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Abstract 

Objective We aim to molecularly stratify stage IA lung adenocarcinoma (LUAD) for precision medicine.

Methods Twelve multi-institution datasets (837 cases of IA) were used to classify the high- and low-risk types (based 
on survival status within 5 years), and the biological differences were compared. Then, a gene-based classifying 
score (IA score) was trained, tested and validated by several machine learning methods. Furthermore, we estimated 
the significance of the IA score in the prognostic assessment, chemotherapy prediction and risk stratification of stage 
IA LUAD. We also developed an R package for the clinical application. The SEER database (15708 IA samples) and TCGA 
Pan-Cancer (1881 stage I samples) database were used to verify clinical significance.

Results Compared with the low-risk group, the high-risk group of stage IA LUAD has obvious enrichment 
of the malignant pathway and more driver mutations and copy number variations. The effect of the IA score 
on the classification of high- and low-risk stage IA LUAD was much better than that of classical clinicopathological 
factors (training set: AUC = 0.9, validation set: AUC = 0.7). The IA score can significantly predict the prognosis of stage 
IA LUAD and has a prognostic effect for stage I pancancer. The IA score can effectively predict chemotherapy sensitiv-
ity and occult metastasis or invasion in stage IA LUAD. The R package IAExpSuv has a good risk probability prediction 
effect for both groups and single stages of IA LUAD.

Conclusions The IA score can effectively stratify the risk of stage IA LUAD, offering good assistance in precision 
medicine.
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Introduction
With the increasing prevalence of low-dose spiral CT 
in lung cancer screening, the detection rate of stage IA 
lung adenocarcinoma (LUAD) characterized by small 
lung nodules is increasing, but the specific treatment 
for this disease still faces large challenges [1]. Stand-
ard treatment (lobectomy plus complete lymph node 
dissection without adjuvant therapy) has a good treat-
ment effect for most stage IA LUAD patients but may 
also cause overtreatment for some low-risk popula-
tions and undertreatment for high-risk populations 
[2–5]. How to effectively classify the high- and low-risk 
subtypes of stage IA LUAD is an urgent problem that 
needs to be solved clinically. The risk classification of 
stage IA LUAD based on pathological morphology and 
radiological characteristics shows that these character-
istics are good indicators [4–8]. However, screening for 
high-risk groups still remains insufficient, and the clini-
cal application still faces doubts and inconveniences. 
The massive gene expression characteristics brought 
by the progress of omics technology can assist greatly 
in understanding carcinogenesis and the precise treat-
ment of cancers [9]. In this study, we established a 
gene-based classifying score (IA score) and R package 
(IAExpSuv) for the risk stratification of stage IA LUAD 
that demonstrated good clinical application value.

Methods
Transcriptomic and clinical information
The RNASeq, DNA copy number, somatic mutation 
data and BiospecimenClinicalData of the TCGA were 
downloaded through the R package TCGA-assembler 
[10, 11]. Clinical information was acquired from the 
TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR) 
[12]. The transcriptome data and clinical information of 
GSE13213, GSE26939, GS30219, GSE31210, GSE41217, 
GSE42127, GSE50081, GSE63459, GSE68465, GSE68571, 
and GSE72094 were all downloaded by the R package 
GEO Query [13]. The transcriptome data and clinical 
information of early-stage LUAD (carcinoma in situ, AIS; 
microinvasive adenocarcinoma, MIA; invasive adeno-
carcinoma, IAC) of our center have been deposited in 
the Genome Sequence Archive  in National Genomics 
Data Center, China National Center for Bioinforma-
tion/Beijing Institute of Genomics, Chinese Academy 
of Sciences (GSA-Human: HRA005169). Clinical data 
in the SEER database were retrieved via SEER*Stat ver-
sion 8.3.9.2 software for external validation [14]. Detailed 
information about Platform or Methods, Normalization, 
Histological type, Clinical stage and etc. is provided in 
Additional file 1: Table S1. Original data can be found in 
https:// www. ncbi. nlm. nih. gov/ geo/, https:// portal. gdc. 

cancer. gov/, https:// ngdc. cncb. ac. cn/ gsa- human, and 
https:// seer. cancer. gov/.

