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Abstract 

Background The mortality rate of acute respiratory distress syndrome (ARDS) increases with age (≥ 65 years old) 
in critically ill patients, and it is necessary to prevent mortality in elderly patients with ARDS in the intensive care unit 
(ICU). Among the potential risk factors, dynamic subphenotypes of respiratory rate (RR), heart rate (HR), and respira-
tory rate-oxygenation (ROX) and their associations with 28-day mortality have not been clearly explored.

Methods Based on the eICU Collaborative Research Database (eICU-CRD), this study used a group-based trajectory 
model to identify longitudinal subphenotypes of RR, HR, and ROX during the first 72 h of ICU stays. A logistic model 
was used to evaluate the associations of trajectories with 28-day mortality considering the group with the lowest rate 
of mortality as a reference. Restricted cubic spline was used to quantify linear and nonlinear effects of static RR-related 
factors during the first 72 h of ICU stays on 28-day mortality. Receiver operating characteristic (ROC) curves were used 
to assess the prediction models with the Delong test.

Results A total of 938 critically ill elderly patients with ARDS were involved with five and 5 trajectories of RR and HR, 
respectively. A total of 204 patients fit 4 ROX trajectories. In the subphenotypes of RR, when compared with group 4, 
the odds ratios (ORs) and 95% confidence intervals (CIs) of group 3 were 2.74 (1.48–5.07) (P = 0.001). Regarding the HR 
subphenotypes, in comparison to group 1, the ORs and 95% CIs were 2.20 (1.19–4.08) (P = 0.012) for group 2, 2.70 
(1.40–5.23) (P = 0.003) for group 3, 2.16 (1.04–4.49) (P = 0.040) for group 5. Low last ROX had a higher mortality risk (P 
linear = 0.023, P nonlinear = 0.010). Trajectories of RR and HR improved the predictive ability for 28-day mortality (AUC 
increased by 2.5%, P = 0.020).

Conclusions For RR and HR, longitudinal subphenotypes are risk factors for 28-day mortality and have additional 
predictive enrichment, whereas the last ROX during the first 72 h of ICU stays is associated with 28-day mortality. 
These findings indicate that maintaining the health dynamic subphenotypes of RR and HR in the ICU and elevating 
static ROX after initial critical care may have potentially beneficial effects on prognosis in critically ill elderly patients 
with ARDS.
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Introduction
Acute respiratory distress syndrome (ARDS) is a com-
mon cause of respiratory system failure in critically 
ill patients [1], leading to noncardiogenic pulmonary 
edema [1] and increased permeability of the alveolar-
capillary membrane. A previous study revealed that 
10% of patients in all intensive care units (ICUs) met the 
ARDS criteria [2]; moreover, the mortality rate of ARDS 
increased with age (≥ 65 years old) [3, 4], reaching as high 
as 43% in ICU patients ≥ 67  years [4]. It is necessary to 
prevent mortality in elderly patients with ARDS in the 
ICU.

The respiratory rate (RR) is a crucial ventilatory param-
eter, despite being infrequently incorporated into venti-
latory protocols in preclinical and clinical studies [5–7]. 
Protective mechanical ventilation strategies employing 
low tidal volume often result in an elevated RR to main-
tain adequate alveolar ventilation [8, 9]. However, there 
is a lack of conclusive data regarding the safety of high 
respiratory rates in preventing ventilator-induced lung 
injury [10]. Vieillard-Baron et  al. [9] observed that a 
high RR in ARDS patients did not improve carbon diox-
ide  (CO2) clearance. Instead, it led to dynamic hyper-
inflation and impaired right ventricular ejection. In 
addition, recent studies have affirmed a positive associa-
tion between RR and mortality [8, 11]. Moreover, other 
indices associated with RR also have important implicai-
tons. For instance, heart rate (HR), which increases with 
RR, has been positively linked with mortality in elderly 
patients [12]. Navarrete-Navarro et al. [13] demonstrated 
that the ICU mortality in trauma patients with ARDS was 
related to oxygen partial pressure  (PaO2)/fractional oxy-
gen  (FiO2) on the third day. Nonetheless, there has been 
widespread adoption of the respiratory rate-oxygena-
tion (ROX), calculated as the ratio of oxygen saturation 
 (SpO2)/FiO2 to RR. It is a more comprehensive indicator 
for predicting disease risk and prognosis [14, 15]. The 
higher ROX index at 24 h after initiating ventilator sup-
port was associated with lower mortality in patients with 
ARDS [16].

