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Abstract 

Question Severe asthma and COPD exacerbations requiring hospitalization are linked to increased disease morbidity 
and healthcare costs. We sought to identify Electronic Health Record (EHR) features of severe asthma and COPD exac‑
erbations and evaluate the performance of four machine learning (ML) and one deep learning (DL) model in predict‑
ing readmissions using EHR data.

Study design and methods Observational study between September 30, 2012, and December 31, 2017, of patients 
hospitalized with asthma and COPD exacerbations.

Results This study included 5,794 patients, 1,893 with asthma and 3,901 with COPD. Patients with asthma were 
predominantly female (n = 1288 [68%]), 35% were Black (n = 669), and 25% (n = 479) were Hispanic. Black (44 vs. 
33%, p = 0.01) and Hispanic patients (30 vs. 24%, p = 0.02) were more likely to be readmitted for asthma. Similarly, 
patients with COPD readmissions included a large percentage of Blacks (18 vs. 10%, p < 0.01) and Hispanics (8 vs. 5%, 
p < 0.01). To identify patients at high risk of readmission index hospitalization data of a subset of 2,682 patients, 777 
with asthma and 1,905 with COPD, was analyzed with four ML models, and one DL model. We found that multilayer 
perceptron, the DL method, had the best sensitivity and specificity compared to the four ML methods implemented 
in the same dataset.

Interpretation Multilayer perceptron, a deep learning method, had the best performance in predicting asthma 
and COPD readmissions, demonstrating that EHR and deep learning integration can improve high‑risk patient 
detection.

Introduction
Asthma and chronic obstructive pulmonary disease 
(COPD) are the two most common chronic pulmonary 
diseases worldwide [1]. Health care expenses for asthma 
and COPD in 2020 were estimated to be $80 billion [2] 
and $49 billion in the United States alone [3]. Severe 
exacerbations that require hospitalization are linked to 
increased disease morbidity as well as increased health-
care cost [2, 3]. Rates of asthma exacerbation requiring 
emergency department visits or hospitalization range 
between 8.4% and 12.5% [4], and up to 20% for COPD 
[5]. Novel tools are therefore needed to improve disease 
management and facilitate therapeutic interventions.
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Although asthma and COPD are both classified as 
obstructive lung diseases and share some clinical char-
acteristics, their pathogenesis and therapies are vastly 
different. A major difference in COPD is the strong asso-
ciation with cigarette smoke exposure, which accounts 
for approximately 90% of cases in the US [6]. Efforts to 
improve asthma and COPD classifications have uncov-
ered unique disease subtypes and endotypes. Endotypes 
are disease phenotypes characterized by similar bio-
logical mechanisms or responses to treatment [7]. This 
improvement in disease classification has enabled iden-
tification of individuals at risk for frequent exacerbations 
and comorbidities [8, 9]. These disease classification 
breakthroughs have also led to improved targeted thera-
peutics for both asthma and COPD [10–14]. Despite the 
importance of obstructive lung disease endotyping, sys-
tematic approaches that identify patients who are at high 
risk of recurrent adverse outcomes for both disorders are 
lacking. One of the reasons for the limited adoption of 
patient endotyping by physicians could be reproducibility 
issues [15].

Implementation of machine learning algorithms has 
been a key aspect of endotype identification in asthma 
and COPD [16–19]. However, these developments have 
been primarily confined to research studies and have 
not been translated into clinical practice. One way of 
addressing this translation gap is to use electronic health 
records (EHRs). The widespread use of EHRs allows 
high-throughput collection of clinical variables at distinct 
stages of healthcare delivery. Through EHR queries, com-
putable phenotypes can be employed to identify clinical 
conditions [20]. These records are complex and difficult 
to analyze in large numbers by conventional approaches. 
However, machine and deep learning algorithms [21], can 
potentially use EHR analysis to support improved disease 
classification and clinical decision-making. Despite these 
potential benefits of EHR integration with machine and 
deep learning, understanding of the shared EHR-based 
features of severe asthma and COPD exacerbations is 
limited.