Study design and bioinformatic analysis
Our workflow is shown in Fig.  1. Since metastasis and 
recurrence of non-small-cell lung cancer usually occur 
within 5 years after treatment, patients who are still alive 
for more than 5  years are often regarded as clinically 
cured [15–17]. Therefore, we used the 5-year survival 
rate as the criterion for identifying high-risk or low-risk 
subtypes of stage IA LUAD. Then 12 datasets of 837 
patients with stage IA LUAD were integrated and three 
canonical batch effect removal methods in gene expres-
sion matrix: z-scaling (Standardization), removeBatch-
Effect (limma package) and Combat (sva package) were 
used to normalize the transcriptome data for batch effect 
removal [18, 19]. UMAP (UMAP package) was used to 
evaluate the effect of batch removal for its excellent per-
formance in reflecting the global structure of data and 
improving the operation speed [20, 21]. Next, the biologi-
cal differences of high-risk and low-risk subtypes of stage 
IA LUAD were analyzed, where Gene set enrichment 
analysis (GSEA) was used to analyze different pathways 
(ClusterProfiler package) [22] and the TCGAmutations 
package and maftools package were used to analyze 
mutation status [23]. Then, the gene-based risk score (IA 
score) was established, tested and validated using k-fold 
cross validation by machine learning (K-nearest neighbor 
(knn), naive Bayes (nb), neural network (nnet), partial 
least squares (pls), support vector machine (svm), sto-
chastic gradient boosting (gbm), boosting (C5.0), extreme 
gradient boosting (xgbTree), random forest (rf ), bagged 
classification and regression tree (treebag) and stacking 
were used for machine learning of transcriptome data 
(caret, e1071 and h2o packages) [24, 25]). Least abso-
lute shrinkage and selection operator (LASSO)—Logis-
tic regression were used for dimension reduction, score 
establishment, risk factor analysis and probability predic-
tion (glmnet package) [26]). Furthermore, the role of the 
IA score in prognostic assessment, chemotherapy predic-
tion (The Connectivity Map database was used for drug 
sensitivity screening [27, 28]), identification of occult 
metastasis and invasion of stage IA LUAD was evaluated. 
Finally, we developed the R package IAExpSuv based on 
the IA score for risk probability prediction in groups or 
for single stages of IA LUAD, where the GitHub platform 
and devtools packages were used for R package develop-
ment and storage. A total of 15,708 patients with stage IA 
LUAD from the SEER database were used to evaluate the 
classical clinical parameters, and 1881 patients with stage 
I cancers from the TCGA-pan database were used to 
evaluate the significance of this score for pancancer (The 

https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://ngdc.cncb.ac.cn/gsa-human
https://seer.cancer.gov/
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number of patient samples is based on the overall sur-
vival (OS) analysis statistics).

Statistical analysis
Kaplan‒Meier curves were applied to display survival 
probability, the log-rank test was used for statistical anal-
ysis, and Cox analysis was used to identify the risk fac-
tors for survival (survival and survminer package). The 
Benjamini‒Hochberg (BH) method was used for p value 
correction for multigroup comparisons. Receiver operat-
ing characteristic (ROC) curves were used for diagnostic 

analysis (pROC package). Decision curve analysis was 
used to evaluate the clinical benefit (dcurves and rmda 
packages) [29]. The function relweights was applied to 
evaluate the relative importance of model variables.The 
Kruskal‒Wallis test (function: kruskal.test) was executed 
for differential gene analysis under the conditions of 
FDR < 0.05 and abs (log2(fold change [median])) > 0.3. 
Nomograms were used to visualize the probability pre-
diction of the risk scores, and bootstrapping with 1000 
resamples was used for testing (functions: nomogram and 
calibrate). The ggplot2 package was used for graphing. R 

Fig. 1 Study design. TCGA  The Cancer Genome Atlas, LUAD lung adenocarcinoma, SEER Surveillance Epidemiology and End Results, GSEA Gene Set 
Enrichment Analysis, CNV copy number variation, LASSO least absolute shrinkage and selection operator
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language was adopted for the above operations, with a 
two-sided p value (or adj. p value) < 0.05 considered sta-
tistically significant [30].