In summary, RR, HR, and ROX are readily monitored 
items in the ICU that can indicate clinical deterioration 
[11, 12, 16–18]. These parameters may serve as prognos-
tic indicators for elderly patients with ARDS. However, 
there remain unresolved challenges. First, the implica-
tions of their variations have not been well studied. For 
ARDS patients in the ICU, their disease status could rap-
idly evolve within several minutes. This could be poten-
tially signaled by simultaneous alterations in RR, HR, and 
ROX as a warning. Evidence supports that subclassifica-
tions of disease trajectories based on clinical biomarkers 
could identify typical dynamic subphenotypes in criti-
cally ill patients [10, 19–21, 30–32]. Second, linear and 

nonlinear effects of baseline and final readings of these 
indices on mortality were not investigated. The immedi-
ate responses of RR, HR, and ROX to critical care may 
have particular implications in mortality.

The objectives of this study are outlined as follows: 
(1) to identify dynamic trajectories of RR, HR, and ROX 
in elderly patients with ARDS during the initial 72  h of 
ICU admission using data from the eICU Collaborative 
Research Database (eICU-CRD); (2) to evaluate the rela-
tionship between these vital sign trajectories and 28-day 
mortality; (3) to examine both linear and nonlinear rela-
tionships of static levels of baseline and final measure-
ments of RR, HR, and ROX during the first 72 h of ICU 
stays with 28-day mortality; and (4) to use a receiver 
operating characteristic (ROC) curve and area under the 
curve (AUC) to assess prediction models that incorpo-
rate significant trajectory factors and static RR-related 
factors.

Materials and methods
Study population and data sources
The study population was collected from the eICU-CRD 
2.0 (year 2014–2015) [19] at PhysioNet [20, 21]. Patients 
with ICU stays > 72 h were first included, and the exclu-
sion criteria were as follows: (1) no vital signs in the first 
3 days of the ICU stay; (2) age < 65 or age ≥ 89; (3) gender 
unknown; (4) repeated measurements of RR and HR < 4 
times during the first 72  h in the ICU; (5) no ARDS 
recorded; and (6) diagnosed with congestive heart fail-
ure. For screening ICU patients to fit trajectories of ROX, 
patients with repeated measurements of ROX < 4 times 
during the first 72 h in the ICU were excluded.

The international Classification of Diseases, Ninth 
Revision, Clinical Modification (ICD-9-CM) and 
the  International Classification of Diseases, Tenth Revi-
sion, Clinical Modification (ICD-10-CM) were used to 
help define ARDS [22, 23]. We selected patients with 
ARDS using ICD-9-CM codes 518.51, 518.52, 518.53, 
and 518.82 [24, 25], ICD-10-CM code J80, and disease 
names including “ARDS” or “acute respiratory distress”. 
We included patients with ARDS diagnosis in the time 
range of 2  days before admission to the ICU and 1  day 
after admission. After screening target patients, 938 criti-
cally ill elderly patients with ARDS were collected from 
the eICU-CRD database.

Demographic and clinical features
Demographic and clinical features were derived from 6 
components: demographic information, severity of ill-
ness, support within the first 24  h, laboratory informa-
tion, Charlson comorbidity, and vital signs. The detailed 
demographic and clinical features were as follows: (1) 
demographic information included age, sex, ethnicity, 
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and first ICU location, and other or unknown conditions 
of ethnicity were regarded as a separate classification; 
(2) severity of illness included Sequential Organ Fail-
ure Assessment (SOFA) score, Acute Physiology Score 
III (APS-III), and Glasgow Coma Scale (GCS) score; (3) 
support during the first 24 h of ICU stays involved vaso-
pressin, ventilation, and dialysis; and (4) laboratory infor-
mation included baseline levels of laboratory indicators 
that were collected from the initial observations during 
the first 72  h in the ICU or were supplemented by the 
values closest to the time of the ICU stays before ICU 
admission. Detailed laboratory indicators were hemo-
globin, platelets, white blood cells (WBCs), international 
normalized ratio (INR), partial thromboplastin time 
(PTT), blood urea nitrogen (BUN), creatinine, sodium, 
potassium, calcium, chloride, glucose, and bicarbonate; 
(5) Charlson comorbidity included myocardial infarct, 
congestive heart failure, peripheral vascular disease, cer-
ebrovascular disease (CVD), dementia, chronic pulmo-
nary disease (COPD), rheumatic disease, peptic ulcer 
disease, mild liver disease, severe liver disease, diabetes, 
paraplegia, renal disease, malignant cancer, metastatic 
solid tumor, and aids; and (6) vital signs included RR, 
HR, and ROX. Vital signs from hour 1 to hour 72 were 
split into one-hour blocks of time. If there were mul-
tiple measurements within one block, the peak values 
of RR and HR were used. For ROX, we first defined the 
minimum  SpO2, maximum  FiO2, and maximum RR in 
each one-hour block, and the minimum ROX was then 
calculated as the ratio of  SpO2/FiO2 to RR [14]. The first 
observed vital signs were considered as baseline levels, 
whereas the vital signs finally observed during the first 
72 h in the ICU were considered as post-treatment levels.