We hypothesized that patients with multiple hospitali-
zations for severe exacerbations of asthma and COPD, 
referred to as readmissions, would have distinct clini-
cal characteristics that could be identified using a model 
trained on structured EHR data. To test this hypothesis, 
we applied machine and deep learning models to a cohort 
of patients hospitalized for asthma and COPD exacerba-
tions. The resulting findings will allow the development 
of strategies that reduce severe disease exacerbations 
by establishing treatment pathways for patients with an 
increased risk of readmission. Improvements in disease 
care resulting from algorithmic development have the 
potential to lower disease morbidity and healthcare costs.

Methods
Data source and study population
We conducted a retrospective cohort study using data 
gathered from patients hospitalized at Yale-New Haven 
Hospital (YNHH) between September 30, 2012, after the 
Epic EHR system (Verona, WI) was implemented, and 
December 31, 2017. YNHH is a tertiary-care hospital 
with 1541 beds and two campuses in New Haven, Con-
necticut, USA. The Yale University Human Research Pro-
tection Program approved this study. Data was obtained 
from the Joint Data Analytics Team at Yale University 
School of Medicine. We included all participants who 
met the following criteria during the study period: This 
study was limited to hospital admissions of patients 
12  years and over. The International Classification of 
Diseases, Tenth Revision, Clinical Modification (ICD-
10-CM) codes were used for inclusion and exclusion, as 
indicated in Additional file 1: Table S1. Additional meth-
ods are presented in the Additional file 6.

For specific aspects of study design, we have included 
the Transparent Reporting of a multivariable prediction 
model for Individual Prognosis or Diagnosis (TRIPOD) 
checklist in the Additional file 2.

Outcomes
Our primary outcome was the presence of more than 
one hospitalization for exacerbation of asthma or COPD, 
readmission, during the study period.

Statistical analysis
Descriptive statistics used the Wilcoxon Rank Sum test 
for continuous values, chi-square for categorical values, 
two-proportions Z-test for proportions between groups. 
For each model, area under the curve (AUC) and confi-
dence intervals (CI) for predicting patients with readmis-
sions were calculated. Statistical significance was defined 
by p < 0.05. All statistical analyses were performed 
using R [22], version 3.6.3. We evaluated four machine 
learning algorithms including Naïve Bayes, support 
vector machine (SVM), random forest (RF), and gradient-
boosted trees (GBT) and the deep learning model multi-
layer perceptron (MLP). We calculated SHapley Additive 
exPlanation (SHAP) values to interpret the deep learning 
MLP model [23]. SHAP values are measures of contribu-
tions each feature (predictor) has in the machine learning 
model. The rank order in every SHAP figure summarizes 
which feature values have the greatest influence on the 
prediction while accounting for the influence of all other 
feature values. The SHAP values show the distribution of 
each feature’s impact, and the color represents the feature 
value affecting the prediction (high = red; low = blue). The 
supplementary material includes a more detailed descrip-
tion of the methods.
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Results
Demographic, comorbidities and hospitalization 
characteristics
This study included 5794 patients, 1893 with asthma, 
and 3901 with COPD. These patients accounted for a 
total of 10,464 hospitalizations during the study period. 
At the time of their index hospitalization, patients with 
asthma were younger than those with COPD (Table 1). 
Patients with asthma were predominantly female 
(n = 1288 [68%]), 35% were Black or African American 
(henceforth, Black) (n = 669), and 25% (n = 479) were 
Hispanic. Patients with COPD were also predomi-
nantly female (n = 2151 [55%]), however, unlike asthma 
patients, the majority were White (n = 3154 [81%]). 
There were significant differences in ever-smoking sta-
tus between asthma (43%) and COPD (93%) (p < 0.01) 
(Table  1). COPD patients had higher rates of multiple 
comorbidities (n = 3467 [88%]) than asthma patients 
(n = 1133 [60%]) (p < 0.01) (Table 1).

The median hospital length of stay for COPD exac-
erbations was longer than asthma exacerbations. Rates 
of admission to the intensive care unit (ICU), readmis-
sion within 30 days of discharge, and mortality during 
hospitalization were also higher for the COPD cohort 
(Table  1). There were significant differences in one-
year mortality following index hospitalization between 
COPD (n = 721 [18%]) and asthma (n = 48 [3%]) 
(p < 0.01). Individuals with COPD (n = 1359 [35%]) had 
a higher percentage of 30-day readmissions than those 
with asthma (n = 386 [21%]) (p < 0.01) (Table 1).