Results
Biological differences
We divided 837 patients with stage IA LUAD in 12 data-
sets into a high-risk group (H) (161 patients who died 
within 5  years), a low-risk group (L) (289 patients who 
survived more than 5  years), and an unknown group 
(U) (387 patients with an unknown 5-year survival sta-
tus) (Fig. 1). We first analyzed the biological differences 
between H and L. The batch effect refers to the nonbio-
logical, technological or experimental variation intro-
duced in the experimental process, which often affects 
the combined processing of multiple omics datasets. 
The selection of the batch effect removal method mainly 
considers different data characteristics, eliminates tech-
nological and experimental variation, and prevents exces-
sive adjustment of data, which could hide real biological 
variations and signals present in the original data [18, 
31]. We selected three batch effect removal methods 
commonly used in gene expression profiling: z-scaling 
(Standardization), removeBatchEffect (R package: limma) 

and Combat (R package: sva). We found that z-scaling 
performs well in removing batch effects and preserv-
ing inherent biological differences, while the other two 
methods are less effective (Additional file  8: Figure S1). 
We ranked genes by fold change of median (H vs. L) and 
performed GSEA. We found that H showed more enrich-
ment of malignant pathways (hallmark gene sets, KEGG, 
reactome) (Fig. 2A). The TCGA-LUAD dataset possessed 
data on driver mutation and copy number status, and 
in this dataset, we found that H had more cancer driver 
mutations (Fig. 2B) and showed more copy number vari-
ations (CNVs) than L (Fig. 2C).

Machine learning to establish the risk score
We applied GSE30219, which had relatively more sam-
ples (both H and L), as the external validation set and 
the remaining 386 patients (11 datasets) as the machine 
learning population (Fig. 1). We first adopted k-fold cross 
validation (k = 5). We divided the 386 samples into five 
parts and identified the risk-related genes in the train-
ing set (1: k-1) by logistic regression (H vs. L) (Fig. 3A). 
We conducted a sanity check of general information, 
including survival status (high-risk vs. low-risk), sex ratio 
(female vs. male), age: median (min, max) and smoking 

Fig. 2 Biological differences in high- and low-risk stage IA lung adenocarcinoma. A Different biological pathway enrichment for high-risk 
and low-risk stage IA LUAD by GSEA in three database (Hallmark gene sets [left], KEGG [middle], and reactome [right]) for 12 datasets merging; 
B Canonical driver pathway mutations in high-risk (left) and low-risk (right) stage IA LUAD in TCGA-LUAD dataset; C Copy number variations 
in high-risk and low-risk stage IA LUAD in TCGA-LUAD dataset. LUAD lung adenocarcinoma, GSEA Gene Set Enrichment Analysis, TCGA  The Cancer 
Genome Atlas
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Fig. 3 Machine learning to determine risk score for discriminating high-and low-risk stage IA lung adenocarcinoma. A Risk-related genes 
by logistic regression (high-risk, H vs. low-risk, L) in each training set (k[1: k-1]; k = 1,2,3,4,5); B Prediction effect (classifying H and L) of risk-related 
gene (1: k-1) in test set (k) by five machine learning algorithms (left) and six ensemble models (right); C Intersection of risk-related genes in five 
trials: OR > 1 (left) and OR < 1 (right); D LASSO regression to filtrate intersection genes for establish risk score (IA score) for 386 samples (11 datasets 
not including GSE30219); E Prediction effect of IA score (classifying H and L) in training set (11 datasets not including GSE30219) (left) and external 
validation set (GSE30219) (right); F Relative weight of IA score and classical demographic factors (left) and driver mutations (right) for risk classifying; 
G Discrimination power of IA score and classical demographic factors (left) and driver mutations (right) for risk classifying in decision curve analysis. 
OR Odds Ratio, LASSO least absolute shrinkage and selection operator
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status (yes vs. no) (notably, some patients had unclear 
smoking history) in 5 different populations (Addi-
tional file 2: Table S2). We found that the distribution of 
characteristics in the 5 populations was almost evenly 
balanced, and the classification was reasonable. The pre-
diction effect of corresponding risk-related genes (1: k-1) 
in the test set (k) was evaluated by five machine learn-
ing algorithms (non-ensemble model) and six ensem-
ble models (Fig.  1). The area under the curve (AUC) 
was used to assess the prediction effect. We found that 
the average prediction in the test set was 0.7 (0.658 for 
non-ensemble algorithms and 0.696 for ensemble algo-
rithms), mainly because of the inherent limitation of the 
data (small sample size of the high-risk IA type) (Fig. 3B). 
We took the intersection of the risk-related genes (398) 
in the five trials (Fig.  3C) and further filtered genes by 
LASSO regression and finally established the risk score 
(IA score) based on 64 genes in the above 386 samples 
by LASSO-Logistic regression (Fig.  3D). The prediction 
performance of the IA score in the training set (11 data-
sets not including GSE30219) reached 0.9 and reached 
the upper limit of the mean prediction (0.7) in the exter-
nal validation set (GSE30219) (Fig.  3E). Compared with 
clinicopathological factors, the IA score showed far supe-
rior discrimination power via relative weight analysis and 
decision curve analysis (12 datasets) (Fig. 3F, G). Detailed 
information on the constituent genes related to the IA 
score, their biological significance, population distribu-
tion and even the detailed calculation formula of the IA 
score are shown in Additional file 3: Table S3, Additional 
file  4: Table  S4, Additional file  9: Figure S2,  Additional 
file 12: Supplementary Text. We also set up a scoring sys-
tem to identify high and low risk subgroup in the stage IA 
patients based on feature screening of gene clusters and 
compared it with the IA score model; detailed informa-
tion on this model is also provided in Additional file  5: 
Table S5, Additional file 10: Figure S3, Additional file 12: 
Supplementary Text.