Outcome
In the cohort, the follow-up started after 3  days in the 
ICU and lasted until death, loss to follow-up, or survival. 
Outcomes were defined as 28-day mortality, and 28 days 
were calculated from the fourth day of ICU admission.

Statistical analysis
The characteristics of the eICU-CRD cohort were sum-
marized using the mean ± standard deviation (SD), 
median (lower quartile-upper quartile), or number (pro-
portion, %). Continuous variables of the trajectory groups 
were compared using t test or ANOVA for normally dis-
tributed data, and were compared using Wilcoxon rank 
sum test or Kruskal Wallis test for nonnormal data. Cat-
egorical variables of trajectory groups were compared 
using the chi-square test.

Latent mixture modeling (PROC TRAJ) was utilized 
to perform a group-based trajectory model (GBTM) [26] 
to identify the trajectories of RR, HR, and ROX. On the 

basis of prior studies [11, 27, 28], 2 to 5 trajectories were 
fitted using a linear and quadratic trajectory function 
based on a censored normal model [29] with age and sex 
adjustments. The average posterior probability of indi-
viduals belonging to each specific trajectory group was 
calculated, and the percentage of members in each trajec-
tory group was presented. We selected the optimal model 
with the smallest absolute value of the Bayesian informa-
tion criterion (BIC). The average posterior probability of 
each trajectory group was needed to be no less than 70%, 
and the percentage of members in each trajectory group 
was expected to be no less than 5%. Upon analyzing the 
trajectories of RR and HR, we noted that the patterns and 
numbers of trajectories of RR and HR were quite simi-
lar. Consequently, we calculated the Kappa statistic of the 
groups of RR and HR to evaluate the consistency of tra-
jectory classification to avoid redundant analyses.

A logistic model was used to evaluate the relation-
ships between trajectories and 28-day mortality in the 
univariate model. Statistically significant variables in the 
comparison of survivors and nonsurvivors were further 
adjusted in the multivariate model, and covariates with 
missing rates > 10% were not included. The trajectory 
group with lowest rate of 28-day mortality for each indi-
cator was considered as a reference object in the logistic 
model.

Restricted cubic spline with 4 knots (5%, 35%, 65%, and 
95%) was fitted to calculate the linear and nonlinear asso-
ciations of baseline and last RR, HR, and ROX in the first 
72 h of ICU stays with 28-day mortality, and statistically 
significant variables in the comparison of survivors and 
nonsurvivors were adjusted.

In the full population, ROC and AUC were used to 
assess the predictive ability of the general logistic model 
(model 1 with adjustment for statistically significant 
variables in the comparison of survivors and nonsur-
vivors) and trajectory adjusted logistic model (model 2 
with adjustment for variables in model 1 plus significant 
trajectory risk factors). In the population with at least 4 
records of ROX, model 1, model 2, and another model 
3 (with adjustment for variables in model 1 plus signifi-
cant static RR related risk factors) were established. The 
Delong test was used to compare model 1 and model 2, 
model 1 and model 3.

All analyses were performed with SAS 9.4 and R 4.0.2. 
A two-sided P value less than 0.05 was considered statis-
tically significant.

