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Abstract
Background The two-way communications along the gut-lung axis influence the immune function in both gut and 
lung. However, the shared genetic characteristics of lung function with gastrointestinal tract (GIT) diseases remain to 
be investigated.

Methods We first investigated the genetic correlations between three lung function traits and four GIT diseases. 
Second, we illustrated the genetic overlap by genome-wide pleiotropic analysis (PLACO) and further pinpointed the 
relevant tissue and cell types by partitioning heritability. Furthermore, we proposed pleiotropic genes as potential 
drug targets by drug database mining. Finally, we evaluated the causal relationships by epidemiologic observational 
study and Mendelian randomization (MR) analysis.

Results We found lung function and GIT diseases were genetically correlated. We identified 258 pleiotropic loci, 
which were enriched in gut- and lung-specific regions marked by H3K4me1. Among these, 16 pleiotropic genes were 
targets of drugs, such as tofacitinib and baricitinib targeting TYK2 for the treatment of ulcer colitis and COVID-19, 
respectively. We identified a missense variant in TYK2, exhibiting a shared causal effect on FEV1/FVC and inflammatory 
bowel disease (rs12720356, PPLACO=1.38 × 10− 8). These findings suggested TYK2 as a promising drug target. Although 
the epidemiologic observational study suggested the protective role of lung function in the development of GIT 
diseases, no causalities were found by MR analysis.

Conclusions Our study suggested the shared genetic characteristics between lung function and GIT diseases. The 
pleiotropic variants could exert their effects by modulating gene expression marked by histone modifications. Finally, 
we highlighted the potential of pleiotropic analyses in drug repurposing.
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Background
The gut-lung axis represents bidirectional communica-
tions between gut and lung and influences the immune 
function of both organs [1–3]. The comorbidities 
between chronic lung diseases (such as chronic obstruc-
tive pulmonary disease and asthma) and gastrointestinal 
tract (GIT) diseases (such as inflammatory bowel disease, 
IBD) have been reported in observational studies [1, 3]. 
Previous studies emphasized the influence of the micro-
biota on the gut-lung axis [1, 2], but few studies explored 
the direct genetic connections between the gut and lung 
traits [4].

Lung function, as an indicator of lung health, is widely 
used in the diagnosis and classification of the sever-
ity of pulmonary diseases, such as chronic obstructive 
pulmonary disease [5]. Lung function is usually repre-
sented by forced expiratory volume in one second (FEV1), 
forced vital capacity (FVC), and the ratio of FEV1 to FVC 
(FEV1/FVC). Genome-wide association studies (GWASs) 
of lung function have suggested potential biological path-
ways and drug targets for pulmonary diseases [6, 7]. For 
instance, Shrine et al. suggested ITGAV, a novel genetic 
signal of FEV1/FVC, as a drug target for chronic obstruc-
tive pulmonary disease [6]. In addition, GIT diseases are 
also prevalent and inflict a heavy burden of more than 
110  billion dollar cost in 2018 in the United States [8]. 
The common GIT diseases included peptic ulcer disease 
(PUD), gastro-oesophageal reflux disease (GORD), IBD, 
and irritable bowel syndrome (IBS). Previous GWASs 
have identified many loci associated with GIT diseases [9, 
10], such as FUT2 for PUD, IL23R for IBD, and CADM2 
for IBS. Specifically, IL23R encodes the interleukin 23 
receptor, and risankizumab, targeting interleukin 23, was 
repurposed as the treatment for Crohn’s disease (a sub-
type of IBD) from the original usage for psoriasis [11].