Survival prediction
Taking the median IA score as the cut off, we evaluated 
the prognostic effect of the IA score for LUAD. We found 
that the IA score could significantly predict the OS and 
disease-free survival (DFS)/progression-free survival 
(PFS) of overall LUAD; subgroup analysis found that the 
IA score could clearly predict the prognosis in stage IA 
and IB-II patients, and the prediction effect for stage IA 
was better than that for stage IB-II (OS, HR[IA]: 0.178 vs. 
HR[IB-II]: 0.771; DFS, HR[IA]: 0.366 vs. HR[IB-II]: 0.761) 
(Fig.  4A, B). However, the prediction effect for stage III 
and IV patients was not good (Fig. 4A, B). We combined 
the IA score with common classical demographic factors 
and driver mutations to identify independent prognostic 

factors for stage IA LUAD. We found that advanced age, 
male sex, smoking history, TP53 Mut, KRAS Mut, EGFR 
wild-type, and IA score were factors influencing OS in 
univariate Cox analysis, but only IA score, male sex, and 
TP53 Mut were independent factors influencing OS in 
multivariate Cox analysis (Additional file 6: Table S6). For 
DFS, advanced age, smoking history, EGFR wild-type, 
and IA score were influencing factors in univariate Cox 
analysis, but only IA score was an independent influ-
encing factor in multivariate Cox analysis (Additional 
file 7: Table S7). Furthermore, we demonstrated that the 
prediction effect of the IA score on survival was far bet-
ter than that of classical pathological factors and driver 
mutations by decision curve analysis (Fig. 4C, D). In the 
TCGA-pan cancer database, we found that the IA score 
still had a satisfactory predictive effect for stage I cancers 
(Fig. 4E).

Risk stratification
An important purpose of risk stratification for stage IA 
LUAD is to identify high-risk subgroups that may require 
more aggressive treatment, such as postoperative adju-
vant chemotherapy. We first analyzed the similarity of 
prognosis and gene expression between known chem-
otherapy-sensitive groups (high-risk stage IB and stage 
II populations) and stage IA subgroups classified by IA 
score and classical staging groups to evaluate the efficacy. 
We found that although subtypes of stage IA LUAD in 
the 8th TNM staging (IA1/2/3) have different progno-
ses, the high-risk subtype (IA3) still had superior survival 
compared to stage IB-II disease (Additional file 11: Figure 
S4A). However, high-risk IA subtypes based on IA score 
(IA H, lower IA score) demonstrated similar prognosis 
with stage IB-II cancer, while IA H and IB-II diseases 
showed poorer prognosis than the low-risk IA subtype 
based on IA score (IA L, higher IA score) (Fig. 5A). Fur-
thermore, differential gene analysis showed that IA H and 
IB-II disease had almost the same gene expression char-
acteristics, while IA H and IB-II tumors showed large dis-
crepancies in their gene expression profiles compared to 
IA L (Fig. 5B, C).