Results
A total of 938 inpatients and 67,536 observations were 
involved in further analyses. Additional file  1: Fig. S1 
displays the flow diagram illustrating the selection pro-
cess of the population of the eICU-CRD database. The 
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demographic information and clinical features grouped 
by mortality outcome are presented in Table  1. There 
were 748 survivors and 190 nonsurvivors (28-day mor-
tality = 20.26%) with a median age of 74.00 [69.00, 80.00]. 
Compared with survivors, nonsurvivors exhibited higher 
rates of male sex (P = 0.014), vasopressin (P < 0.001), and 
ventilation (P = 0.002) and had a higher age (P < 0.001) 
and higher levels of SOFA (P < 0.001), APS-III (P < 0.001), 
GCS (P = 0.003), WBCs (P < 0.001), INR (P = 0.006), BUN 
(P < 0.001), creatinine (P = 0.002), and RR (P = 0.015). 
Among these significantly different variables, age, sex, 
SOFA, APS-III, vasopressin, ventilation, WBCs, BUN, 
creatinine, and RR which had low missing rates (≤ 10%) 
were adjusted in the further logistic regression mod-
els, RCS models, and models predicting 28-day mortal-
ity. Five RR trajectories, 5 HR trajectories, and 4 ROX 
trajectories were identified. The model fitting process of 
the trajectories is shown in Additional file  1: Table  S1. 
The Kappa value equals to 0.102 (P < 0.001), which shows 
a poor consistency of trajectory classification of RR and 
HR.

Additional file  1: Tables S2, S3, and S4 present the 
demographic information and clinical features of the dif-
ferent trajectory groups. In terms of respiratory rate tra-
jectories, outstanding observations include the following: 
group 1 showed higher incidence of cerebrovascular dis-
ease, group 2 displayed elevated bicarbonate level, group 
3 had increased rate of myocardial infarction, group 
4 exhibited older age, higher GCS score, and elevated 
INR level, and group 5 had increased RR and HR. Nota-
bly, groups 1 and 2 were marked by higher ROX, groups 
1 and 3 received higher rate of ventilation, and groups 
3 and 5 experienced a higher mortality rate, whereas 
group 4 had a lower mortality rate. For HR trajectories, 
highlighted observations include the following: group 1 
demonstrated a higher rate of ventilation, group 3 had 
elevated WBCs, group 5 exhibited higher APS-III, and 
both groups 1 and 5 displayed elevated creatinine level. 
Groups 4 and 5 were characterized by higher RR and HR, 
groups 1 and 3 received a higher rate of ventilation, and 
group 1 had a lower mortality rate. Regarding ROX tra-
jectories, the main differences were as follows: group 1 
displayed a higher SOFA score, an increased rate of cere-
brovascular disease, and a higher prevalence of malignant 
cancer. This group also showed higher RR and HR. Group 
4 comprised a higher proportion of females, and group 5 
exhibited higher levels of potassium and ROX.

Figure  1 presents the trajectories of RR, HR, and 
ROX. For RR curves, group 1 (n = 157, 16.74%) had a 
low stable level. Group 2 (n = 280, 29.85%) had low 
levels at baseline and then elevated. Group 3 (n = 178, 
20.47%) started with a middle level, which then 
increased and then declined. Group 4 (n = 192, 18.98%) 

started with a high level of RR, which then decreased to 
the middle level. Group 5 (n = 131, 13.97%) had persis-
tent high level with a slight downward trend. Group 1 
was younger, and group 3 and group 5 had higher rates 
of mortality. For HR curves, group 1 (n = 157, 16.74%), 
group 4 (n = 155, 16.52%), and group 5 (n = 125, 13.33%) 
had similar trends compared with those of RR. The HR 
in group 2 (n = 316, 33.69%) had a medium–low stable 
level; group 3 (n = 185, 19.72%) started with a medium 
level, which then increased to nearly 100 beats per min-
ute. The ROX curves of groups 1, 2, and 3 had simi-
lar initial levels. The level of group 1 (n = 80, 39.20%) 
slightly increased,  group 2 (n = 78, 38.20%) increased to 
moderate level, and the level of group 3 (n = 19, 9.30%) 
sharply increased and declined to middle level with an 
inverted U-shaped curve. Group 4 (n = 27, 13.20%) had 
high stable ROX.

Table  2 presents the odds ratios (ORs) and 95% 
confidence intervals (CIs) of trajectories on the risk 
of 28-day mortality. In the multivariable adjustment 
models, compared with trajectory group 4 of RR, the 
ORs and 95% CIs of group 3 were 2.74 (1.48–5.07) 
(P = 0.001). Compared with trajectory group 1 of HR, 
the ORs and 95% CIs were 2.20 (1.19–4.08) (P = 0.012) 
for group 2, 2.70 (1.40–5.23) (P = 0.003) for group 3, 
and 2.16 (1.04–4.49) (P = 0.040) for group 5. There was 
no significant difference in mortality risk among trajec-
tory groups of ROX.