Recently, more and more GWAS summary statistics 
and multi-omics data have become publicly available, 
for example, the Genotype-Tissue Expression version 8 
(GTEx v8) genome and transcriptome data [12]. In addi-
tion, many computational approaches have been devel-
oped to explore the shared genetic characteristics across 
traits using only GWAS summary statistics and publicly 
available omics data, such as genetic correlation estima-
tion, cell type identification, causal inference, and drug 
repurposing analyses [11, 13–15]. Previous studies have 
revealed shared genetic characteristics in the gut-brain 
axis and hepato-ovarian axis by integrated analyses of 
multi-omics data [16, 17]. However, there are few studies 
investigating the shared genetic regulatory mechanism 
between gut-lung axis-related traits. In this study, we 
proposed to elucidate the genetic overlap and relation-
ships (including correlations and causalities) between 
traits or diseases in the gut-lung axis and to identify 

potential drug targets suitable for repurposing by inte-
grating multiple traits and omics data.

Methods
GWAS summary statistics
GWAS summary statistics of lung function (FEV1, 
FVC and FEV1/FVC, corresponding to GCST007432, 
GCST007429 and GCST007431) [6] were downloaded 
from the NHGRI-EBI GWAS catalog [18]. A total of 
400,102 Europeans from the UK biobank (UKB) and the 
SpiroMeta Consortium were analyzed. In each study, 
residuals of each trait were rank-based inverse normal 
transformed and used as the phenotype to identify asso-
ciated variants [6]. For PUD, GORD, and IBD, GWAS 
summary statistics of 456,327 Europeans from the UKB 
were downloaded [9]. For IBS, meta-analysis results of 
53,400 cases and 433,201 controls from the UKB and 
the Bellygenes Initiative were downloaded under the 
study accession GCST90016564 [10] from the NHGRI-
EBI GWAS catalog [18]. All summary statistics were in 
human assembly GRCh37. GIT disease GWASs from 
the FinnGen (Release 8), which had no sample overlap 
with the UKB, were used for sensitivity analysis [19]. All 
GWASs were based on European population to ensure 
homogeneity of the study population. Details of each 
GWAS were described in Additional file 1: Table S1.

Global and local genetic correlation
To identify genetically correlated GIT diseases and lung 
function trait pairs, the global genetic correlation was 
assessed using cross-trait linkage disequilibrium score 
regression (LDSC) [13]. Given the global genetic cova-
riance may be compromised by balanced local genetic 
covariance (positive genetic covariance partially offsets 
negative genetic covariance) [20], the local genetic cor-
relation was further quantified using ρ-HESS [20]. For 
local genetic correlation estimation, the whole genome 
was partitioned into 1,703 approximately independent 
linkage disequilibrium (LD) blocks, thus the significant 
local genetic correlation was identified if the two-tailed 
P-value is less than 2.94 × 10− 5 (0.05/1703). The 1,703 
local genetic correlations were subsequently added up as 
the global genetic correlation.

Pleiotropic analysis to dissect genetic overlap
For each pairwise trait, pleiotropic analysis under com-
posite null hypothesis (PLACO) [21] was used to detect 
the pleiotropic effect of each variant, where the null 
hypotheses include {β1 = β2 = 0} , {β1 = 0, β2 �= 0}  and 
{β1 �= 0, β2 = 0} , equivalent to testing whether β1β2 = 0
. Thus, the test statistics of PLACO is TPLACO = Z1Z2 
[21]. The potential pleiotropic variant was identified 
if PPLACO is lower than 5 × 10−8. According to PLACO 
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recommendation, the variants with minor allele fre-
quency<0.01 or square of Z-scores≥80 were excluded 
[21].

Characterization of pleiotropic loci
Clumping implemented in PLINK [22] was used to 
determine independent loci based on the LD struc-
ture of Europeans in the 1000 Genomes Project phase 3 
[23]. The variants with LD r2 greater than 0.1 and physi-
cal positions within 500  kb from the lead variant were 
clumped into a locus represented by the lead variant. 
Nearby loci (distance between LD blocks < 250 kb) were 
further merged into one genomic locus. The consequence 
and the nearest gene of each lead variant were annotated 
using ANNOVAR [24].