Furthermore, we explored whether people in the spe-
cial group showed differences in chemotherapy sensitiv-
ity by comparing prognosis between the chemotherapy 
group and the nonchemotherapy group, thus directly 
evaluating the relationship between classical classifica-
tion group, IA score classification group and chemo-
therapy sensitivity. We found that chemotherapy had 
a significant survival disadvantage for stage IA LUAD, 
even for high-risk subtypes (IA3) in the 8th TNM staging 
(Additional file 11: Figure S4B–D); while this survival dis-
advantage was not seen for high-risk subtypes classified 
by IA score (IA H), it was observed for low-risk subtypes 
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classified by IA score (IA L) (Additional file  11: Fig-
ure S4E, F). Because of the small number of IA patients 
receiving chemotherapy, we further evaluated whether 
the IA score could indicate chemotherapy sensitivity for 
early LUAD (IB-II population). Similarly, chemotherapy 

had a survival disadvantage for the unscreened IB-II 
population; the survival disadvantage of chemotherapy 
was not seen for the IB-II high-risk population classi-
fied by IA score (IB-II H) but was presented for low-risk 

Fig. 4 Prognostic effect of IA score in stage IA lung adenocarcinoma. OS (A) and DFS/PFS (B) curves for two categories of patients for whole 
LUAD and its different stages (IA, IB-II, III, and IV) according to the value of IA score (median value as the cutoff ); Efficacies of IA score and classical 
demographic factors (left) and driver mutations (right) for predicting OS (C) and DFS (D) in decision curve analysis; E survival curves for two 
categories of patients for stage I cancers according to the value of IA score (median value as the cutoff ). OS overall survival, DFS disease-free survival, 
PFS progression-free survival, LUAD lung adenocarcinoma, PFI progression-free interval, DFI disease-free interval, DSS disease-specific survival
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subtypes classified by IA score (IB-II L) (Additional 
file 11: Figure S4G–J).

Next, based on differential gene expression analysis of 
the high- and low-risk IA populations, we used the Con-
nectivity Map database (a database that enables us to 
predict drugs whose related genes are highly correlated 
with diseases and their possible molecular mechanisms 
of action by comparing gene expression profile data to 
establish the association between genes, diseases and 
drugs [27, 28]) to find chemotherapeutic drugs that may 
be effective for high-risk IA populations. Based on the 
analysis results, we further demonstrated that the high-
risk IA subgroup was sensitive to drugs related to classi-
cal tumor driver pathways, such as the p53 pathway and 
receptor tyrosine kinase (RTK) pathway (Fig. 5D).

A possible explanation for the presence of a high-risk 
subtype of stage IA LUAD is that the tumor has metas-
tases or invasion that are more extensive than current 
modalities can detect (occult metastasis or invasion), i.e., 
there is an “underestimation” of both N and T status with 
current TNM staging [2]. We found that the high-risk 
subtype according to the 8th TNM staging (IA3) had a 
more significant survival advantage than both T1N1 and 
T2aN0; that is, the classification of the high-risk subtype 
of IA in the 8th TNM staging did not overlap with the 
existing TNM staging in the SEER database (Fig. 5E, F). 
We found that the survival of the high-risk subtype of 
stage IA LUAD classified by IA score (N0 H) was consist-
ent with that of T1N1, reflecting the possible discrimi-
native function of this IA score for occult lymph node 
metastasis (Fig.  5G). Similarly, the high-risk subtype of 
stage IA LUAD classified by IA score (T1 H) had consist-
ent survival with T2N0. This strongly suggests the possi-
ble role of the IA score in discriminating occult invasion 
(the actual extent of tumor invasion beyond the T1 scope 
defined in current detection methods) (Fig. 5H).