Inpatient medication use
Qualitative data on inpatient medication use was avail-
able for 1,856 (98%) asthma patients and 3,863 (99%) 
COPD patients. Patients with asthma received more 
inhaled corticosteroids (ICS). However, use of ICS 
combined with long-acting beta-agonist (LABA) (ICS/
LABA) was higher in COPD. Despite these differences 
in inhaled therapy, systemic steroid administration dur-
ing hospitalization for asthma and COPD was com-
parable. Antibiotic use was higher in COPD than in 
asthma (Table 1).

Laboratory testing
To identify differences in blood leukocyte counts, we 
analyzed data from 777 patients with asthma and 1,905 
patients with COPD, for whom results were available 
on the first day of the index hospitalization (Table  2). 
The overall white blood cell (WBC) counts did not dif-
fer between groups. Absolute neutrophil and monocyte 
counts, however, were higher in COPD, whereas abso-
lute eosinophil, basophil, and lymphocyte counts were 

Table 1 Demographics, comorbidities and medication 
administration

*Unknown or patient refused

BMI body mass index, ICU intensive care unit, CAD coronary artery disease, CHF 
congestive heart failure, CKD chronic kidney disease, GERD gastroesophageal 

Asthma COPD p-value

N = 1893 N = 3901

Age (years) 41 (26–58) 71 (61–81) < 0.01

Female sex n (%) 1288 (68) 2151 (55) < 0.01

Race n (%)

African American/Black 669 (35) 500 (13) < 0.01

White 770 (41) 3154 (81) < 0.01

Other 403 (21) 220 (6) < 0.01

Not Available* 53 27

Hispanic Ethnicity n (%) 479 (25) 234 (6) < 0.01

BMI (kg/m2) 30 (25–37) 27 (23–34) < 0.01

Smoking status (n) 1812 3778 < 0.01

Never n (%) 1022 (56) 287 (7)

Current n (%) 326 (18) 971 (26)

Former n (%) 464 (25) 2520 (67)

Length of Stay 2 (2–4) 4 (3–8) < 0.01

ICU admission n (%) 267 (14) 880 (23) < 0.01

Death during hospitalization n (%) 7 (0.4) 111 (3) 0.51

Death within a year n (%) 48 (3) 721 (18) < 0.01

Readmission within 30 days n (%) 72 (4) 214 (6) < 0.01

Multiple hospitalizations n (%) 386 (21) 1359 (35) < 0.01

Comorbidities

CAD 330 (17) 2026 (52) < 0.01

CHF 270 (14) 2011 (52) < 0.01

Cerebrovascular disease 200 (11) 770 (20) < 0.01

Diabetes Mellitus 739 (39) 1960 (50) < 0.01

CKD 238 (13) 1391 (36) < 0.01

Allergic rhinitis 497 (26) 312 (8) < 0.01

Nasal polyposis 34 (2) 31 (0.8) < 0.01

Lung cancer 16 (0.8) 559 (14) < 0.01

Sleep apnea 474 (25) 1322 (34) < 0.01

GERD 836 (44) 2033 (52) < 0.01

Hypertension 976 (52) 3399 (87) < 0.01

Multiple comorbidities 1133 (60) 3467 (89) < 0.01

Medications during hospitalization

N = 1856 N = 3863

Albuterol 1481 (80) 2547 (66) < 0.01

Theophylline 18 (1) 113 (3) < 0.01

Antibiotic 993 (54) 3362 (87) < 0.01

ICS 349 (19) 436 (11) < 0.01

ICS + LABA 892 (48) 2498 (65) < 0.01

LAMA 122 (7) 1758 (46) < 0.01

LAMA + LABA 0 4 (0.1) 0.39

LTRA 572 (31) 512 (13) < 0.01

Nicotine replacement 159 (9) 809 (21) < 0.01

Systemic steroids 1433 (77) 3033 (79) 0.2527

Varenicline 0 1 1

Roflumilast 0 24 < 0.01
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higher in asthma (Table  2). Rhinovirus was the most 
prevalent viral pathogen discovered in asthma and 
COPD exacerbations (Table 2).

