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Microbes little helpers and suppliers 
for therapeutic asthma approaches
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Abstract 

Bronchial asthma is a prevalent and increasingly chronic inflammatory lung disease affecting over 300 million people 
globally. Initially considered an allergic disorder driven by mast cells and eosinophils, asthma is now recognized 
as a complex syndrome with various clinical phenotypes and immunological endotypes. These encompass type 
2 inflammatory endotypes characterized by interleukin (IL)-4, IL-5, and IL-13 dominance, alongside others featur-
ing mixed or non-eosinophilic inflammation. Therapeutic success varies significantly based on asthma pheno-
types, with inhaled corticosteroids and beta-2 agonists effective for milder forms, but limited in severe cases. Novel 
antibody-based therapies have shown promise, primarily for severe allergic and type 2-high asthma. To address this 
gap, novel treatment strategies are essential for better control of asthma pathology, prevention, and exacerbation 
reduction. One promising approach involves stimulating endogenous anti-inflammatory responses through regula-
tory T cells (Tregs). Tregs play a vital role in maintaining immune homeostasis, preventing autoimmunity, and mitigat-
ing excessive inflammation after pathogenic encounters. Tregs have demonstrated their ability to control both type 
2-high and type 2-low inflammation in murine models and dampen human cell-dependent allergic airway inflamma-
tion. Furthermore, microbes, typically associated with disease development, have shown immune-dampening prop-
erties that could be harnessed for therapeutic benefits. Both commensal microbiota and pathogenic microbes have 
demonstrated potential in bacterial-host interactions for therapeutic purposes. This review explores microbe-associ-
ated approaches as potential treatments for inflammatory diseases, shedding light on current and future therapeutics.
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Background
Bronchial asthma is a chronic inflammatory lung dis-
ease that affects more than 300 million people worldwide 
and is increasing in prevalence [1]. First described as an 
allergic disorder of the lower airways driven by mast cells 
and eosinophils, asthma is now understood to be a het-
erogeneous syndrome with different clinical phenotypes, 
pathogenesis and underlying immunological endotypes. 
These range from type 2 inflammatory endotypes that are 

dominated by interleukin (IL)-4, IL-5 and IL-13, to other 
types where no eosinophilic inflammation is detected in 
the airways or mixed inflammation with type 1 and type 
17 cytokines.

The complexity of the different pathophysiological 
mechanisms underlying asthma is also mirrored by the 
therapeutic success of different therapies in the vary-
ing phenotypes. Individuals with milder forms asthma 
benefit from treatment with inhaled corticosteroids 
and beta-2 agonists, while those with more severe 
disease often show poor or no response to these con-
ventional therapies. In recent years, novel antibody-
based approaches have been developed for certain 
phenotypes of asthma. The main application for these 
treatments to date has been severe allergic asthma 
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and severe asthma and type 2 high inflammation or 
eosinophilic inflammation. In individuals with the 
relevant asthma phenotype and severe disease, these 
novel therapeutics help to reduce exacerbation rates 
and improve quality of life. In 2022, an anti-thymic 
stromal lymphopoietin (TSLP) antibody was approved 
for use in Europe for the treatment of severe asthma in 
patients with no phenotype or biomarker limitations 
[2] This agent, tezepelumab, has shown some effective-
ness in individuals with type 2-low asthma, however, 
the observed effects are less convincing compared to 
the effectiveness in type 2-high patients. There is still 
a therapeutic gap for patients with severe type 2-low 
asthma.

Based on available data, there is a need for novel 
treatment strategies that provide better control of 
the pathology driving inflammatory processes to pre-
vent asthma development or disease exacerbations. 
In particular, it would be interesting to determine the 
long-lasting effects of therapeutic interventions that 
stimulate endogenous anti-inflammatory responses 
by inducing and activating regulatory T cells (Tregs). 
Together with T helper cells Tregs belong to the frac-
tion of  CD4+ T cells. They can differentiate in the thy-
mus or only in the periphery, so that one commonly 
differentiates between naturally occurring thymus-
derived tTregs and induced pTregs. Unlike effector T 
cells, Tregs are responsible for maintaining immune 
homeostasis, preventing autoimmunity, and eliminat-
ing/preventing excessive inflammatory responses after 
contact with pathogens or pollutants [3]. In murine 
models, Treg cells can control type 2-high and type 
2-low inflammation [4], and dampen human cell-
dependent allergic airway inflammation in the lung [5]. 
This suppression is mediated via the release of anti-
inflammatory cytokines (such as IL-10, transform-
ing growth factor [TGF]-β, and IL-35) or via cell–cell 
contacts. In addition, Tregs can also indirectly throt-
tle immune cell activity via interaction with dendritic 
cells (DC) and degradation of metabolically essential 
products (e.g., adenosine triphosphate or tryptophan).

Surprisingly, although normally associated with the 
development, progression or exacerbation of diseases, 
microbes have emerged as potential beneficial tools 
that have immune dampening properties. Both com-
mensal bacteria forming the microbiome and microbes 
normally seen as pathogens have shown bacterial-host 
interactions with potential therapeutic suitability. 
This review will highlight several microbe-associated 
approaches representing current or future poten-
tial therapeutics for the treatment of inflammatory 
diseases.

The other face of bacteria: symbiotic or commensal 
roommates
The role of microbes as hostile intruders that are respon-
sible for the development of infectious diseases that 
could have life-threatening consequences is well known. 
Infections are associated with asthma and, in particular, 
exposure to certain viruses is associated with the devel-
opment of asthma and acute disease exacerbations [6]. 
The interactions between microbes and humans are com-
plex, ranging from pathological destructiveness to indif-
ferent coexistence and symbiotic cohabitation. Based on 
these different forms of interaction, several hypotheses 
have been developed stating that beneficial interactions 
between microbes and host can prevent diseases, while 
the absence of microbial species, due to changes in life-
style (e.g. excessive hygiene or use of antibiotics) can be 
responsible for disease development.

In his “hygiene hypothesis”, Strachan was one of the 
first to postulate that infections in early childhood and 
improved hygiene standards in developed countries are 
responsible for an increased risk of developing allergies 
[7]. Further studies and developments in gnotobiotic ani-
mal research showed a protective role of various envi-
ronmental bacteria and commensal bacteria, forming the 
indigenous microbiota, on the development of atopy.

Culturing of anaerobes and new high-throughput 
methodology such as matrix-assisted laser desorp-
tion/ionization-time of flight (MALDI-TOF), 16S RNA 
sequencing, phylogenetic microarrays or taxon targeted 
qPCR, have shown the diversity of bacterial species colo-
nizing environmental-exposed organs including the gut 
and skin, but also the lung. Furthermore, methods like 
metabolomics, proteomics, transcriptomics, metagen-
omics or single cell sequencing have provided additional 
insights into the physiological function of our body 
mates.