Figure  2 presents restricted cubic splines (RCS) 
to model relationships of the baseline and last lev-
els of RR, HR, and ROX with 28-day mortality. The 
cubic spline function revealed no linear or nonlin-
ear effect of baseline levels of RR (P for linear = 0.181, 
P for nonlinear = 0.612), HR (P for linear = 0.185, P 
for nonlinear = 0.101), or ROX (P for linear = 0.754, 
P for nonlinear = 0.580) on 28-day mortality. For the 
dimension of last levels, RR and HR were not found 
to be independently associated with 28-day mortality, 
whereas the last level of ROX was linearly (P = 0.023) 
and nonlinearly (P = 0.010) associated with 28-day 
mortality. A lower last level of ROX indicated a higher 
risk of mortality.

Figure  3 presents the ROCs of the different logistic 
models to predict 28-day mortality. In 938 elderly indi-
viduals, the AUC of the model with adjustment for the 
trajectories of RR and HR was superior to that of the 
model without adjustment for the trajectory factors 
(0.768 vs. 0.743, P = 0.020). In 204 elderly patients with at 
least 4 records of ROX, the AUC of model 2 was superior 
to that of model 1 (0.810 vs. 0.738, P = 0.015), and there 
was no significant difference between model 1 and model 
3 (0.738 vs. 0.747, P = 0.878).
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Table 1 Description of baseline variables grouped by 28-day mortality for ICU patients

Variables Survivor (n = 748) Nonsurvivor (n = 190) P

Demographic information

 Age, year 74.00 [69.00, 79.00] 78.00 [72.00, 83.00] < 0.001

 Sex, n (%) 0.014

  Male 360 (48.13) 111 (58.42)

  Female 388 (51.87) 79 (41.58)

 Ethnicity, n (%) 0.264

  Caucasian 588 (78.61) 163 (85.79)

  African American 66 (8.82) 12 (6.32)

  Asian 8 (1.07) 2 (1.05)

  Hispanic 37 (4.95) 8 (4.21)

  Native American 6 (0.80) 1 (0.53)

  Other/Unknown 43 (5.75) 4 (2.11)

 First ICU location, n (%) 0.131

  MICU 98 (13.10) 25 (13.16)

  CCU-CTICU 59 (7.89) 14 (7.37)

  NICU 36 (4.81) 10 (5.56)

  Med-Surg ICU 421 (56.28) 112 (58.95)

  Cardiac ICU 57 (7.62) 11 (5.79)

  CTICU 21 (2.81) 1 (0.53)

  SICU 48 (6.42) 10 (5.26)

  CSICU 8 (1.07) 7 (3.68)

Severity of illness

 SOFA 6.03 (2.63) 7.30 (2.74) < 0.001

 APS-III 50.00 [35.00, 68.00] 63.50 [46.25, 83.75] < 0.001

 GCS 13.00 [10.00, 15.00] 11.00 [10.00, 15.00] 0.003

Support within the first 24 h

 Vasopressin, n (%) < 0.001

  No 634 (84.76) 139 (73.16)

  Yes 114 (15.24) 51 (26.84)

 Ventilation, n (%) 0.002

  No 253 (33.82) 51 (21.58)

  Yes 495 (66.18) 149 (78.42)

 Dialysis, n (%) > 0.999

  No 725 (96.93) 184 (96.84)

  Yes 23 (3.07) 6 (3.16)

Laboratory information

 Hemoglobin, g/dL 10.68 (2.22) 10.38 (2.05) 0.081

 Platelets,  109/L 200.50 [149.25, 262.25] 193.50 [144.25, 273.00] 0.735

 WBCs,  109/L 11.40 [7.93, 15.70] 13.21 [9.40, 19.23] < 0.001

 INR, % 1.20 [1.10, 1.50] 1.30 [1.10, 1.80] 0.006

 PTT, s 32.50 [28.00, 40.00] 34.60 [28.90, 43.08] 0.088

 BUN, mg/dL 25.00 [17.00, 38.50] 31.00 [21.25, 55.00] < 0.001

 Creatinine, mg/dL 1.08 [0.76, 1.64] 1.30 [0.80, 2.21] 0.002

 Sodium, mmol/L 138.73 (5.92) 139.12 (6.78) 0.472

 Potassium, mmol/L 4.16 (0.75) 4.18 (0.72) 0.692

 Calcium, mg/dL 8.25 (0.78) 8.29 (1.23) 0.722

 Chloride, mmol/L 103.59 (7.28) 103.82 (7.97) 0.728

 Glucose, mg/dL 141.00 [111.00, 180.00] 140.00 [111.25, 182.50] 0.934

 Bicarbonate, mmol/L 25.45 (6.16) 24.50 (6.36) 0.073

Charlson comorbidity

 Myocardial infarct, n (%) 0.141

  No 730 (97.59) 181 (95.26)