Colocalization analysis
A region spanning a 100 kb window size from each lead 
variant was chosen to detect whether a causal variant 
is shared between lung function and GIT disease using 
coloc [25]. Five hypotheses for pairwise traits in a locus 
were tested by coloc, including H0: no association with 
either trait; H1 or H2: association with only trait one or 
trait two, respectively; H3: distinct associations with two 
traits; H4: shared association with both traits. The default 
arguments were applied with the prior probability of 
H1 or H2 as 1 × 10− 4, and the prior probability of H4 as 
1 × 10− 5. Then the Bayesian posterior probabilities that 
integrate all possible configurations were estimated [25]. 
The pairwise traits were assumed to be colocalized if the 
posterior probability of H4 (PP4) was larger than 0.7 [16].

Identification of relevant tissue and cell types
Based on pleiotropic results, we estimated the heritability 
enrichment for each trait pair at 220 tissue and cell-type 
specific regions marked by histone modifications using 
stratified LDSC (S-LDSC) [14]. S-LDSC is based on the 
idea that if a category of SNPs is enriched for heritabil-
ity then SNPs with high LD to that category will have 
higher χ2 statistics. A total of 220 tissue and cell-type 
specific annotations were pre-defined based on four his-
tone marks, namely H3K4me1, H3K4me3, H3K9ac, and 
H3K27ac [14]. For the enrichment testing of each specific 
annotation, 53 baseline annotations that are not specific 
to any tissue or cell type were adjusted in the regression 
model, E

(
χ2
i

)
∼ N

∑
A τAl (i, A) +Nc + 1 . E

(
χ2
i

)
 is 

the expected χ2 statistics of SNP i ; N  is the sample size; 
A  represents the annotation categories; τA , the regres-
sion coefficient of the category A , indicates the per-SNP 
contribution to heritability of annotation category A ; 
l (i, A) measures the LD scores of SNP i  in category A
; c  indicates the contribution of confounding bias. Then 
a one-sided test (τA >0) was conducted to pinpoint the 
enriched tissue and cell type. The relevant tissue or cell 

type was identified if the coefficient P-value was less than 
2.27 × 10−4 (0.05/220).

As a sensitivity analysis, MAGMA gene property tests 
based on gene expression in 54 tissues from the GTEx 
v8 [12] were conducted using FUMA platform [26]. 
MAGMA gene property test [27] was based on a linear 
regression model, Z ∼ β0 +Etβt +EAβA +CβC + ε . 
Z  is the gene-based Z-scores calculated from SNP asso-
ciation P-values; β0 is the intercept term; Et  and EA  are 
the gene expression of the testing tissue and the average 
expression of all tissues, respectively, and βt  and βA  are 
the corresponding effects; C  is the confounders, βC  
is the effects of confounders, ε  is the random errors. A 
one-sided test (βt>0) was performed to identify the posi-
tive relationship between gene expression in a specific 
tissue and the genetic association of genes. The relevant 
tissue was identified by an association P-value less than 
9.26 × 10−4 (0.05/54). The SNP association P-values of 
PLACO were first integrated into gene-based P-values 
using SNP-wide mean model and the 1000 Genomes 
Project phase 3 European reference panel, then gene-
based P-values were converted to the Z-scores [28]; here-
after, the association between the gene-based Z-scores 
and gene expression in a specific tissue could be investi-
gated by the one-sided test (βt>0).

Drug repurposing
Gene drug interactions were queried in the DrugBank 
database [29] to identify pleiotropic genes as drug tar-
gets. DrugBank is a comprehensive database comprising 
drug, drug-gene target, drug action, and drug interaction 
[29]. The latest version 5.1.10 involved over 15,000 drugs, 
and about 4,000 of them were approved. We focused on 
9,344 approved or investigational (in some phase of the 
drug approval process) drugs.