Based on data obtained using these techniques, it was 
found that the microbiota in one healthy human subject 
consists of approximately 30 trillion microbes, with the 
largest proportion being bacteria, followed by viruses 
(bacteriophages and human viruses), and yeasts [8]. In 
healthy individuals, the composition of the microbi-
ome is quite stable but differs between organs or even 
within sections of the same organ. In the gastrointestinal 
tract, the functions of the microbiome are already quite 
well described. Several studies have shown an impact 
of the microbiome on the development of immunity 
[9], host defense [10], metabolic supply [11], fat stor-
age [12], synthesis of vitamins [13] and even an associa-
tion with behavior [14]. Microbial products have many 
functions: defense systems can protect from pathogens, 
while ligands and nutrients can perform intra-microbial 
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communication, and inter-kingdom communication 
between microbe and host. Signals can act as short-dis-
tance messengers but are also able communicate with 
distant organs [15]. Pathogen-associated molecular pat-
terns (PAMPS), and metabolic products like indole-3-al-
dehyde (a ligand to the aryl hydrocarbon receptor [AHR]) 
or short fatty acids modulate host immune responses 
and therefore mediate both pro- and anti-inflammatory 
responses. These are associated with the development 
and maintenance of healthy immune homeostasis. Inter-
estingly, changes in the microbiome-host relationship are 
associated with several diseases in different organs, such 
as autism, stress or stroke (brain), asthma (lung), atopic 
dermatitis (skin), inflammation and obesity (adipose tis-
sue), and others such as type 3 diabetes, systemic lupus 
erythematosus or atherosclerosis.

There are different reasons for these associations. 
Pathophysiological changes due to disease, exogenous 
stressors, medication [e.g. antibiotics] and changes in 
diet can all affect the composition of the microbiome 
and drive host interaction malfunction. The identifica-
tion of beneficial microbial strains and their restoration 
to regain health-promoting function could be a thera-
peutic approach for various diseases. Different strate-
gies helping to restore, complement or replace ineffective 
microbiomes are in development. Targeted treatments 
with antibiotics or bacteriophages are thought to destroy 
pathogenic bacterial species. Mills et  al. showed that 
phages naturally shape host-associated bacterial popu-
lations [16]. With new gene editing methods, it will 
be possible to design specific phages to target specific 
unsuitable bacterial species at an individual patient level 
[17]. This will terminate pathogenic processes and create 
space for the expansion of beneficial species. To further 
support repopulation with desirable species, targeted 
transfer of single beneficial or genetically modified spe-
cies (probiotics), designed communities, or multispecies 
or whole microbiome applications by fecal transplanta-
tions (FMT) can be performed. For example, Sheng et al. 
showed that FMT is a beneficial treatment option in chil-
dren with infantile allergic colitis refractory to standard 
therapeutics [18].

However, it should not go unmentioned that these 
methods still present us with a number of challenges. 
With FMT in particular, it is clear that rigorous screening 
of donors and recipients is important to ensure the suc-
cess of a healthy microbiome transfer and to avoid poten-
tial side effects such as the transfer of antibiotic-resistant 
bacteria or the induction of sepsis.

Due to the increasing simplicity of methods for genetic 
modification of microorganisms, bacteria of the microbi-
ota themselves are being considered as therapeutic tools. 
This is especially the case for bacteria such as Escherichia 

coli Nissle [19], Lactobacillus or Lactococcus [20], which 
tend to induce anti-inflammatory immune responses in 
the host and are not capable of long-term colonization. 
Designed bacteria are capable of supporting the forma-
tion of a healthy microbiota and producing compounds 
that support beneficial metabolic pathways, or destroy 
or prevent pathogenic processes [19]. In addition to the 
supplementation of bacteria, diets with selected nutrients 
and the use of prebiotics or synbiotics can enhance the 
development of metabolites with beneficial effects.

Taken together, maintenance of a healthy microbiota 
and support for the development of desirable metabolites 
provide a “natural” therapeutic tool to prevent, treat or at 
least support the treatment of a wide range of diseases. 
New methods allowing personalized examinations to 
provide detailed characterization of the host microbiota 
will help to optimize individual treatment strategies.

The lung and the microbiome
The long-held dogma that the lungs are a sterile organ 
meant that it was not considered to be an area that con-
tained a microbiome. However, almost a decade after 
initiation of the human microbiome project in 2007 
[21], the first studies revealed a microbial microcosm in 
the healthy lung [22, 23]. Still, limited access to sample 
material from healthy lungs and concerns about con-
taminations during the sample collection process slowed 
the research. Today, with the emergency of methods like 
16S rRNA analysis, this view has changed. A healthy 
lung microbiota, which is formed from different bac-
teria including members of the Protobacteria, Firmi-
cutes, Actionbacteria and Bacteroidetes phyla, has been 
identified and is now accepted [24]. In healthy people, 
the lung microbiome shares many similarities with the 
upper airway microbiome; probably caused by aspira-
tions of oropharyngeal fluids [25]. Furthermore, shifts in 
the composition of the bacterial communities of the lung 
microbiota is associated with different lung diseases. Spe-
cific changes in the lung microbiome have been found in 
individuals with asthma [26–31], while different changes 
have been associated with chronic obstructive pulmo-
nary disease (COPD) [26, 32] or cystic fibrosis [33].

An important role for the microbiome has been identi-
fied for susceptibility to asthma. Data from germ-free or 
antibiotic-treated murine models have shown a strong 
relationship between the microbiome and the develop-
ment of asthma [34–36]. In this setting there appears to 
be a “time window of opportunity” during pregnancy 
and especially in the first years of life that seems to be 
important for the development of a healthy protective 
microbiome.

The antibiotic animal models served to emphasize the 
role of the microbiome as a beneficial early childhood 
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factor that can reduce the risk of developing diseases 
later in life. Under no circumstances should they cast 
doubt on the usefulness of antibiotics for the treatment 
of potentially life-threatening infectious diseases, but 
they should encourage the sensible use of these drugs. In 
this context, it is also worth mentioning that that the tim-
ing of antibiotic treatment, such as azithromycin, plays 
an important role. While mouse model confirm that early 
life treatment with azithromycin increased the susceptil-
ity to develop allergic asthma in later life, epidemiological 
studies on the effect of antibiotics on the course of lung 
disease in older children are controversial [37]. On the 
one hand, no positive effects on recurrent wheezing after 
RSV bronchiolitis could be observed with parallel treat-
ment with the antibiotic [38, 39]; on the other hand, early 
treatment in children who frequently suffer from severe 
episodes of lower respiratory tract illness (LRTI) led to 
a milder course of the disease [40]. The exact role of the 
microbiome in asthma is not yet fully understood. What 
is clear is that there are differences between healthy peo-
ple and those with asthma. Whether there are also differ-
ences in the microbiome depending on asthma severity 
remains controversial. Some think that the microbiome 
does not differ between asthma phenotypes [41, 42], 
while other studies show that the microbiome of individ-
uals with severe asthma is associated with corticosteroid 
insensitivity and eosinophils [43, 44]. Nevertheless, there 
are several disease-driving functions that are likely to be 
affected by the composition of the lung microbiome. For 
example, interactions with the immune system can affect 
the inflammatory profile or corticosteroid responsiveness 
and so dramatically influence the course of the disease.

Positive manipulation of the lung microbiome could 
have beneficial therapeutic effects. Although data con-
cerning a direct therapeutic manipulation of the human 
lung microbiome are scarce, we can expect that every 
environmental manipulation supporting the develop-
ment of a “healthy” microbiome will reduce susceptibility 
to the development of atopy. It has already been shown 
for other organs, especially the gastrointestinal tract, 
that different exogenous factors such as supplementation 
of omega-3 fatty acids or vitamin D during pregnancy 
[45], natural delivery [46, 47] breastfeeding [48], and the 
avoidance of maternal antibiotics have been associated 
with a reduction in the risk of asthma development by 
shaping a healthy microbiome (Fig. 1).