R package IAExpSuv
Through the logistic model, we established the survival 
risk model (death within 5  years) of stage IA LUAD 
based on the IA score, and the prediction efficiency of 

the model was good in cross-validation by bootstrapping 
with 1000 resamples (Fig.  6A, B). Since the IA score is 
based on a subset of Z-transformed samples, we explored 
how effective the risk prediction was for an individual 
patient. We first standardized the gene expression pro-
files of individual patients in two ways (MAD [median 
absolute deviation]: (y-median(y))/MAD (y); UQ [upper 
quartile]: (y)/quantile (y, 0.75); y, gene expression value) 
and then calculated the IA score and evaluated its risk 
prediction effect. After Z-transformation of MAD/UQ-
standardized patients from the built-in dataset (845 IA 
patients with Z-transformation [MAD/UQ-Z] and with-
out Z-transformation [MAD/UQ-Zr]), the IA score was 
calculated, and its risk prediction effect was evaluated. It 
was found that MAD/UQ-Z had a better prediction per-
formance (AUC: 0.7, also reached the upper limit of the 
mean prediction in Figs.  3B, 6C. Hereby, we developed 
the R package IAExpSuv to predict the survival risk of IA 
patients, with the package including two functions, where 
function IAprem was for a group of patients (Z transfor-
mation, IA score transformed, and the logistic probability 
calculated), and function IApres was for the risk predic-
tion of a single patient (self-normalization, Z-transforma-
tion with the built-in dataset, IA score transformed and 
logistic probability calculated) (Figs. 6D, 7).

Discussion
Stage IA LUAD is a clinically early malignancy (T ≤ 3 cm 
N0 M0) and always possesses a favorable prognosis [32]. 
The LCSG821 study established anatomical lobectomy 
as the standard treatment for stage IA LUAD [33, 34]. 
Many clinical trials have proven that stage IA LUAD 
does not benefit from postoperative adjuvant chemo-
therapy [35, 36]. Therefore, the National Comprehen-
sive Cancer Network (NCCN) guidelines recommend 
lobectomy plus systemic lymph node dissection without 
postoperative adjuvant chemotherapy as the standard of 
care for stage IA LUAD [32]. However, stage IA LUAD 
still has biological and prognostic heterogeneity, and its 
appropriate therapeutic strategy and postoperative man-
agement remain uncertain. Previous studies predicted 

(See figure on next page.)
Fig. 5 Significance of IA score in risk stratification of stage IA lung adenocarcinoma. A OS (left) and DFS (right) curves between two risk types 
of stage IA LUAD patients divided by median of IA score (IA H and IA L; IA score is a prognostic protective score) and stage IB-II LUAD patients; 
B volcano plots for DEGs between IA L and IA H (left), between IA L and IB-II (middle), and between IA-H and IB-II (right); C Down (left) and Up 
(right) DEGs between IA L and IA H, between IA L and IB-II, and between IA-H and IB-II; D similarities between query signature (IA H vs. IA L) 
and touchstone signatures (compounds inhibiting certain pathways in lung cancer cell lines) in Connective Map database; E OS (left) and DSS 
(right) curves among IA1, IA2, IA3 and T1N1 LUAD patients in SEER database; F OS (left) and DSS (right) curves among IA1, IA2, IA3 and T2aN0 LUAD 
patients in SEER database; G OS (left) and DFS (right) curves between two risk types of stage IA LUAD patients divided by median of IA score (N0 
H and N0 L) and stage T1N1 LUAD patients; H OS (left) and DFS (right) curves between two risk types of stage IA LUAD patients divided by median 
of IA score (T1 H and T1 L) and stage T2, T3–4 LUAD patients. LUAD lung adenocarcinoma, OS overall survival, DFS disease-free survival, DSS 
disease-specific survival, DEGs differentially expressed genes, SEER Surveillance Epidemiology and End Results
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Fig. 5 (See legend on previous page.)
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the prognosis and optimized treatment of stage IA 
LUAD based on tumor size, radiological characteristics 
and pathological features. For example, the death risk 
increases with the tumor diameter for early LUAD [37]. 
The prognosis of stage IA LUAD containing ground-glass 