We performed drug target enrichment analysis to 
examine whether pleiotropic genes are enriched in genes 
targeted by drugs in a clinical indication category using 
GREP [30]. Briefly, two drug databases, DrugBank [29] 
and Therapeutic Target Database [31], were used to 
determine drug-target relations. Next, the drugs were 
categorized by their clinical indication based on two 
classification systems, namely the Anatomical Thera-
peutic Chemical (ATC) Classification and the Interna-
tional Classification of Diseases Tenth Revision (ICD-10) 
curated by the World Health Organization. Subsequently, 
Fisher’s exact tests were conducted to quantify the 
enrichment of pleiotropic genes in the drug target of each 
clinical indication category [30].

Dissection of causal relationships
The UKB is a population-based longitudinal cohort that 
collects a wide range of phenotypic and genomic data 
from more than 500,000 participants [32]. Based on the 



Page 4 of 13Jiang et al. Respiratory Research          (2023) 24:315 

longitudinal data, the Cox proportional hazard mod-
els were applied to identify the effect of each lung func-
tion trait on each GIT disease, adjusting for age, sex, and 
smoking status (ever/never). The definition of the four 
GIT diseases followed that of GWAS [9]. For example, 
the definition of IBD included two subtypes, Crohn’s dis-
ease and ulcer colitis. For lung function, the best measure 
of FEV1 and FVC from baseline was used. Then, the ratio 
of FEV1 and FVC was calculated. A total of 308,024 Euro-
peans with complete records of GIT disease, lung func-
tion, and covariates were kept. Then the incident cases 
and controls for each trait pair were analyzed. The appli-
cation number of UKB is 88,159.

Furthermore, bidirectional Mendelian randomiza-
tion (MR) analyses based on GWAS summary statistics 
were performed to detect the potential two-way causal 
relationships between lung function and GIT diseases 
using the R packages TwoSampleMR [15], mr.raps [33] 
and Bayesian-weighted MR (BWMR) [34]. A total of 24 
trait pairs were tested, thus the statistical significance 
was defined as P < 0.002 (0.05/24) to correct for multiple 
testing. Inverse-variance weighted method [35] was cho-
sen as the main analysis. Other methods, including MR-
Egger [36], weighted median [37], weighted mode [38], 
BWMR [34], and robust adjusted profile score (RAPS) 
[33] were applied as sensitivity analyses.

For instrumental variable (IV) selection, independent 
significant IVs (P < 5 × 10− 8 with the exposure and LD 
r2 < 0.01 within 10 Mb based on the 1000 Genomes Proj-
ect phase 3 Europeans) [23] were kept, while pleiotropic 
IVs (associated with more than one lung function and 
GIT traits), IVs with incorrect direction (Steiger test one-
sided P < 0.05) [39] and MR-PRESSO [40] outliers were 
removed.

Given the UKB overlapping samples in GWASs for 
lung function and GIT diseases, summary statistics from 
the FinnGen [19] for GIT diseases were analyzed in the 
sensitivity analyses.

Results
Overview of the study
We first estimated the genetic correlation between lung 
function and GIT diseases based on the large-scale 
GWAS summary statistics from Europeans [6, 9, 10]. 
We then conducted genome-wide pleiotropic analyses 
to identify potential shared genetic variants. To further 
reveal the shared causal variants, we performed colo-
calization analyses. Based on the pleiotropic results, 
we performed partitioning heritability and gene-based 
property analyses to investigate relevant tissue and cell 
types. Moreover, we searched for the available drugs and 
conducted drug target enrichment analyses to reveal 
the potential of pleiotropic genes in drug repurposing. 
Last, we dissected the causal relationships between lung 

function and GIT diseases through the Cox proportional 
hazard models and bidirectional MR analyses. The over-
all workflow is depicted in Fig. 1.