Microbiome‑immune system interaction: 
a relationship with an educational mission
The innate and adaptive immune systems represent an 
endogenous task force responsible for defense against 
exogenous, potentially harmful, intruders and the main-
tenance of homeostasis, respectively. Forming a complex 
network, immune cells are present in, or can be recruited 
within minutes to, all tissues. A sophisticated control and 
balancing of immune cells and their mediators is essen-
tial to provide appropriate and effective responses against 
pathogens and harmful substances while preventing 
overwhelming potentially destructive inflammatory reac-
tions or misguided responses against innocuous stimuli. 
Malfunction in this finely-tuned control of immunity is 
responsible for the development, progression and exacer-
bation of various diseases.

Fig. 1 Factors influencing the composition of the microbiome. These factors include host characteristics, such as genetic factors or age, the use 
of drugs (antibiotics) or pre- and probiotics, environmental factors, nutrition or early childhood factors (birth and feeding mode). Changes often 
have consequences on the interaction of the microbiome with the immune system and can affect the development and progression of diseases
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Co-evolved towards mutualism, interactions between 
the immune system and the microbiome play a cen-
tral role in the development and induction of proper 
immune functions. In the first years of life, the microbi-
ome plays a central role in the maturation of a variable, 
unorganized infantile immune system to an effective, 
organized adult set-up. Studies in germ-free animals 
showed that an abundant microbiota led to defects in 
gastrointestinal tract lymphoid cells, monocytes, and 
the production of and sensitivity to antibodies [49]. This 
shaping of immunity in the early life “window of oppor-
tunity” seems to mediate long-lasting beneficial effects 
on homeostasis and adequate host defense. In particu-
lar, interplay between structural cells (such as epithelial 
cells), dendritic cells and the microbes is thought to play 
a key role in microbiome-mediated immune regulation. 
Pattern recognition receptors on both endogenous cell 
types are able to sense bacterial structures and mediate 
both pro- and anti-inflammatory signals. Epithelial cells 
of the intestine can express Toll-like receptors (TLR; 
-1,-2,-3,-5,-9) and nucleotide oligomerization domain 2 
(NOD2). They can interact directly with immune cells by 
the expression of chemokines, cytokines and major his-
tocompatibility complex (MHC) I and MHCII. Moreover, 
they are also able to directly modulate the composition of 
the gut microbiota via expression of anti-microbial pep-
tides [50].

Epithelial cells are in close proximity to intraepithelial 
lymphocytes, which can mediate both structural pro-
tection and inflammation. Right beside these first-line 
defenders lays the lamina propria, which is populated 
with T and B lymphocytes and DC. These cells are able to 
exert both pro- and anti-inflammatory responses. Anti-
inflammatory responses are mediated by Tregs induced 
especially by  CD103+ DC, whereas  CD103− DC are 
associated with inflammation and the activation of IL-4, 
interferon (IFN)-γ, IL-22 or IL-17 secreting effector T 
cells. While it is most likely that immune regulation is 
mediated by the entire microbiome, most of the findings 
relating to microbiome-host interactions come from sin-
gle bacteria species studies. Here, impact on induction 
of anti-inflammatory Tregs, activation of NK cells and 
Th17/22 cells, or development of IgA-producing B cells 
could be observed.

Their ability to sense a plurality of endo- and exogene-
ous danger signals, to uptake, process and present anti-
gens via MHCI and MHCII, and to produce chemokines 
and cytokines make DC a professional antigen-present-
ing cell and a central element in the regulation of adap-
tive immunity. The type and strength of activation signal 
regulates the maturation state and determines the nature 
of the immune response; tolerance or sensitization. DC 
play an essential role in the induction of T cell and B cell 

responses. They are able to directly or indirectly modu-
late T cell subtypes and class-switch of B cells via expres-
sion of immune activating but also inhibitory motifs and 
the release of different mediators.

As a result, it is not surprisingly that DC play a central 
role in mediating the communication between microbi-
ome and adaptive immunity. DC activation and subse-
quently induced T cell response seem to be differentially 
regulated depending on type of commensal bacteria [51]. 
Interestingly, application of the mixture IRT5 containing 
microbiome-associated bacterial species is able to induce 
DC with a tolerogenic phenotype. These DC are able to 
induce regulatory T cells and have beneficial effects in 
different diseases like inflammatory bowel disease [52], 
atopic dermatitis [53], rheumatoid arthritis [54] or myas-
thenia gravis [55].

One approach to enhancing immune-suppressing 
properties is to eliminate pro-inflammatory bacte-
rial compounds. For example, lipoteichoic acid (LTA) is 
major membrane component of gram-positive bacteria 
and a well-known antagonist of TLR-2. Several studies 
showed that Lactobacillus species deficient in LTA can 
mediate anti-inflammatory responses and induce regu-
latory DC [56, 57]. The effects of bacterial compounds 
seem to differ between bacterial species, reports on the 
functional role of LTA are controversial, and this seems 
to depend on both strain and immunological milieu 
[58–60]. Both pro- and anti-inflammatory effects are 
also described for other compounds like peptidoglycan 
(PGN). Fernandez et al. reported that PGN derived from 
Lactobacillus salivarius Ls33 was capable to induce anti-
inflammatory DC, while L. acidophilus failed to mediate 
protection [61].

This is also the case for Bifidobacterium adolescentis 
strains. Depending on the strain, differences in DC-spe-
cific IL-6, TNF-α, IL-10 induction have been seen, with 
consequences for the ratio of developing Th17 cells and 
Tregs. Jeon et al. further analyzed the effectiveness of dif-
ferent intestinal bacteria capable of promoting the induc-
tion of regulatory T cells. In their studies Bifidobacteria 
breve but not Lactobacillus casei were able to induce 
Tregs by a DC IL-10- and IL-27-dependent mechanism 
[62].

Taken together, these data demonstrate that the inter-
action between the microbiome and DC is complex. 
Depending on the type of bacteria, differences between 
species of the same genus and differences in comparable 
molecules between species, both inflammatory and toler-
ogenic DC phenotypes can be induced. These promote 
antigen-specific responses, but also modulate “bystander” 
immune responses, and therefore influence the pathol-
ogy of diseases. For example, in a murine tumor model, 
the elimination of gram-positive bacteria led to a more 
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effective DC-dependent anti-tumor response following 
radiotherapy [63].

Originating from DC, activation and differentiation of 
T cells is another important step that determines adap-
tive immunity. Activation of naïve  CD8+ cytotoxic T cells 
and differentiation of  CD4+ T helper cells is important 
for the type and strength, and the abrogation, of immu-
nological responses. Effector T helper cells can differ-
entiate in a variety of subclasses with specific cytokine 
profiles and are so capable in modulate B cell and innate 
immune responses. However, in addition to these pro-
inflammatory T cells, Treg can also be activated by DC, 
which can exert immunosuppressive effects by means of 
cytokines or by direct cell contact.

Commensal bacteria of the gastrointestinal tract con-
trol T cell homeostasis by regulating balance between 
inflammation-inducing Th17 cells and inflammation-
suppressing IL-10-producing Tregs.