components is far better than that of pure solid tumors 
[5]. JCOG0804 confirmed that stage IA LUAD with 
T ≤ 2  cm and a consolidation tumor ratio (CTR) ≤ 0.25 
could benefit from sublobular treatment (mainly wedge 
shaped), while JCOG0802 proved that segmental resec-
tion was better for stage IA LUAD with T ≤ 2 cm and a 
CTR > 0.5 [3, 6]. Stage I LUAD with lepidic growth has 
an excellent prognosis, while micropapilla, solid compo-
nents, lymphovascular invasion, and spread through air 
spaces often predict a poor prognosis and benefits from 
adjuvant chemotherapy [4, 7, 8, 38]. Therefore, in the 
2021 WHO histological classification, carcinoma in  situ 
(AIS) with pure lepidic growth and lesions less than 
3  cm were defined as precursor lesions of cancer, and 
LUAD with mainly lepidic growth, and lesions less than 
3 cm with the presence of invasive components less than 
5  mm were defined as microinvasion (T1mi) [32, 39]. 
Furthermore, invasive stage IA LUAD (invasive compo-
nent > 5  mm) was further subdivided into T1a (< 1  cm), 
T1b (1 cm–2 cm), and T1c (2 cm–3 cm) in the 8th TNM 
staging [32].

Fig. 6 Establishing R package (IAExpSuv) for predicting survival risk probability. A A nomogram for predicting survival risk (five years) probability 
by logistic analysis (risk probability could be easily estimated by projecting total score calculated by IA score value to the lower point scale); B 
the calibration curves for the nomogram (Ideal prediction: 45-degree diagonal lines; Apparent prediction: entail cohorts; Bias-corrected prediction: 
bootstrapping for 1000 repetitions); C predicting efficacies (AUC) of IA score for an individual patient calculated by different procedures; D basic 
principle and download method for the R package IAExpSuv (Functions: IAprem and IApres) to predict the survival risk of stage IA LUAD patients. 
AUC  area under the curve, LUAD lung adenocarcinoma

Fig. 7 Central Picture. The IA score and R package (IAExpSuv) can 
effectively stratify the risk of stage IA LUAD
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However, the previous classification is still controver-
sial. First, we found that the prognosis of the higher risk 
type (IA3) defined in the 8th TNM staging was still bet-
ter than that of stage IB-II disease; thus, this classifica-
tion cannot suggest directly whether to chemotherapy is 
needed. In addition, although existing studies believe that 
the maximum diameter of solid components can better 
distinguish prognosis than the maximum diameter of 
whole nodules, some studies believe that lung nodules 
containing ground-glass components belong to a spe-
cial type of lung cancer and that size, proportion of solid 
components and maximum diameter of nodules cannot 
be used as prognostic risk factors [40–42]. Furthermore, 
it is difficult and subjective to distinguish histological 
morphology and pathological types. Moreover, there 
are often mixed pathological patterns with large varia-
tion, and the relationship of the proportion of different 
histological components and the extent of invasion with 
prognosis is still controversial. Therefore, there are still 
certain flaws in the current risk stratification of stage IA 
LUAD that thus limit precise clinical treatment.

We stratified the risk of stage IA LUAD from the per-
spective of gene expression characteristics. The IA score 
and application R package (IAExpSuv) have the follow-
ing three advantages. First, this classification is more 
intuitive. The fundamental reason for the prognostic 
heterogeneity of stage IA LUAD is the heterogeneity of 
biological characteristics, and the gene expression char-
acteristics largely dictate biological behavior. Therefore, 
our risk classification based directly on the differential 
gene expression characteristics of high- and low-risk 
populations is more thorough. The IA score can clas-
sify a high-risk type with a similar prognosis to that of 
stage IB-II disease, indicating that the IA score can pre-
dict stage improvement. The prognosis of the subgroup 
with high-risk stage IA LUAD (T1N0M0) according 
to IA score and of T1N1 disease (T1 stage disease with 
lymph node metastasis) was similar, suggesting that 
these patients may have occult lymph node metastasis. 
The prognosis of the subgroup with high-risk stage IA 
LUAD (T1N0M0) according to IA score and of T2N0 
disease (T2 disease without lymph node metastasis) was 
similar, suggesting that tumor invasion and expansion 
in these patients may exceed that typically indicated by 
the T1 category. These findings suggest that the IA score 
can identify occult metastases and invasion (lymph node 
metastases and invasion not detected by current detec-
tion methods, i.e., underestimated N and T stages). 
High-risk stage IB and stage II patients can benefit from 
postoperative adjuvant therapy [43, 44]. Patients with N1 
lymph node metastasis or T2 stage typically benefit from 
adjuvant chemotherapy [35, 45–47]. Therefore, it is rea-
sonable to speculate that high-risk subtypes of stage IA 