  Yes 18 (2.41) 9 (4.74)
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Data are presented using mean (standard deviation (SD)), median (lower quartile-upper quartile), or number (proportion, %)

ICU intensive care unit, SOFA Sequential Organ Failure Assessment, APS-III Acute Physiology Score III, GCS Glasgow Coma Scale, WBCs white blood cells, INR 
international normalized ratio, PTT partial thromboplastin time, BUN blood urea nitrogen, RR respiratory rate, HR heart rate, ROX respiratory rate-oxygenation

Table 1 (continued)

Variables Survivor (n = 748) Nonsurvivor (n = 190) P

Peripheral vascular disease, n (%) 0.322

  No 740 (98.93) 190 (100.00)

  Yes 8 (1.07) 0 (0.00)

 Cerebrovascular disease, n (%) 0.430

  No 712 (95.19) 184 (96.84)

  Yes 36 (4.81) 6 (3.16)

 Dementia, n (%) 0.059

  No 725 (96.93) 178 (93.68)

  Yes 23 (3.07) 12 (6.32)

 Chronic pulmonary disease, n (%) 0.870

  No 597 (79.81) 150 (78.95)

  Yes 151 (20.19) 40 (21.05)

 Rheumatic disease, n (%) > 0.999

  No 745 (99.60) 189 (99.47)

  Yes 3 (0.40) 1 (0.53)

 Peptic ulcer disease, n (%) 0.772

  No 744 (99.47) 188 (98.95)

  Yes 4 (0.53) 2 (1.05)

 Mild liver disease, n (%) 0.075

  No 735 (98.26) 182 (95.79)

  Yes 13 (1.74) 8 (4.21)

 Severe liver disease, n (%) > 0.999

  No 745 (99.60) 190 (100.00)

  Yes 3 (0.40) 0 (0.00)

 Diabetes, n (%) 0.766

  No 657 (87.83) 169 (88.95)

  Yes 91 (12.17) 21 (11.05)

 Paraplegia, n (%) > 0.999

  No 747 (99.87) 190 (100.00)

  Yes 1 (0.13) 0 (0.00)

 Renal disease, n (%) 0.276

  No 669 (89.44) 164 (86.32)

  Yes 79 (10.56) 26 (13.68)

 Malignant cancer, n (%) > 0.999

  No 689 (92.11) 175 (92.11)

  Yes 59 (7.89) 15 (7.89)

 Metastatic solid tumor, n (%) > 0.999

  No 742 (99.20) 189 (99.47)

  Yes 6 (0.80) 1 (0.53)

 Aids, n (%) 0.867

  No 747 (99.87) 189 (99.47)

  Yes 1 (0.13) 1 (0.53)

Vital signs

 RR, /min 24.55 (8.00) 26.16 (8.19) 0.015

 HR, /min 95.71 (22.55) 97.64 (21.17) 0.268

 ROX 6.10 [3.92, 9.74] 5.65 [4.35, 8.38] 0.265
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Discussion
We determined the shapes and numbers of the clinical 
featured trajectories using RR, HR, and the composite 
index of ROX in elderly, critically ill patients with ARDS, 
using data from the eICU-CRD cohort. Based on the tra-
jectory analysis, potential subphenotypes of ARDS were 
identified. RR, HR, and ROX had distinct manifesta-
tions of mortality risk. For RR and HR, their longitudinal 
subphenotypes are risk factors for 28-day mortality and 
could improve the predictive ability. For the ROX index, 

its last levels during the initial 72  h of ICU admission 
are associated with 28-day mortality. To our knowledge, 
this is the first study to explore dynamic subphenotypes 
and static levels of RR, HR, and ROX, and to assess their 
associations with death in elderly ARDS patients who 
were admitted to the ICU. These findings indicate that 
dynamic subphenotypes of RR and HR, and static ROX 
after initial critical care could suggest a prognosis that 
may need to be managed in critically ill elderly patients 
with ARDS.