Bacterial strains belonging to the microbiome, like 
Bacteroides fragilis or several Clostridium strains, have 
been positively associated with the induction of Tregs. 
Interestingly, Clostridium strains, devoid of toxins or 
virulence factors, are strong inducers of Tregs. The gen-
eration of Tregs seems to be dependent on microbial 
products. Metabolites like Bacteroides-derived polysac-
charide A [64] and short chain fatty acids (SCFA) [65, 66] 
were identified as major drivers for immune protection. 
In particular, SCFA metabolites butyrate and propionate, 
but not acetate, have Treg inducing properties [67]. SCFA 
exert their immune regulatory function by inhibiting his-
tone deacetylases and are able to induce both pro- and 
anti-inflammatory effects [68].

These modulations are thought to protect degradation 
of FoxP3 proteins and to induce their expression, thereby 
mediating both the induction and stability of Tregs 
[67]. Moreover, SCFA appear to be capable of induc-
ing CD103 + tolerogenic DC [69] and IL-10-producing 
B cells (Bregs) [70]. The immune dampening effects are 
thought to mediate tolerance against microbial anti-
gens, thus supporting the cohabitation between host 
and microbial guest. As a positive side effect, SCFA also 
mediate immune suppression to food allergens. Modu-
lation SCFA metabolism, for example by special SCFA-
containing diets, is thought to be a therapeutic approach 
for food allergy [71, 72]. Interestingly, SCFA did not only 
protect from food but also from other not gut related 
allergies (see next section).

Similar to SCFA, the zwitterionic capsular polysaccha-
ride A (PSA), derived from B. fragilis, demonstrated T 
cell-dependent regulatory properties. Oral application of 
PSA induced IL-10 producing  CD4+FoxP3− T cells that 
attenuated inflammatory responses in a murine asthma 
model [73].

Treg and IL-10-positive B cell inducing capacities 
have also been described as necessary to protect against 
inflammatory bowel disease [64, 73]. In humans, PSA 
support Treg stability [74]. Interestingly, PSA-induced 
Tregs suppressed Th17 cells, supporting the idea that B. 
fragilis induces host Tregs to prevent counter measure 
and promote its colonization. Detailed analysis of T cells 
showed that PSA is able to modulate both inflammatory 
cytokine profiles with induction of regulatory surface 
marker profiles on T cells [75]. Again, these observa-
tions demonstrate the ability of a microbial compound to 
induce context-dependent both pro- and anti-inflamma-
tory responses.

While induction of Tregs and IL-10 is associated with 
immune suppression, IL-17 is associated with anti-bac-
terial inflammatory responses and often accompanied by 
neutrophilia. Several bacterial strains of the microbiota 
demonstrate IL-17-inducing properties. IL-17 seems 
to be necessary to maintain immune homeostasis and 
promote appropriate communication with commen-
sal bacteria, thereby preventing induction of inflamma-
tory responses. Altered composition or dysbiosis of gut 
microbiota and infectious contact with pathogens can 
change the role of IL-17 towards a pro-inflammatory dis-
ease-driving molecule [76].

Microbiota-associated bacteria like cytophaga-flavo-
bacter-bacter-oidetes (CFB) [77] or segmented filamen-
tous bacteria (SFB) [78] seem to be two central IL-17 
triggers. Changes in the composition of these bacteria 
affect the Tregs/Th17 ratio [77]. Imbalances in this com-
plicated relationship are responsible for the induction 
and severity of several diseases, including COPD [79], 
systemic sclerosis [80, 81]; thrombocytopenia, GVHD 
[82, 83], and asthma [84]. Shifting the equilibrium to 
immune suppression by supporting the induction of 
Tregs or preventing the development of IL-17-producing 
cells will have beneficial effects for numerous diseases.

The far‑reaching arm of the gut
Microbes of the gastrointestinal tract microbiota exist 
in close proximity to the host but fail to cross epithelial 
barriers and reach the inside of the body. Breach of this 
compartmentalization can induce massive inflamma-
tory responses that often have drastic consequences for 
the host. A reduction of the epithelial integrity can result 
in a “leaky gut”. Bacteria can now reach sterile tissues and 
body regions, and activate innate and adaptive immunity. 
Depending on the extent of the leakage, this change in host 
and microbiome communication could also contribute to 
the development of chronic systemic diseases (e.g. stress-
related psychiatric disorders like depression [85], heart 
failure [86]) or acute life-threatening conditions like sepsis.
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Transfer of microbial compounds or metabolic prod-
ucts across the epithelial border affects local organs and 
systemic processes in a beneficial way. One of the main 
pathways of long-reaching immune modulation within 
the gut–lung axis is the mesenteric lymphatic system. 
Through this system, metabolites can translocate across 
the intestinal barrier and modulate immune responses 
[87]. While immune system-triggering factors like LPS, 
flagellin, peptidoglycan and other PAMPS are generally 
not translocated across the epithelial barrier, bacterial 
metabolites are capable of entering the body. Here, they 
are mainly associated with beneficial, but also sometimes 
negative, effects. SCFA, for example, is involved in energy 
metabolism [88], to modulate pancreatic function and 
insulin release, and regulate appetite [89] and glucogen-
esis [90]. Lactobacilli-derived indole-3-aldehyde or bile-
acids are involved in mucosal homeostasis [91]. Bile acids 
produced by the liver and modified by the microbiota can 
act as secondary hormones and modulate responses in 
adipose tissue, kidneys, heart or the enterohepatic circu-
lation [92].

Precise information concerning the mechanisms 
describing the interplay between the microbiome and 
other organs have been reviewed elsewhere (e.g. cardio-
vascular system [93], liver [94], adipose tissue [95] and 
the brain [96]. Communication between several differ-
ent tissues, such as the cardiovascular system, liver, adi-
pose tissue, brain and lung have been described. These 
observations led to the development of terms like the 
“gut-brain” or “gut–lung axis” to refer to the complex 
relationship between the gut microbiome and its impact 
on disease-promoting or preventing processes in periph-
eral organs.

Next we will focus on cross-talk between the lung and 
the gut microbiome. Observations that gut dysbiosis is 
associated with asthma development in children [97, 
98] contributed to the hypothesis that bacteria in the 
gut have a beneficial effect in preventing inappropriate 
immune responses towards harmless antigens in later 
life. Children with a reduced abundance of bacterial gen-
era like Lachnospira, Veillonella, Faecalibacterium, and 
Rothia had an increased susceptibility to develop asthma 
in later life [99]. A humanized microbiota mouse model 
confirmed these observations and showed that the early 
time window after birth is critical for the development of 
an atopy preventing microbiota [100]. In addition, early-
life colonization with species like Clostridium difficile 
[101] or Lactobacillus rhamnosus [102] are associated 
with protection from developing asthma in later life.