Genetic correlations between lung function and 
gastrointestinal tract diseases
The sample size for each GWAS ranged from 400,102 
to 486,601 (Additional file 1: Table S1). We found nomi-
nally significant global genetic correlations among six 
trait pairs identified by both LDSC [13] and ρ-HESS 
[20] (FEV1 and FVC with PUD, GORD, and IBS, Fig.  2 
and Additional file 1: Table S2). The genetic correlations 
among six trait pairs were negative and ranged from 
− 0.129 to − 0.043, indicating GIT diseases were asso-
ciated with poorer lung function. In addition, another 
three trait pairs, including FVC-IBD, FEV1/FVC-PUD, 
and FEV1/FVC-IBD, were identified by ρ-HESS with 
genetic correlations as − 0.050, 0.060, and 0.046, respec-
tively (Fig. 2 and Additional file 1: Table S2). Four regions 
with significant local genetic correlation were identified 
in FEV1-GORD, FEV1/FVC-GORD, and FEV1/FVC-IBD 
trait pairs (Additional file 2: Fig. S1 and Additional file 1: 
Table S3). In summary, ten trait pairs with either statis-
tically significant global or local genetic correlation were 
identified, including five pairs that passed the multiple 
testing in the estimation of the global genetic correlation.

Identification of 258 pleiotropic loci
We identified 19,058 significant variants, including 
10,803 unique variants that showed pleiotropic effects in 
12 pairs of lung function and GIT diseases. These vari-
ants were further merged into 258 independent genomic 
loci for pairwise traits, including 227 unique lead vari-
ants (Fig.  3, Additional file 2: Fig. S2 and Additional 
file 1: Table S4). According to the position, 188 unique 
genes closest to the lead variants were annotated by 
ANNOVAR [24].

Specifically, four loci, namely SLC39A8 in 4q24 for 
FEV1-GORD, MIR4456 in 5p15.33 for FVC-GORD, 
LOC100422212 in 1q23.3 for FEV1/FVC-IBS, and COP1 
in 1q25.2 for FEV1/FVC-IBS, were not associated with 
lung function or GIT disease in the original GWASs. 
The P-values of lead variants at these four loci ranged 
from 1.55 × 10− 8 to 4.98 × 10− 8 in our pleiotropic analy-
ses, while they ranged from 4.63 × 10− 7 to 8.68 × 10− 6 in 
the original GWASs. For instance, we identified a mis-
sense variant in SLC39A8 in the FEV1-GORD pleiotro-
pic analysis with lead SNP rs13107325 having PPLACO = 
3.13 × 10− 8 (Fig. 3A), but this variant was not associated 
with FEV1 and GORD at the genome-wide significance 
level (PFEV1=8.17 × 10− 6, PGORD=9.30 × 10− 7, Fig. 4A-C).
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Colocalization analysis for shared causal variant
For each pleiotropic locus, we performed colocaliza-
tion analyses to identify the potential causal variant for 
pairwise traits. Among 258 pleiotropic loci, 59 (22.87%) 
loci likely had common causal variants for pairwise traits 
with PP4 > 0.7 and were mapped to 51 unique genes 
(Fig. 4 and Additional file 1: Table S4). The most potential 
causal variant (i.e., SNP with the largest PP4) overlapped 
with the lead variant in 36 pleiotropic loci. Among 
them, four potential causal variants located in the exon 
regions: rs4266763 in SNAPC4 is a synonymous variant, 
while rs13107325 in SLC39A8, rs3197999 in MST1, and 
rs12720356 in TYK2 are missense variants. In particular, 
rs13107325 in SLC39A8 was identified by colocalization 
analysis for FEV1 and GORD (PP4 = 0.827, Fig. 4A-C and 
Additional file 1: Table S4), as well as for FVC and GORD 
(PP4 = 0.986, Additional file 1: Table S4).