Clinical features of patients with single versus multiple 
hospitalizations
To determine whether there were clinical differences 
between patients with single hospitalization for severe 
exacerbation of asthma and COPD, we compared their 
clinical characteristics (Table  3 and Additional file  1: 
Table S2). Patients with asthma readmissions were more 
likely to be Black or Hispanic than those with a single 
hospitalization. Patients with readmissions had increased 
rates of several comorbidities and increased use of dis-
ease-specific therapies (Table  3 and Additional file  1: 
Table S2). Patients who had readmissions for asthma had 
higher absolute eosinophil counts, absolute lymphocyte 

counts, and platelets, than those with single hospitaliza-
tion. In contrast, patients with readmissions had a lower 
rate of viral positivity than those with a single hospitali-
zation (Table 3 and Additional file 1: Table S2).

Patients with COPD readmissions had several simi-
larities with patients readmitted for asthma, including 
a larger percentage of Black and Hispanic individuals. 
Furthermore, patients with COPD readmissions were 
younger and predominantly male compared to those with 
a single hospitalization. Patients with readmissions had a 
shorter length of stay and a lower rate of ICU admission. 
Patients with single hospitalizations had higher rates of 
mortality in the first year following index hospitaliza-
tion compared to those with readmissions, likely reflect-
ing the competition between mortality and readmissions 
(Table  3 and Additional file  1: Table  S2). Patients with 
COPD readmissions had greater rates of multiple comor-
bidities and inpatient drug administration, similar to 
patients with asthma (Table  3 and Additional file  1: 
Table  S2). Unlike asthma patients, patients with read-
missions for COPD had absolute eosinophil counts 

reflux disease, ICS inhaled corticosteroid, LABA long-acting beta-agonist, LAMA 
long-acting muscarinic antagonist, LTRA  leukotriene receptor antagonist

Table 1 (continued)

Table 2 Laboratory values

MCH mean corpuscular hemoglobin, MCHC mean corpuscular hemoglobin concentration, MCV mean corpuscular volume, MPV mean platelet volume, RSV respiratory 
syncytial virus

Asthma COPD p-value

Admission values 777 1905

White blood cells 9600 [7300–12,500] 9900 [7400–12,900] < 0.01

Absolute neutrophil count 6600 [4600–10,000] 7300 [5000–10,500] < 0.01

Absolute eosinophil count 111 [0–291] 86 [0–211] < 0.01

Absolute basophil count 20 [0–58] 8 [0–56] < 0.01

Absolute monocyte count 616 [413–864] 726 [500–984] < 0.01

Absolute lymphocyte count 1,489 [945–2309] 1,225 [790–1839] < 0.01

Red blood cell count 4.5 [4.1–4.8] 4.2 [3.7–4.7] < 0.01

Hematocrit 39 [36–42] 39 [34–43] < 0.01

Hemoglobin 13.1 [11.8–14.1] 12.7 [11.1–14.2] < 0.01

MCH 29.5 [27.9–30.8] 30.2 [28.5–31.8] < 0.01

MCHC 33.2 [32.5–34.0] 32.9 [31.9–33.7] < 0.01

MCV 88.6 [85.0–92.0] 92.0 [88.0–96.0] < 0.01

Platelets 256 [209–314] 225 [172–290] < 0.01

MPV 8.9 [7.7–10.2] 8.7 [7.6–9.9] 0.0531

Viral testing N = 382 N = 561

 Viral positivity 125 (33) 128 (23) < 0.01

 Adenovirus 2 (0.5) 2% of + viral 0

 Influenza A 10 (3) 8% of + 18 (3) 14% of + 

 Influenza B 3 (1) 2% of + 5 (1) 4% of + 

 Influenza A/B 26 (7) 21% of + 20 (4) 16% 0.03

 Metapneumovirus 4 (1) 3% of + 10 (2) 8%

 Parainfluenza 10 (3) 8% of + 22 (4) 17%

 Rhinovirus 48 (13) 38% of + 32 (6) 25%  < 0.01

 RSV 23 (6) 18% of + 24 (4) 19%
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comparable to those with a single hospitalization (95 vs. 
82 cells/μL, p = 0.2).