Similar to other organs, SCFA produced in the gas-
trointestinal tract that enter the bloodstream and there-
fore the systemic circulation are thought to be a central 
regulator in lung immunology. High fiber diets increase 

SCFA levels and protect against the development of aller-
gic disease. Data from an epidemiological study showed 
that higher stool concentrations of SCFA in early life 
were associated with reduced susceptibility to the devel-
opment of atopic diseases in later life [103]. In an animal 
model of asthma, oral application of SCFA reduced the 
developing asthma phenotype by increasing the percent-
age of Tregs [103]. Moreover, SCFA reduce the survival 
and mobility of human eosinophils. SCFA-dependent 
reduction of eosinophils contributed to amelioration 
of the asthmatic phenotype in mice [104]. SCFA also 
appear to affect monocyte and subsequent DC mac-
rophage development towards increased phagocyto-
sis but reduced T cell activation ability [105]. Cait et al. 
reported that dysbiosis of SCFA-producing gut bacteria 
can affect systemic DC and T cell responses and thereby 
modulate allergic lung inflammation. Treatment with 
SCFA reduced the ability to mount enhanced antigen-
specific adaptive immune responses and ameliorated 
lung disease [107] (Fig. 2). The SCFA butyrate is also able 
to reduce activation of murine and human innate lym-
phoid cells type 2 [ILC2] [108]. These cells are involved 
in innate immunity and can produce IL-5 and IL-13, 
similar to Th2 cells. However, in contrast to their T cell 
counterparts, they seem to be resistant to treatment with 
corticosteroids, and are therefore associated with severe 
eosinophilic asthma. Interestingly, diet-mediated induc-
tion of SCFA reduced the capability of murine ILC2 cells 
to induce lung inflammation [109]. Initial clinical trials 
show that supplementation with soluble fiber, to increase 
SCFA levels, improved asthma control and inflammation. 
Even if currently available data are limited by small sam-
ple sizes and short follow-up, it does provide and initial 
indication that diets inducing SCFA could be potential 
add-on treatment for asthma [110]. PSA has also had 
beneficial effects on asthma development. In a mouse 
model, gastrointestinal exposure to PSA derived from the 
commensal bacterium Bacteroides fragilis reduced sus-
ceptibility to develop asthma [73].

Gut-lung axis communication has also been reported 
to have negative consequences. Antibiotic-induced dys-
biosis in the gut can lead to an overgrowth of micro-
biota-associated fungi. These fungi, mainly belonging 
to Candida species, induce inflammatory responses. 
Release of mediators like prostaglandin E2 can shape 
circulating monocytes towards M2 macrophages and 
these are able to exacerbate lung inflammation [111]. 
Likewise, expansion of the commensal fungus Wallemia 
mellicola has been linked to the severity of asthma. 
Mice colonized with the fungus demonstrated increased 
signs of asthma, like airway hyperresponsiveness, BAL 
eosinophilia or goblet cell metaplasia upon allergen 
challenge. The signs were associated with an increased 
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secretion of allergen positive immunoglobulins and 
IL-13 producing T cells [112].

Administration of probiotics, prebiotics or synbiotics 
can help to maintain, restore or support a healthy gut 
microbiome and so strengthen the beneficial arm of the 
gut–lung axis. Especially when done in early life, this is 
thought to reduce susceptibility to asthma development. 
Based on observations that low abundances of Lactoba-
cilli was associated with asthma risk, bacilli from this 
species were considered as potential probiotics and are 
still one of the most common probiotics [113]. Unfortu-
nately, the effectiveness of such treatments to attenuate 
or prevent asthma in humans are so far not convincing. 
However, animal data regarding the usage of probiotics 
as therapeutic intervention for allergic airway disease is 
promising.

Application of probiotics like Lactobacillus rhamnosus 
[114, 115], Lactobacillus reuteri [116], Lactobacillus gas-
seri, [117], and Bifidobacterium infantis [118] all reduced 
the development of allergic airway diseases in mice. 
Treatment was associated with induction of Tregs and 
modulation of the ratio T helper cell subtypes. The effec-
tiveness of Lactobacillus Rhamnosus was shown in both 
chronic prophylactic and therapeutic models of allergic 
airway disease in mice [119].

Prebiotics have also been investigated as potential add-
on treatment for asthma. Administration of the prebiotic 
mannose receptor blocker “mannan”, derived from Sac-
charomyces cerevisiae, had beneficial effects on airway 
inflammation and remodeling in a murine asthma model 
[120]. Interestingly, mannan seems to be also involved 
in human epithelial repair processes [120]. Prophylactic 
immune dampening effectiveness of probiotic Lactobacil-
lus Rhamnosus and of a prebiotic crude turmeric extract 
were also observed in a house dust mite-specific murine 
asthma model, and symbiotic application of bacterium 
and extract improved therapeutic effectiveness [121]. 
Similar results have been obtained after application of 
long-chain fructooligosaccharide (lcFOS) combined with 
Bifidobaterium breve M-16 V [122, 123].

Meta-analysis of clinical data showed beneficial effects 
of probiotics to reduce susceptibility to develop eczema 
in later life, there was no indication of their effectiveness 
for the treatment for wheezing or preventing asthma 
development in children [124–126]. However, there are 
some positive studies. Van der Aa reported a reduction 
in respiratory symptoms in children receiving a symbi-
otic formula consisting of a hydrolyzed Bifidobacterium 
breve M-16  V altogether galacto/fructooligosaccharide 
mixture [127].

Fig. 2 Intestinal/lung microbial axis. In the intestine, the microbiome communicates with structural and immune cells of the host via the release 
of microbial antigens, TLR ligands or metabolites such as SCFA or deaminotyrosine (DAT). In this process, a kind of immune system fine-tuning 
occurs, supporting the symbiotic community between bacteria and host. Anti-inflammatory metabolites can also enter the circulation 
and influence immune responses in distal parts of the body. In addition to the systemic release of metabolites, the migration of cells 
from the intestine to the periphery and their immunoregulatory function are also shown. This can be anti-inflammatory, but also support processes 
that are needed to defend against infections. Picture adapted from: Wypych TP et al. [106]
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Clinical trials in adults are scarce. One small, short-
term trial reported improvements in airway inflammation 
and asthma control after the application of prebiotics, 
but the authors recommended the need for larger-scale 
trials to confirm the potential of fiber diets an addition to 
asthma management [110]. In a review summarizing the 
effectiveness of Lactobacillus species in allergic rhinitis, 
Steiner and Lorentz presented therapeutic effectiveness 
from murine experiments and human trials [128]. They 
highlighted an interaction between Lactobacillus and the 
immune system, and noted that the majority of clinical 
trials showed beneficial effects. Nevertheless, they also 
noted that further studies are needed to provide precise 
information concerning appropriate species, dosage and 
timing of treatment, and to facilitate understanding of 
the underlying mechanism(s) of any benefit.

Environmental factors derived from exogenous 
microbiota offer protection from atopy
Exogeneous stressors like allergens, pollutants (e.g. ciga-
rette smoke) or pathogens altered microbiome compo-
sition and thus contribute to the development of lung 
diseases [99]. Today we also know that exogeneous “relax-
ators” exist, and that these can be beneficial microbes, 
microbial-derived components or proteins exerting 
protective effects. Differences in microbial communi-
ties, their components and metabolites between urban 
and rural and rural farming sides have been discussed as 
significantly contributing to protection against asthma 
[129–135]. Contact with exogenous factors derived from 
countryside microbes in early life supports the develop-
ment of a “healthy immune system”, whereas insufficient 
signals provided in urban sites leads to an inadequately 
trained immune system that can induce inappropriate 
responses and therefore increase susceptibility to develop 
allergies. Communication between microbes and host, 
and the shaping of a protective immune system, starts 
even before birth. For example, maternal exposure to a 
farm microbiota was associated with decreased asthma 
risk in offspring [136–139]. Comparing dust from rural 
and suburban areas in Germany, Ege et al. found a nega-
tive association between both gram-positive (staphy-
lococci, corynebacteria, lactic acid fermenters) and 
gram-negative bacteria (neisseriae, Acinetobacter) and 
the development of asthma [140]. Beneficial effects of 
Staphylococcus sciuri W620 (S. sciuri W620) could be 
confirmed in murine models of asthma [141].