LUAD classified by IA score present more aggressive bio-
logical characteristics and a poorer prognosis, indicating 
that these patients can benefit from adjuvant chemother-
apy. We also further found that adjuvant chemotherapy 
is harmful for low-risk subgroups of stage IA LUAD 
patients classified by IA score, and this conclusion can 
also be extended to stage IB-II, suggesting that IA score 
can be used as an index for the classification of low-risk 
subtypes of early-stage LUAD. In addition, we found that 
for low-risk subtypes of stage IA LUAD patients classified 
by IA-score, the median survival time was 175  months 
for OS, with a five-year OS rate of 0.917, and the median 
DFS time was 175  months, with a five-year DFS rate of 
0.789. The classic clinical trial with OS as the main end-
point (JCOG0802) indicated that low-risk subtypes of 
stage IA LUAD (T ≤ 2 cm and CTR > 0.5) benefiting from 
sublobectomy had a 5-year OS rate of 0.943, and another 
canonical clinical trial with DFS as the main endpoint 
(CALGB140503) indicated that low-risk subtypes of 
stage IA LUAD (T ≤ 2 cm) benefiting from sublobectomy 
had a 5-year DFS rate of 0.636 [3, 48]. The low-risk sub-
type of stage IA LUAD classified by IA score is similar to 
the existing low-risk subtype of stage IA LUAD that ben-
efits from sublobectomy in terms of both OS and DFS. 
Therefore, the low-risk subtype of stage IA LUAD clas-
sified by IA score may benefit from sublobectomy. Sec-
ond, we used 12 different datasets for training, testing 
and validation of the scoring system, so the IA score had 
good universality. Third, gene expression profiling only 
requires a small sample size, and the IA score calculation 
is intuitive and simple, so its clinical application would be 
acceptable.

In addition, we further analyzed the biological signifi-
cance of the IA score and its possible therapeutic tar-
gets. Through gene enrichment analysis, we found that 
the 64 genes in the IA score model are enriched in sign-
aling pathways such as proliferation and immunity, and 
malignant proliferation and immune microenvironment 
are key links in the malignant progression of early-stage 
LUAD [49–54], reflecting the biological rationality of IA 
score. We further screened key genes by analyzing the 
expression of these genes in early-stage LUAD tissues. 
We found that 13 genes showed consistency between 
risk classification and the expression distribution of AIS-
MIA-IAC (eight genes, OR > 1, risk genes or oncogenes, 
sustained upward trend; five, OR < 1, protective gene or 
tumor suppressor gene, continuous downward trend). 
Most of these genes also play an important role in the 
evaluation of clinical features and malignant biological 
behavior of lung cancer. The details regarding the biologi-
cal significance of these genes are shown in Additional 
file 12: Supplementary Text.
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This study has some limitations. First, due to the sample 
size and quality of the public datasets (it is difficult to col-
lect complete prognostic data of stage IA LUAD), as well 
as the inherent difficulties (patients with stage IA LUAD 
have a better prognosis, and it is difficult to identify those 
who died within five years), the efficacy of the IA score in 
the validation set could only reach 0.7. Additionally, owing 
to the lack of detailed data on chemotherapy (regimens 
and performance status of patients) and the small pro-
portion of high-risk groups (sensitivity to chemotherapy) 
for early-stage LUAD (IA or IB-II), we could not directly 
identify IA patients who would benefit from chemother-
apy through IA score, as we could only clearly and directly 
determine patients who should not receive chemotherapy. 
In addition, joint analysis of radiologic characteristics, 
pathological features and gene expression features cannot 
be achieved with public datasets. Additionally, the tran-
sition of the IA score from histological findings to blood 
test results remains to be verified.

Conclusions
In summary, based on the biological differences between 
high-risk and low-risk patients with stage IA LUAD, we 
established the IA score and its R package IAExpSuv, 
which can be effectively used for prognostic classification 
and risk stratification to help provide precise treatment 
for stage IA LUAD.
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