Predictive models to identify multiple exacerbators using 
index hospitalization information
To identify patients at high risk for readmissions based 
on their index hospitalization data, we used machine 

learning (n = 4) and deep learning (n = 1) models. Our 
study examined a subset of asthma (n = 777) and COPD 
(n = 1905) patients with complete data on 60 variables 
(Additional file 1: Table S3). Focusing on readily available 
EHR variables or those that require minimal transfor-
mation. In this combined subgroup, 785 patients (29%) 
experienced the readmission outcome. The performance 

Table 3 Multiple admissions clinical characteristics

*One instance of dual viral infection

Hx hospitalization, MCH mean corpuscular hemoglobin, MCHC mean corpuscular hemoglobin concentration, MCV mean corpuscular volume, MPV mean platelet 
volume

Asthma COPD

Single Hx Multiple Hx p-val Single Hx Multiple Hx p-val

Number 1507 386 2542 1359

Age (years) 41 (26–58) 41 (24–57) 0.47 72 (63–81) 70 (60–79) < 0.01

Female sex n (%) 1023 (68) 265 (69) 0.82 1352 (53) 560 (41) < 0.01

Race n (%) < 0.01 < 0.01

African American 500 (33) 169 (44) 255 (10) 245 (18)

White 652 (43) 117 (30) 2127 (84) 1027 (76)

Hispanic ethnicity n (%) 363 (24) 116 (30) 0.02 127 (5) 107 (8) < 0.01

BMI (kg/m2) 30.7 (25.3–37.2) 29.8 (25.1–36.7) 0.61 27.3 (22.6–33.2) 28.0 (23.2–34.3) < 0.01

Smoking status (n) 1440 372 0.04 2435 1343 < 0.01

Never n (%) 806 (56) 216 (58) 214 (9) 73 (5)

Current n (%) 275 (19) 51 (14) 633 (26) 338 (25)

Former n (%) 359 (25) 105 (28) 1588 (65) 932 (69)

Length of Stay 2 (2–4) 2 (2–4) 0.23 5 (3–8) 4 (3–7) < 0.01

ICU admission n (%) 203 (13) 64 (17) 0.14 629 (25) 251 (18) < 0.01

Death within a year n (%) 44 (3) 4 (1) 0.06 568 (22) 153 (11) < 0.01

Multiple comorbidities (> 1) 870 (58) 263 (70) < 0.01 2196 (86) 1271 (94) < 0.01

Medications (n) 1475 381 2510 1353

Albuterol 1112 (75) 370 (97) < 0.01 1364 (54) 1183 (87) < 0.01

ICS 226 (15) 123 (32) < 0.01 193 (8) 243 (18) < 0.01

ICS + LABA 604 (41) 288 (76) < 0.01 1348 (54) 1150 (85) < 0.01

LAMA 62 (4) 60 (16) < 0.01 874 (35) 884 (65) < 0.01

LTRA 353 (24) 220 (58) < 0.01 206 (8) 306 (23) < 0.01

Antibiotic 741 (50) 252 (66) < 0.01 2041 (81) 1321 (98) < 0.01

Nicotine replacement 107 (7) 52 (14) < 0.01 405 (16) 4040 (30) < 0.01

Systemic steroids 1073 (73) 361 (95) < 0.01 1738 (69) 1295 (96) < 0.01

CBC (n) 627 150 1270 635
White blood cells 9.6 (7.4–12.7) 9.7 (7.1–12.1) 0.69 9.9 (7.3–13.0) 9.9 (7.6–12.8) 0.96

Absolute neutrophil count 6.7 (4.7–10.2) 6.2 (4.5–9.2) 0.13 7.4 (5.0–10.7) 7.2 (5.1–10.1) 0.22

Absolute eosinophil count 100 (0–273) 162 (0–367) 0.02 82 (0–201) 95 (0–233) 0.21

Absolute Lymphocyte count 1444
(924–2207)

1848
(1050–2498)

< 0.01 1173
(770–1785)