The importance of microbial composition in protective 
effects was highlighted in another study, where children 
living in non-farm homes were protected from asthma 
development when their home dust microbiota was simi-
lar to a farm microbiota [142]. Likewise, living in close 
proximity to farms and access to raw cow’s milk reduced 

asthma susceptibility in later life in another study [143]. 
Components in farm dust [130] and cow’s milk [133] 
have been identified as mediators of immune protective 
functions. The Pasteur study followed 1133 children from 
rural areas from age 0 to 6 and identified that continuous 
consumption of unprocessed cow’s milk was associated 
with increased Treg numbers and a reduced susceptibil-
ity to develop asthma in later life [41]. This finding could 
be partly explained by a higher uptake of omega-3 poly-
unsaturated fatty acids in unprocessed cow’s milk [144].

These findings are not intended as a recommendation 
to consume raw cow’s milk directly, as this is associated 
with a number of foodborne illnesses. Rather, it is impor-
tant to identify beneficial components of milk and make 
them available to humans in a safe form as a medicine or 
dietary supplement.

Deciphering underlying components, LPS concentra-
tions in dust were associated with a reduced susceptibil-
ity to develop asthma in children growing up on a farm 
[145]. Mouse models confirmed that farm dust is a strong 
immune modulator and can prevent the development of 
asthma in mice [146]. Interestingly, not all farms seem to 
have protective properties. Further epidemiological stud-
ies revealed that the type of farm is an important modu-
lator for the mediation of ignorance towards “harmless” 
environmental antigens [147]. Especially cattle and pig 
farms, but not farms keeping animals like hares, rab-
bits or sheep, had a protective effect. A study analyzed 
asthma development of Amish and Hutterite children, 
both with similar genetic ancestries and farming lifestyle, 
and found that Hutterite children were particularly prone 
to develop atopy and asthma in later life [148]. The main 
differences between the two communities is the techno-
logical level of farming, with the Amish using more tra-
ditional methods and the Hutterite using more advanced 
methods. This results in differences in the composition 
of stable and household dusts. Higher endotoxin levels in 
Amish dust were associated with differences in the mod-
ulation of innate immune cell activation towards toler-
ance induction. Moreover, animals receiving Amish, but 
not Hutterite, dust demonstrated a reduced capability to 
develop an asthma phenotype.

It is important to note that the time of contact, the for-
mulation and the dose of the endotoxin have an impor-
tant influence on its mode of action. Various studies 
have also shown that LPS plays an important role in the 
development [149, 150] and exacerbation of lung diseases 
[151–155].

Interactions between the dust, structural epithelial 
cells and immune cells contribute to protective effects. 
Hammad et  al. found that environmental factors like 
farm dust or chronic exposure to low concentrations of 
LPS can affect the threshold of allergen recognition by 
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suppressing activation of epithelial cells and DC [156]. 
Epithelial cells seemed to mediate asthma protection 
via a mechanism that depends on the ubiquitin-mod-
ifying enzyme A20 [157]. Clinical trials confirmed the 
immune regulatory association of TNF-α-induced pro-
tein 3 (TNFAIP3; A20) and asthma in humans. Treat-
ment of PBMC derived from rural asthmatics with farm 
dust restored TNFAIP3 to levels comparable to those in 
healthy individuals and induced an anti-inflammatory 
state [158]. Farm dust also increased barrier function of 
epithelial cells, and this was associated with a reduction 
in viral uptake [159]. Since viral infections are associated 
with induction and exacerbation of asthma, this dust-
mediated strengthening of barrier integrity might also 
have beneficial effects on asthma development and pro-
gression. Non-microbial substances in farm dust, such 
as N-glycolylneuraminic acid (Neu5Gc) [160], a glyco-
protein expressed by non-human/non-bacterial cells, or 
Beta-lactoglobulin (a bovine-lipocalin), or plant-asso-
ciated arabinogalactans [161], are also able to mediate 
immune protection [162].

Old companions—new foes or still friends?
Growing knowledge about the interaction between 
the environment, microbiota and immune system has 
resulted in a revision of the hygiene hypothesis.

Industrialization and accompanying improvements in 
hygiene standards changed the make-up of our micro-
biota. Environmental stressors including pollutants/tox-
ins, drugs (especially antibiotics), increased indoor and 
water hygiene standards, along with new approaches in 
childbirth and early childcare (Caesarean section; bottle-
feeding) have had a large impact on the composition and 
ratios of microbes that have co-evolved with and in us. 
There has been a progressive loss of microbial species 
over several decades, which has had unforeseen conse-
quences [163].

Today, many ancestral indigenous microbes like vari-
ous bacteria (e.g. Helicobacter pylori), helminths and 
protozoa have been lost and are even been seen as patho-
gens. Based on available information, it can be assumed 
that this disappearance of microbes previously belong-
ing to the host microbiome (and their compounds and 
metabolites) has an important impact on immunity and, 
subsequently, disease susceptibility. Having coevolved 
over thousands of years, microbes have developed inter-
kingdom communication with the host that often has 
beneficial effects for both partners.

Next, we will review data relating to bacteria and hel-
minths that were once associated with the human micro-
biome but have now largely been eliminated, especially in 
the industrialized world. Both beneficial and pathologic 
effects will be discussed.

Helicobacter pylori
A textbook example of how the disappearance of ances-
tral bacteria can affect immunity and disease devel-
opment is the gram-negative flagellated bacteria 
Helicobacter pylori. H. pylori can be regarded as one of 
the microbial companions of humans [164]. Coloniz-
ing as a dominant species in large numbers in a specific 
organ (the stomach) [165] over 58,000  years, H. pylori 
was once omnipresent in all humans. H. pylori colonizes 
the human stomach in youth and if not eradicated, per-
sist through lifetime [166]. Today, approximately 50% of 
the world population is infected with the bacterium, but 
colonization rates are lowest in industrialized countries 
and highest in developing countries [167].

H. pylori developed several tactics to evade the 
immune system and protect itself against gastric acid 
[168]. Using its flagella [169] and following chemotactic 
signals [170, 171], the bacterium colonizes the mucus 
layer in the stomach. Moreover, H. pylori seemed to be 
masked against detection by pathogen recognition recep-
tors because infections lead to an attenuated activation of 
adaptive immunity [172, 173]. Such interactions between 
H. pylori and adaptive immunity are of central impor-
tance for the development of immunological tolerance 
towards the bacterium.

Infection with H. pylori can lead to both pro- and 
anti-inflammatory immune reactions. It induces Tregs 
as well as Th1 and Th17 cells, along with the cytokines 
IFN-γ, IL-17 and TNF-α [174]. Neutrophils and mono-
cytes support the development of these T cell responses, 
while Th17 cells induce the release of IL-8 and thus pro-
mote the neutrophil-mediated clearance of H. pylori 
[175]. In particular, exuberant and chronic inflamma-
tory responses enhanced by environmental factors are 
responsible for a H. pylori gastric pathology resulting in 
peptic ulcer, primary gastric B cell lymphoma and gastric 
carcinoma. Details concerning the role of H. pylori in the 
development of these diseases are beyond the scope of 
this review and can be found elsewhere [176, 177].

