% represent the percentage of lungs occupied by ground-glass opacification/opacity (GGO) 
and consolidation (CON), respectively. GGO(C/P) and CON(C/P) represent the ratios of GGO and CON areas in the central regions to those in peripheral regions, 
respectively. CT-date = interval between symptom onset and CT acquisition

Characteristics Model 1 Model 2 Model 3

Odds ratio P value Odds ratio P value Odds ratio P value

GGO(C/P) – – – – 8.67
(2.30–32.6)

0.001

CON(C/P) – – – – 0.89
(0.59–1.35)

0.58

GGO% whole lung – – 1.09
(1.06–1.12)

 < 0.001 1.06
(1.02–1.09)

0.001

CON% whole lung – – 1.12
(1.05–1.20)

0.001 1.09
(1.01–1.17)

0.019

Sex (male) 1.99
(1.12–3.53)

0.02 2.79
(1.40–5.60)

0.004 2.80
(1.37–5.70)

0.005

Age 1.06
(1.04–1.08)

 < 0.001 1.06
(1.03–1.08)

 < 0.001 1.06
(1.03–1.08)

 < 0.001

Chronic heart disease 1.17
(0.54–2.55)

0.69 0.855
(0.358–2.04)

0.72 0.74
(0.31–1.80)

0.51

Chronic kidney disease 1.47
(0.58–3.69)

0.41 1.71
(0.614–4.77)

0.30 2.03
(0.71–5.77)

0.19

Diabetes mellitus 1.24
(0.69–2.21)

0.47 0.74
(0.37–1.46)

0.38 0.80
(0.40–1.58)

0.52

CT-date 1.02
(0.95–1.01)

0.69 0.95
(0.87–1.04)

0.26 0.92
(0.84–1.01)

0.09
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The strength of our study is the use of large data col-
lected from more than 500 patients with SARS-CoV-2 
pneumonia from multiple institutions in Japan. Second, 
the use of AIQCT enabled the identification of intersti-
tial fibrosis and emphysema as reticular and honeycomb 
shadows and hyperlucent regions and the estimation of 
the effect of coexisting lung diseases, such as intersti-
tial lung disease and emphysema, on severe outcomes. 
However, this study has limitations. First, the CT proto-
cols, including the timing of acquisition, slice thickness, 
reconstruction kernel, and scanner manufacturer, varied 
among institutions. Regarding the timing of CT acquisi-
tion, the multivariable regression models showed that 
the timing of CT was associated with severe outcomes 
for some boundary conditions. The imbalance in CT 
slice thickness might have affected the results, although 
the data analyses were performed using our dataset, 
which included CT scans with a thickness of more than 
2 mm, thicker compared to a previous study [16]. Third, 
the training CT images for generating the AIQCT sys-
tem used in this study did not include those with pleu-
ral effusion, pneumothorax, and pulmonary lung tumors 
[24]. Thus, these radiological findings may not be seg-
mented correctly with AIQCT, and patients with these 
CT findings were excluded from the present analyses. 
Fourth, this study examined the associations of the CT 
findings with short-term outcomes, but not long-term 
outcomes including long COVID, which is an ongoing 
problem [43]. Further studies are needed to test whether 
the proposed CT metrics could be associated with long 
COVID using long-term longitudinal data. Finally, this 
study included only Japanese patients. Further studies are 
needed to determine the applicability of the present find-
ings to other racial populations.

Conclusion
In summary, this study showed that in addition to the 
whole lung extents of GGOs and consolidation, a higher 
ratio of GGOs in the central regions to those in the 
peripheral regions was associated with severe outcomes 
in patients with severe SARS-CoV-2 pneumonia. These 
findings encompass basic techniques that can be applied 
for better management of SARS-CoV-2 pneumonia as 
well as pneumonia caused by pandemic viruses that may 
occur in the future.
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