Relevant tissue and cell types
Our findings indicated that the pleiotropic variants were 
predominantly enriched in 28 specific regions of tissue 
and cell types, marked by histone modifications. This 

enrichment was particularly noticeable in the lung and 
GIT smooth muscle tissues. (Fig. 5). We identified a total 
of 97 significant associations, of which 45 were associ-
ated with the H3K4me1 histone modification (Fig. 5 and 
Additional file 1: Table S5). Specifically, a minimum of 
six trait pairs were found to be relevant to several tissues, 
including colon smooth muscle, fetal lung, fetal stomach, 
and stomach smooth muscle. In the MAGMA sensitivity 
analysis, the main positively associated tissues for pleio-
tropic genes were the GIT and lung tissues, such as the 
esophagus gastroesophageal junction, colon sigmoid, and 
lung (Additional file 2: Fig. S3), indicating the pleiotropic 
genes were enriched in these tissues.

Drug repurposing analysis
We searched the DrugBank database for available drugs 
targeting the annotated genes in potential pleiotropic loci 
[29]. We found 22 pleiotropic loci, which comprised 18 
distinct lead variants and were annotated to 16 unique 
genes, were the targets of approved or investigational 
drugs (Table 1 and Additional file 1: Table S6). Six drugs 
in Table 1, namely oxyphencyclimine targeting CHRM3, 

Fig. 1 Analyses workflow. To dissect the relationships between lung function and gastrointestinal tract diseases in the gut-lung axis, we first estimated 
the genetic correlation at both global and local scales. Second, we performed genome-wide pleiotropic analysis to identify shared loci. Subsequently, we 
deciphered the underlying biological mechanisms by colocalization analysis, S-LDSC, MAGMA gene property analysis, and drug database mining. Third, 
we examined causal relationships by epidemiologic study and bidirectional MR. LDSC, linkage disequilibrium score regression; S-LDSC, stratified LDSC; 
MR, Mendelian randomization. The image of gastrointestinal tract was downloaded from https://699pic.com/tupian-401760990.html
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phenethyl isothiocyanate targeting HSPA4, crizotinib tar-
geting MST1R, pralsetinib targeting DDR1, trimebutine 
targeting CACNA1D, and tofacitinib targeting TYK2, 
have been used or studied in trials for the treatment of 
lung or GIT diseases [29]. For example, oxyphencycli-
mine is indicated for the treatment of PUD, while crizo-
tinib and pralsetinib are indicated for non-small cell lung 
cancer [29]. Notably, tofacitinib, the inhibitor drug tar-
geting TYK2, is indicated for the treatment of ulcer colitis 
(a subtype of IBD) [29], while baricitinib, also targeting 
TYK2, is approved for the treatment of COVID-19. In the 
aforementioned colocalization analysis, we found that a 
missense variant in TYK2 was colocalized for FEV1/FVC 
and IBD (rs12720356, PPLACO = 1.38 × 10− 8, PP4 = 0.829, 
Figs.  3B and 4D-F and Additional file 1: Table S4). The 
remaining drugs have been used in the treatment of other 
diseases rather than lung or GIT diseases. For example, 
fostamatinib, targeting PIK3C2B, has been used for the 
treatment of chronic immune thrombocytopenia; and 
estramustine, targeting MAP2, has been used for prostate 
cancer [29].

In the drug target enrichment analysis, we found the 
188 pleiotropic genes were enriched in the target of 
drugs for functional gastrointestinal disorders (P = 0.018) 
and symptoms and signs involving the digestive system 
and abdomen (P = 0.036) (Additional file 1: Table S7). 
The nominally significant enrichment implied that the 

pleiotropic genes were likely suitable for drug repurpos-
ing in GIT diseases.