1728
(833–1985)

< 0.01

Hemoglobin 13.0
(11.8–14.1)

13.5
(12.3–14.3)

0.01 12.6
(11.0–14.3)

12.8
(11.3–14.1)

0.15

Platelets 252 (202–310) 272 (232–325) < 0.01 225 (172–287) 226 (173–299) 0.31

Viral testing (n) 315 67 379 182

Viral positivity 113 (36)* 12 (18) 0.02 98 (26) 30 (16) 0.03

Rhinovirus 46 (41) 2 (17) 0.02 27 5 0.06
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of the five models examined is summarized in Figs.  1A 
and B, and Table 4. With AUC values greater than 0.83, 
all models demonstrated good discriminating accuracy 
in classifying patients with readmissions vs. single hos-
pitalization. Given the imbalanced nature of our data-
set, we generated precision-recall (PR) curves that show 
similar average precision (AP) values (area under the PR 
curve) [24], except for Naive-Bayes (AP = 0.659). Despite 
the similar values in AUC and AP values between four 
out of the five models, the deep learning MLP model had 
the best balance between sensitivity (79%) and specificity 
(79%) to identify hospital readmission.

We then used SHAP values to identify feature relevance 
in the MLP model (Fig.  1C). The rank order in Fig.  1C 

summarizes the top 10 features with the highest value on 
the prediction of the readmission outcome. White blood 
cell counts and mean platelet volumes with high values 
contributed negatively to the prediction, while low values 
contributed positively. As for neutrophil and lymphocyte 
counts, the opposite holds true. A positive contribution 
to the prediction was made by hospital administration 
of ICS/LABA, antibiotics, albuterol, ipratropium, and 
pneumococcal vaccine, as well as congestive heart failure. 
However, an asthma or COPD diagnosis also affected the 
predictive model (Additional file 3: Figure S1). Therefore, 
we implemented all predictive models on each condition 
to determine whether the deep learning model had simi-
lar performance.

Fig. 1 A Receiver operating characteristic (ROC) curves of four machine learning models and a deep learning model to predict readmissions 
in the combined cohort (n = 2682) of asthma (n = 777) and COPD (n = 1905). B Precision‑recall (PR) curves of five machine learning models 
implemented in the combined cohort. C SHapley Additive exPlanation (SHAP) values of the top 10 predictive features of the multilayer perceptron 
(MLP) model implemented in the combined cohort
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We constructed an asthma-only dataset (n = 777) and 
a COPD-only dataset (n = 1905) to assess the perfor-
mance of the predictive models. In these datasets, 19% 
(n = 150) and 33% (n = 635) of patients suffered readmis-
sion, respectively. The performance values of each model 
are shown in Table 4. The AUCs were similar when the 
models were applied to the asthma cohort, Fig. 2A. While 
the naive Bayes model had a better AP, Fig. 2B, the MLP 
also had a more balanced performance, with a sensitivity 
of 71% and a specificity of 84%. SHAP values of the MLP 
model showed that CAD and CKD, as well as inpatient 
administration of LTRA and influenza vaccine, contrib-
uted positively to the prediction, and a subset of the top 
10 features also had a similar directionality of effect on 
the asthma-specific prediction model as the full cohort 
model, Figs. 2C and Additional file 4: Figure S2).

The models tested on the COPD-only dataset had simi-
lar AUC values over 0.83, Fig. 3A, but Naive Bayes’s AP 
value was significantly lower than all others at 0.675, 
Fig. 3B. Similarly to the full cohort and asthma datasets 
MLP had the best balance between sensitivity and speci-
ficity, 84% and 78% respectively, Table 4. A comparison of 
the top 10 SHAP features of the COPD MLP model with 
the full cohort showed the same effect of WBC, abso-
lute neutrophils, and lymphocyte counts, mean platelet 
volume, and inpatient administration of ICS/LABA and 
albuterol, Fig. 3C and Additional file 5: Figure S3. Inpa-
tient administration of LAMA and systemic steroids, 

however, significantly contributed to the readmission 
outcome. Longer hospital stays contributed negatively to 
the prediction, whereas shorter stays contributed posi-
tively. Together, these findings identify specific charac-
teristics of index hospitalizations associated with risk 
of readmission that differ between asthma and COPD. 
Despite these unique features, a deep learning model 
incorporating both conditions is still capable of identify-
ing patients at high risk for readmission with high sensi-
tivity and specificity.