Fig. 1 Trajectories of RR, HR, and ROX. This figure shows the distinct trajectories of respiratory rate, heart rate, and respiratory rate-oxygenation 
from the first 72 h of ICU stays based on data of the eICU-CRD. Using the approach of group-based trajectory model, 5 respiratory rate trajectories 
were presented in (a), 5 heart rate trajectories were presented in (b), 4 respiratory rate-oxygenation trajectories were presented in (c). RR respiratory 
rate, HR heart rate, ROX respiratory rate-oxygenation, ICU intensive care unit, eICU-CRD eICU Collaborative Research Database
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Compared with single time-point measurements, tra-
jectories or average patterns of RR and HR may capture 
a combination of disease statuses, including dysfunc-
tional central respiratory control, respiratory or meta-
bolic impairments [30], infection inflammation, lung 
injury, and myocardial infarct. Most elderly individuals 
had poor RR status, among which tachypnea is usually 
caused by ARDS. Notably, the initial moderate level and 
rising stage of RR (group 3) were integral contributing 
factors for mortality. For HR subphenotypes, the cumula-
tive effect of varying degrees of higher HR without a clear 
downward trend predicted an unfavorable prognosis. An 
increased HR indicates that a person has a low oxygen 
level, which represents a more severe condition of ARDS. 
Moreover, ICU patients commonly suffer from impaired 
physiological homeostasis and circadian rhythm disor-
ders [31, 32], which affect neural regulation and result in 
HR variation [18, 33]. Furthermore, a prolonged elevated 
HR in critically ill, cardiac high-risk patients could result 
in major cardiac events [34], which may cause adverse 
prognosis. It needs to be noted that the lowest RR (group 
1) was not independently associated with mortality 
which is different from that of HR. The possible reason 
may be that RR in group 1 was effectively controlled by 
clinical interventions such as mechanical ventilation, 
sedation, and analgesia, which dissimulate the symptoms 

of ventilation-induced [10] and ARDS-induced lung 
injury. The potential mechanism needs to be explored in 
the future.

The subphenotypes of ROX were not associated with 
mortality in elderly patients with ARDS, and interest-
ingly, ICU inpatients could switch between two levels 
(low and high) of ROX. Treatment in the ICU seemed 
to affect ROX, as 3 subphenotypes changed to higher 
levels over time. Piryani et al. [16] showed that patients 
with a high ROX had a lower risk of mortality for ARDS, 
and Roca et al. [14, 15] indicated that ROX is a prognos-
tic factor for nasal high-flow therapy. All these studies 
focused on the ROX at a single time point; perhaps the 
longitudinal measurement of ROX was not a sensitive 
predictor of mortality. Another possible interpretation is 
that the GBTM did not fit a longitudinal ROX subpheno-
type with a lower level, which may have a higher risk of 
mortality. The fitted GBTM of ROX needs to be explored 
in further studies.

We applied restricted cubic spline to model associa-
tions of baseline and last levels of RR-related indicators 
during the first 72  h of stays in the ICU with 28-day 
mortality, and only the last ROX was linearly and non-
linearly associated with mortality. Strauß et al. [35] indi-
cated that compared with an RR on hospital admission of 
12–20/min, an RR of 27–33/min and above 33/min were 

Table 2 ORs and 95% CIs of trajectories on risk of 28-day mortality

Trajectory groups with lowest rate of 28-day mortality were considered as the reference in the logistic model. In univariate model, current trajectory group was 
adjusted. In multivariable model, current trajectory group, age, sex, SOFA, APS-III, vasopressin, ventilation, WBCs, BUN, creatinine, and respiratory rate were adjusted

ORs odds ratios, CIs confidence intervals, SOFA Sequential Organ Failure Assessment, APS-III Acute Physiology Score III, WBCs white blood cells, BUN blood urea 
nitrogen, RR respiratory rate, HR heart rate, ROX respiratory rate-oxygenation