The induction of Tregs is more likely to be associated 
with anti-inflammatory processes. Infections with H. 
pylori are associated with an induction of Tregs [178]. 
Naturally occurring Tregs and TGF-β seem to be particu-
larly important for H. pylori colonization [179]. Interest-
ingly, the depletion of Tregs not only led to decreased 
colonization with H. pylori but also to an increased 
inflammatory reaction [180]. Owyang et al. reported that 
TGF-β-producing DC play a central role in coloniza-
tion and in H. pylori-mediated Treg immunology [181]. 
Interestingly, the induction of Tregs and the associated 
increased H.  pylori colonization also seems to be also 
involved in the progression of gastric tumors [182].
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Virulence factors, like cytotoxin-associated gene A 
(CagA), vacuolating cytotoxin A (VacA), γ-glutamyl 
transferase (GGT), neutrophil-activating protein (HP-
NAP) and adhesins are interaction factors that help the 
bacterium to attach and communicate with the host. 
The functionality of these factors depends on the strain 
and can therefore differentially contribute to pro-, but 
also anti-inflammatory, H. pylori-driven host responses. 
Amedia et  al. showed that neutrophils and monocytes 
produce IL-12 in response to HP-NAP and are thus able 
to induce IFN-γ-driven Th1 gastric inflammation [183]. 
Arginin [184], VacA and GGT dampen T cell responses 
and therefore support the survival of the bacteria. VacA 
is able to directly suppress bacterial proliferation [185] 
and modulate activation. Effects seem to be mediated by 
VacA binding to CD18 [186]. Likewise, GGT mediates T 
cell suppression by the induction of cell cycle arrest [187]. 
Both, GGT and VacA induced DC-dependent Tregs and 
suppressed the activity of  CD4+ T cells [188] (Fig. 3).

Overall, H. pylori infections modulate host immunity, 
resulting in both pro-inflammatory and anti-inflamma-
tory responses that on the one hand affect bacterial col-
onization and development of gastric diseases but on 
the other hand have the potential to orchestrate protec-
tive immunity that is capable of suppressing misguided 
immune responses that otherwise result in diseases like 
allergy.

Several epidemiological studies support the hypoth-
esis for the beneficial role of this, once commensal, 
bacteria. These show that colonization with H. pylori 
in early childhood is negatively associated with the 
development asthma [189]. Further cross-sectional 
studies and meta-analyses confirmed this observation 
and reported an inverse association between H.  pylori 
infections and the development of asthma in children 
and adults [190–198]. In particular, CagA positive 
strains [196, 198, 199] and maternal H. pylori status 
[200] seem to influence the susceptibility to asthma 
development. However, several studies failed to find 
an inverse relationship between H. pylori infection and 
asthma development, or had inconclusive results [201–
205].This highlighted the need for additional studies to 
investigate H. pylori-host interactions.

A decade ago, the first studies using a murine model 
began to examine the role of H. pylori infections in 
the development of asthma in more detail. Isabelle 
Arnold showed that neonatal animals infected with H. 
pylori had an attenuated asthma phenotype in later life 
[206]. Transfer experiments found that Tregs played an 
important role in the H. pylori-mediated immune pro-
tection [206]. Further work by the same research group 
showed that H. pylori modulates DC and that these 
are involved in the development of immunoprotective 
Tregs via the release of IL-18 [207]. DC infected with 
H. pylori mutants devoid of virulence factors VacA or 
GGT failed to generate tolerogenic DC and immune 
protection, indicating a central role for both of these 
factors in H. pylori-mediated protection from asthma 
development [188]. The above data confirmed the epi-
demiological studies and showed that postnatal infec-
tion with H. pylori protected against the development 
of asthma in later life.

The data also suggest that the administration of H. 
pylori could be suitable as a therapeutic strategy for the 
treatment of allergic diseases such as asthma. To avoid 
side effects of a live infection, experiments were car-
ried out with bacterial extract. Comparable to live infec-
tions, prophylactic application of H. pylori-derived 
bacterial extracts modulated DC and Treg responses in 
a IL-10 dependent manner and attenuated the develop-
ment of allergic airway disease in later life [208]. Similar 
to the clinical studies from den Hollander [200], trans 

Fig. 3 Helicobacter pylori can act as an immunoregulator via VacA 
and GGT. Both proteins induce a tolerogenic DC phenotype that can 
induce Tregs or Th1 cells. Among other things, the T cells have 
an anti-inflammatory effect via the release of IL-10 and can thus 
suppress the development of an allergic respiratory disease
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maternal-induced asthma protection was also seen in 
mice. The offspring of mothers receiving bacterial extract 
during pregnancy plus during lactation showed fewer 
asthma signs in later life [209]. Interestingly, studies of 
therapeutic approaches also found that adult mice devel-
oped fewer signs of asthma like allergen induced airway 
inflammation and mucus secretion after treatment with 
H. pylori extract [210, 211].

Studies that applying purified VacA prophylactically 
after birth or by means of trans maternal transfer showed 
a protective effect [208, 209]. Moreover, recently pub-
lished studies have shown that VacA is also therapeuti-
cally effective. In acute or therapeutic murine models of 
allergic airway disease [212], including a chronic disease 
model [213], treatment with VacA attenuated airway 
disease. Similar to the prophylactic models, induction 
of Tregs was observed. In addition, repeated treatment 
with VacA in the chronic model appeared to suppress the 
development of the local lung-specific adaptive immu-
nological memory. VacA affects myeloid cells in the gas-
tric mucosa creating a Treg-inducing tolerogenic milieu 
[214]. These cells are capable of migrating within the 
body and thereby mediating immune suppression. This 
in turn could reduce the capability of mounting exces-
sive immune responses and thus reduce susceptibility to 
develop allergies.

In addition to VacA, other H. pylori-derived mol-
ecules have been reported to mediate immune suppres-
sion. Zhou et al. showed that recombinant H. pylori NAP 
(rNAP) suppressed ovalbumin-induced allergic airway 
disease in mice in a prophylactic manner [215].

Currently available data indicate that H. pylori is an 
indigenous commensal microbe that co-evolved with 
humans. During a cohabitation period of approxi-
mately 60,000  years, the development of communica-
tion between host and bacteria has resulted in immune 
dampening effects in the host, which allow colonization 
and survival of the bacteria. Improved hygiene standards 
led to the disappearance of the bacteria and thus pre-
sumably also to a change in immune responsiveness that 
has contributed to the development of allergic diseases. 
Deciphering the protective mechanisms could provide 
the tools needed to help avoid and treat allergic disease 
such as asthma. It is important to note that potential 
side effects of H. pylori already discussed are excluded 
and only the beneficial properties of the bacterium are 
identified.

Helminths
Like bacteria such as H. pylori, intestinal parasites 
also co-evolved with humans and parasitic infections 
still affect 2 million people worldwide, especially in 

developing countries [200]. Of these, protozoa and hel-
minths are of central importance for human health [216]. 
Co-evolutionary acquired mechanisms allow helminths 
suppress host defense mechanisms and these organisms 
remain in the host for up to 20 years [217]. The naturally 
occurring immune response against helminths is a pro-
nounced type 2 response, phenotypically similar to an 
allergic immune reaction.