Discussion
Our study found multiple common phenotypic fea-
tures associated with readmissions among asthma and 
COPD patients. We explored various predictive models 
to identify patients at high risk of readmission. For these 
imbalanced datasets, Naive Bayes displayed the poor-
est performance among all models despite similar AUC 
metrics. Among all three datasets, MLP, a deep learn-
ing model, had the best balance between sensitivity and 
specificity. These results reveal that combining machine 
or deep learning models with computable EHR pheno-
types and structured data from index asthma and COPD 
hospitalizations resulted in high predictive performance 
for identifying individuals at risk of readmission.

Due to the substantial morbidity and mortality associ-
ated with severe asthma and COPD exacerbations, iden-
tifying people at high risk is a top priority [2, 3]. Our 

Table 4 Machine learning and neural network model performance to identify patients with multiple hospitalizations for severe 
exacerbations of asthma and COPD at YNHH

AUC  area under the curve, CI confidence intervals, SVM support-vector machine

AUC CI Sensitivity Specificity Precision Accuracy

Full model

 Random forest 0.87 0.83–0.90 50% 93% 0.76 0.81

 Naïve Bayes 0.84 0.80–0.88 46% 93% 0.73 0.79

 SVM 0.88 0.84–0.91 55% 93% 0.76 0.82

 Gradient boosted trees 0.89 0.86–0.92 63% 90% 0.72 0.82

 Multilayer perceptron 0.87 0.83–0.90 79% 79% 0.61 0.79

Asthma

 Random forest 0.81 0.73–0.89 18% 100% 1.00 0.83

 Naïve Bayes 0.88 0.81–0.94 62% 90% 0.64 0.84

 SVM 0.79 0.70–0.88 3% 100% 1.00 0.79

 Gradient boosted trees 0.80 0.71–0.89 29% 98% 0.83 0.84

 Multilayer perceptron 0.83 0.75–0.91 71% 84% 0.55 0.81

COPD

 Random forest 0.87 0.83–0.91 58% 90% 0.73 0.79

 Naïve Bayes 0.83 0.79–0.87 13% 97% 0.67 0.69

 SVM 0.88 0.85–0.91 62% 88% 0.72 0.80

 Gradient boosted trees 0.88 0.84–0.91 69% 85% 0.69 0.80

 Multilayer perceptron 0.87 0.84–0.91 84% 78% 0.65 0.80
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models focused on the risk of readmissions. Our cohort’s 
phenotypic characteristics are similar to previous stud-
ies that have identified frequent exacerbator pheno-
types in both asthma and COPD [8, 9]. During the index 
visit, multiple exacerbators had higher rates of conges-
tive heart failure, inpatient administration of systemic 
steroids, antibiotics, LTRA, ICS, and ICS/LABA. Fur-
thermore, individuals with multiple asthma and COPD 
exacerbations had higher absolute lymphocyte counts, 
which is a novel finding of unknown implications. Thus, 
individuals with asthma and COPD exacerbations share 
several clinical features associated with readmissions.

We also identified significant disparities in demo-
graphic characteristics among individuals with asthma 

and COPD exacerbations. Asthma exacerbations were 
common in women, accounting for two-thirds of all 
patients. A disproportionate number of Black and His-
panic patients were readmitted for asthma or COPD 
exacerbations, and non-Hispanic Blacks had a 43% 
rate of readmission compared to 26% in non-Hispanic 
whites (p < 0.01). These findings are consistent with 
prior studies [25, 26]. Closing these disparities should 
be a top priority for improving respiratory health 
equity. Although automated methods including those 
described here can help close disparities through auto-
mation, algorithms used in health systems are sus-
ceptible to biases that may affect high-risk groups 
disproportionately [27]. Algorithmic bias can be an 

Fig. 2 A ROC curves of four machine learning models and a deep learning model to predict readmissions in the asthma cohort (n = 777). B PR 
curves of five machine learning models implemented in the asthma cohort. C. SHAP values of the top 10 predictive features of the MLP model 
implemented in the asthma cohort
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unintended outcome of algorithmic development. As 
a result, when patient populations exhibit considerable 
disparities, such as in asthma and COPD readmissions, 
fairness-aware approaches to discover algorithmic bias 
[28, 29] should be used.