Trajectory group Logistic models

RR Univariate model P Multivariate model P

4 Reference – Reference –

1 1.38 (0.78–2.46) 0.272 2.33 (1.16–4.70) 0.018

2 1.24 (0.74–2.08) 0.415 1.59 (0.85–2.98) 0.143

3 2.17 (1.29–3.67) 0.004 2.74 (1.48–5.07) 0.001

5 1.97 (1.11–3.49) 0.021 1.60 (0.82–3.12) 0.169

HR Univariate model P Multivariate model P

1 Reference – Reference –

2 1.99(1.15–3.45) 0.014 2.20(1.19–4.08) 0.012

3 2.54(1.42–4.55) 0.002 2.70(1.40–5.23) 0.003

4 1.33(0.70–2.54) 0.387 1.17(0.57–2.41) 0.675

5 2.40(1.28–4.49) 0.006 2.16(1.04–4.49) 0.040

ROX Univariate model P Multivariate model P

3 Reference – Reference –

1 4.58 (0.99–21.25) 0.052 2.37 (0.44–12.87) 0.317

2 3.13 (0.67–14.73) 0.148 2.01 (0.38–10.73) 0.414

4 2.43 (0.43–13.61) 0.313 1.85 (0.29–11.90) 0.516
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associated with high mortality in patients with commu-
nity-acquired pneumonia. Our different results could 
be attributed to population heterogeneity and unstable 
changes in RR in ICU patients with ARDS. In addition, 
the RR may be improved by ventilation and other thera-
peutic interventions which are relatively homogenous 
behaviors in the ICU. Therefore, using single time-point 
measurements may not effectively differentiate between 
varying mortality risks. Laskey et  al. [36] showed that 
HR at discharge in patients with heart failure is associ-
ated with mortality. Wang et al. [37] indicated that a low 
minimum HR under 60  bpm may be associated with a 
higher risk for 30-day mortality in critically ill myocar-
dial infarction patients. The association between HR 
and mortality in ARDS patients is rarely explored; based 
on our results, the original and last HR is not related to 
mortality. Guo et al. [18] demonstrated a U-shaped curve 

relating HR fluctuation (maximum HR minus the mini-
mum HR in the initial 24 h) to mortality in critically ill 
ICU patients, highlighting the implication of longitudinal 
HR. Our results could explain the adverse prognosis of 
low HR fluctuations [18], for example, sustained moder-
ate and sustained high heart rates (groups 2 and 5) had 
low heart rate fluctuations, which resulted in a higher 
mortality risk. What is interesting is the linear and non-
linear effects of last ROX. ROX could reflect dyspnea and 
the severity of respiratory failure [16]. Leszek et al. [38] 
indicated that early measurement of the ROX index in 
the intermediary care unit is associated with mortality 
in intubated COVID-19 patients. Lee et al. [39] showed 
that the ROX index could be used as a prognostic marker 
in sepsis. We specifically investigated the last ROXs, 
which were measured mostly (97.55%) from 25 to 72  h 
in the ICU. The reinvention ability of ROX through ICU 

Fig. 2 RCS of baseline, post-treatment levels of RR, HR, and ROX with 28-day mortality. Blue lines represent associations of baseline RR, heart rate, 
and ROX with 28-day mortality whereas red lines represent associations of post-treatment RR, heart rate, and ROX with 28-day mortality. For RR, 
99.89% baseline levels were observed during 1 to 24 h in the ICU whereas 99.57% last levels were observed during 25 to 72 h in the ICU; for heart 
rate, 99.89% baseline levels were observed during 1 to 24 h in the ICU whereas 100.00% last levels were observed during 25 to 72 h in the ICU; 
for ROX, 100.00% baseline levels were observed during 1 to 24 h in the ICU whereas 97.55% levels were observed during 25 to 72 h in the ICU. RCS 
restricted cubic splines, ORs odds ratios, RR respiratory rate, HR heart rate, ROX respiratory rate-oxygenation, ICU intensive care unit
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care had a specific effect on mortality. The work of Piry-
ani et  al. [16] was consistent with our findings to some 
extent. The possible reason for the lack of a significant 
risk of the longitudinal ROX subphenotype may be that 
high variation in ROX and transient low ROX (such as 
values < 5) were difficult to quantify by the trajectory 
model.

Dynamic subphenotypes of RR and HR had additional 
predictive value of 28-day mortality (AUC increased by 
2.5%, P = 0.020), whereas last ROX during the first 72 h 
of ICU stays did not. This phenomenon indicats that 
pieces of information on longitudinal RR and HR could 
supplement the cause of death in addition to the por-
tion explained by other adjusted variables. First, in criti-
cally ill elderly patients with ARDS, the dynamic RR and 
HR may be sensitive and early altered bioindicators of a 
combination of disease statuses. Second, the suppressed 
respiratory central and insufficient blood supply caused 
by persistent deterioration of RR and HR may directly 
result in death. Further research is needed to explore the 
mechanism.

There were several limitations in our study. First, tra-
jectory analysis is a data-driven method and may not 
be applicable for emergencies, in which the patient dies 
in a shorter time. Second, the results may not apply to 
ICUs elsewhere with different resources that have het-
erogeneity in populations, environments, and treatment 
methods.

Conclusion
Longitudinal dynamic subphenotypes of RR and HR and 
last static levels of ROX during the first 72 h of ICU stays 
play specific roles in 28-day mortality. These findings 
indicate that the dynamic subphenotypes of RR and HR, 
and static ROX after initial critical care could suggest a 
prognosis that may need to be controlled in critically ill 
elderly patients with ARDS.
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