The observations led to the concept that both, anti-
inflammatory endogenous processes to restore homeo-
stasis after strong Th2 responses to worm infections, 
but also escape mechanisms developed by the parasite 
contribute to asthma protection. In particular, chronic 
(but not acute) helminth infections seem able to create 
regulatory environments capable of suppressing immune 
responses to harmless antigens/allergens [218].

One of the first clinical studies analyzing the relation-
ship between helminth infection and the development of 
allergy made two key observations. It found that children 
infected with Schistosoma haematobium had a lower 
prevalence of HDM allergies, and that there was a corre-
lation between the reduction of HDM-specific antibodies 
and helminth-specific induction of the anti-inflammatory 
cytokine IL-10 [219]. Subsequently, numerous other 
studies also showed an inverse correlation between hel-
minth infections and the development of allergies [220–
224]. Again, however, published data are not consistent, 
with other studies finding a positive correlation or no 
correlation at all [225–228].

Epidemiological studies suggest that the influence of 
helminths on asthma is strongly dependent on the hel-
minth species and the time, duration and strength of 
infection [229, 230]. Smits and colleagues summarized 
these relationships very well [218]. They emphasized that 
early childhood and chronic infections in particular have 
protective effects. Infections with high numbers of para-
sites seem to have an immune-protective effect, whereas 
weak infection processes are more likely to be associated 
with the development of allergies. Regarding the hel-
minth species, infections with trichuris, hookworm, or 
schistosome protect from the development of allergies, 
while infections with Ascaris lumbricoides [231–233] and 
especially worms for which humans are not normally the 
host (Toxocara spp) [234], are positively associated with 
the development of atopy. Clear identification of protec-
tive species and immune-dampening molecules could 
provide new therapeutic approaches for the treatment of 
allergic diseases.

Animal models helped to clarify the immune regu-
latory role of helminth infection and allergic diseases. 
Moreover, they provided the first data about the thera-
peutic effectiveness of immune-suppressive helminth-
derived molecules [235]. Worms belonging to the species 
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Schistosoma in particular showed promising effects. 
Chronic infection with Schistosoma mansoni resulted in 
an immune regulatory milieu capable of suppressing the 
development of allergic airway diseases [229, 236]. Trans-
fer experiments found that T cells and B cells are impor-
tant in the mediation of this immune suppression [229]. 
Comparable results were observed in mice infected with 
Schistosoma japonicum [237], and DC also appear to play 
an important role in the protective effects of helminth 
infection [238]. Transfer of DC isolated from helminth-
infected mice enhanced Treg responses in airway allergic 
inflammation [239]. Interestingly, in worm infections, 
regulatory B cells also appear to have an important func-
tion in mediating the immune suppressive effects [240] 
(Fig. 4).

Other studies suggest that worm eggs play a central 
role for Treg induction and are therefore beneficial for 
the suppression of allergies [241, 242]. Prophylactic 
treatment of mice with eggs derived from Schistosoma 
mansoni attenuated allergic airway disease; the effects 
were independent of B cells and Tregs but were associ-
ated with a strong systemic helminth egg-specific Th2 
response [243]. Application of eggs can also result in 
strong lung inflammation accompanied by granuloma 
formation [244]. Because of these side effects, efforts 
have been made to identify components of worms and 
their eggs that induce protective but not inflammatory 
processes and thus could be suitable as potential thera-
peutic agents [245]. Initial studies showed that crude 

mixtures prepared from worms and eggs can attenuate 
the development of diseases, including type 1 diabe-
tes [246, 247]. The mixture of antigens modulates both 
arms of immunity [248]. DCs and monocytes are dif-
ferentially activated, and show a cytokine and costim-
ulatory cytokine pattern that indicates the induction 
of both effector and regulatory T cell responses [248]. 
Ongoing projects identified different worm- or egg-
derived molecules that were capable of suppressing the 
immune response and thereby attenuating the develop-
ment of allergic airway diseases [249–251]. As previ-
ously mentioned with H. pylori, it is imperative to keep 
the safety aspect in mind when developing new thera-
peutic strategies based on the use of pathogen-associ-
ated molecules.

Worm colonization can lead to severe medical prob-
lems, especially in the chronic course. When research-
ing new worm-based drugs, it is therefore important to 
exclude negative mechanisms of action and to identify 
and isolate as many positive aspects as possible and for-
mulate them into an effective drug.

As well as plathelminthes like Schistosoma, nema-
todes have also shown beneficial effects for prevention 
of asthma. Live infections [252] and treatment with 
molecules derived from animals in this phylum [253] 
induced anti-inflammatory responses.

Taken together, currently available data suggests that 
worms, especially those that have humans as a natural 
host, have immune dampening effects. The induction 
of Tregs and B cells, and the release of the anti-inflam-
matory cytokine IL10 play a central role. Active pro-
teins can be found in the worms themselves and their 
eggs. Targeted characterization of these proteins could 
provide new therapeutic options for the treatment of 
allergic diseases. Evans and Mitre have summarized the 
mouse models for different allergic diseases in which 
helminths show prophylactic or therapeutic benefit 
[235]. In addition, their review highlighted that infec-
tions are effective in mice, but that initial clinical stud-
ies in humans were largely unable to show any positive 
effects of treatment with worm components [235]. In 
2020, Ryan et  al. provided an update on the efficacy 
of helminth infection in clinical trials [254]. The arti-
cle summarized data on the effectiveness of treatments 
with the pig whipworm Trichuris suis or the human 
hookworm Necator americanus in different inflamma-
tory human diseases, including Crohn’s disease, ulcera-
tive colitis, rheumatoid arthritis, multiple sclerosis, 
allergic rhinitis and asthma [254].

As with other microbes, data in this area are not con-
sistent. Some studies have failed to find any effect of hel-
minth infection, and results vary depending on the worm 
species and the clinical setting. Just like bacteria, worms 

Fig. 4 Comparable to allergy, strong Th2 immune responses are 
induced to eliminate worms. Especially for human-associated worms, 
infection also leads to the development of an anti-inflammatory 
immune response in which both anti-inflammatory T and B cells are 
induced. It is believed that both cell types, which can be induced 
by the worm itself and by components from its eggs, can prevent 
the development of allergies
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have evolved with humans and have developed mecha-
nisms that ensure the survival of both the host and the 
microorganism. The decoding of these mechanisms and 
the creation of target structures that are therapeutically 
effective are needed if worm-based therapeutics are to be 
developed and applied in the future.

Conclusions
Over time, humans have co-evolved with a large num-
ber of microbes that live on or in us. In this process, a 
community of life has evolved consisting of the micro-
biome, which includes bacteria, viruses and fungi, 
with humans as the host as seen in Fig.  5. The com-
munication between the host and the microbiome has 
a significant impact on immunological and metabolic 
processes. Therefore, it is not surprising that distur-
bances in the microbiome can have an impact on the 
development and progression of diseases. In recent 
years, research into the interaction of the environment 
with the microbiome and the host has helped to iden-
tify processes that can have both positive and negative 
effects on our health. Targeting microbiome-associ-
ated health-promoting effects and avoiding the effects 
associated with disease development has the potential 

to contribute to the development of new therapeutic 
options in the coming years. These could function via 
direct manipulation of an existing microbiome using 
pre- or probiotics, or via the targeted use of specific 
beneficial microbial strains, their metabolites or indi-
vidual components.
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