Given the widespread availability of EHRs and the 
potential to combine automated data collection with 
computable disease phenotypes and clinical care path-
ways, we sought to determine if this cohort of people 
with severe exacerbations could lead to better identifi-
cation of patients who required readmission. Analytical 
tools such as machine learning and deep learning can 
maximize the use of big data in EHRs [30]. To imitate 
information received in real-time during hospitalization, 
we used minimum feature modification and structured 

data from EHRs. We also focused on data collected dur-
ing a single index admission to identify patients at high 
risk of readmission. Differences in model performance 
may reflect the algorithms’ classification processes [31]. 
MLP, the deep learning model, had the best balance 
between sensitivity and specificity across several key 
metrics for classification compared with four machine 
learning algorithms. Among the machine learning algo-
rithms, Naive Bayes had limitations in classifying sub-
jects using the current data structure. A deep learning 
model with minimal transformation of structured EHR 
variables can identify individuals at high risk for asthma 
and COPD readmissions using their first hospitalization 
data with better performance than four commonly used 
machine learning algorithms.

Fig. 3 A ROC curves of four machine learning models and a deep learning model to predict readmissions in the COPD cohort (n = 1905). B PR 
curves of five machine learning models implemented in the COPD cohort. C SHAP values of the top 10 predictive features of the MLP model 
implemented in the COPD cohort
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SHAP analyses of MLP revealed specific features that 
recapitulate known frequent exacerbator phenotypes. 
Furthermore, data derived from complete blood counts 
was a strong feature in all models. These findings point 
to the potential presence of distinct immune and inflam-
matory profiles in individuals at high risk for readmis-
sion. These observations are complemented by previously 
described associations with specific comorbidities. Our 
findings have several implications. First, we found that 
our EHR-based study recapitulates multiple known fea-
tures of frequent exacerbators in asthma and COPD. As 
a result, algorithms that quantitatively detect and analyze 
the range of features linked to a high risk of readmis-
sion can be implemented. Second, improved detection of 
high-risk individuals for readmissions can lead to person-
alized interventions to eliminate disparities. Finally, key 
features in our models can contribute to designing better 
predictive models and simplifying data collection. Exist-
ing and future deep learning advances integrated into 
EHRs have the potential to enhance clinical interactions 
in real time.

Our study has some limitations. First, while we used a 
stringent approach to identify asthma and COPD using a 
combination of ICD-10 codes and cigarette smoke expo-
sure burden, the use of EHR data to establish disease 
groups may be associated with disease misclassification. 
However, our cohort’s patient characteristics are similar 
to those reported in past asthma and COPD studies. Sec-
ond, there is a paucity of detailed information about out-
patient therapy, as well as information on adherence to 
or using outpatient maintenance medications correctly. 
Third, we lack lung function data to assess the baseline 
illness severity in our population. Fourth, during their 
initial hospitalization, only a small number of individu-
als had viral testing performed. Fifth, we were unable to 
collect all readmissions for patients who were seen out-
side of our hospital network. However, because Yale-New 
Haven Health is our state’s largest healthcare system, 
the impact of this limitation is mitigated. Despite these 
limitations, we believe that implementing a standardized 
approach to patient identification, a common representa-
tion of data, and multiple model testing are strengths that 
balance these limitations. We are evaluating these results 
prospectively due to the evolving data representations 
and clinical practice changes.

Interpretation
In this study of severe asthma and COPD exacerbations 
requiring hospitalization, we found that a deep learning 
algorithm had the best predictive performance over four 
machine learning models. These findings support the use 
of deep learning in conjunction with EHR adoption to 
prioritize care for individuals with a high risk of asthma 

and COPD readmission. The combination of deep learn-
ing with clinical decision support systems will result in 
the development of novel paradigms for treating asthma 
and COPD patients.
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