Causal inference between lung function and 
gastrointestinal tract diseases
We first used Cox proportional hazard models to identify 
the effect of lung function on GIT diseases in the UKB 
cohort. The number of incident cases for each GIT dis-
ease ranged from 1,756 to 24,182 (Additional file 2: Fig. 
S4). We found that higher FEV1 or FVC was protective 
against GIT disease (Additional file 2: Fig. S4). The haz-
ard ratios (HR) with the 95% confidence interval (CI) 
of FEV1 on PUD, GORD, IBD, and IBS were 0.74 (0.70, 
0.77), 0.86 (0.84, 0.88), 0.78 (0.72, 0.85), and 0.83 (0.79, 
0.88), respectively. The HR (95% CI) of FVC on the four 
GIT diseases were 0.80 (0.77, 0.83), 0.87 (0.86, 0.89), 
0.84 (0.79, 0.90), and 0.85 (0.81, 0.88), respectively. All 
the P-values were less than 8 × 10− 7. The relationships 
between FEV1/FVC and GIT diseases were complicated, 
with protective effects on PUD and IBD, while no effect 
on GORD and IBS (P > 0.05).

Next, bidirectional MR analyses were performed to 
detect the two-way causal relationships between three 
lung function traits and four GIT diseases. When IBS 
was the exposure and FEV1/FVC was the outcome, we 
only identified one valid instrumental variable (IV) after 
MR-PRESSO outlier exclusion, thus the main MR anal-
ysis was not applicable. For the other pairs of traits, no 
statistically significant causal effect was detected after the 
Bonferroni correction, although PUD showed a nominal 
positive effect on FVC (P = 0.003), and FEV1/FVC was 
positively associated with IBS (P = 0.028) (Additional file 
2: Fig. S5, Additional file 1: Tables S8 and S9). Similarly, 
we found no significant causal effect in the sensitivity 
analyses when the GWASs of GIT diseases were from the 
FinnGen study and thus there was no sample overlap in 
the GWASs for exposures and outcomes (Additional file 
1: Tables S10 and S11).

Discussion
In this study, we explored the shared genetic effects in 
the gut-lung axis traits and diseases. We found that lung 
function was genetically correlated with GIT diseases, 
while they showed no causal relationships with each 
other. Based on pleiotropic analyses, we revealed signifi-
cant genetic overlap and relevant tissues. Furthermore, 
some potential drugs for repurposing were suggested for 
the treatment of lung function and GIT diseases.

We observed negative genetic correlations in the 
pairwise FEV1-GIT and FVC-GIT diseases, probably 
reflecting the genetic risks of GIT diseases related to 
lower FEV1 and FVC, while the positive correlations in 
FEV1/FVC-PUD and FEV1/FVC-IBD trait pairs might 
reflect the genetic risks of GIT diseases related to more 

Fig. 2 Global genetic correlations estimated by LDSC and ρ-HESS. Ge-
netic correlations between lung function and GIT diseases. Six correlated 
trait pairs were identified by LDSC and ρ-HESS (green); three correlated 
trait pairs were identified only by ρ-HESS (orange). Three trait pairs were 
with P > 0.05 (purple). The x- and y-axes represent the estimates of global 
genetic correlation based on LDSC and ρ-HESS, respectively. The horizon-
tal and vertical dashed lines indicate the genetic correlation is 0; the slope 
of the diagonal dashed line is 1
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degree of decreased FVC than FEV1. However, the esti-
mated global genetic correlations in FEV1-GORD, FVC-
IBD, FEV1/FVC-PUD, and FEV1/FVC-IBD trait pairs 
were not significant after the multiple testing correction 
(P = 0.006, 0.011, 0.007, and 0.022 in ρ-HESS, respec-
tively), probably due to insufficient power caused by the 
small number of cases of the GIT disease GWASs, such as 
the 7,045 and 16,666 cases in the IBD and PUD GWASs, 

respectively. Besides, the bidirectional genetic covari-
ance among different genomic regions might neutralize 
the global genetic correlation estimates, which highlights 
the importance of the estimation of the local genetic 
correlation [20]. For example, we observed a signifi-
cant local genetic correlation (rg=0.586, P = 2.39 × 10− 5) 
in 6p21.33 between FEV1/FVC and GORD, while the 
global correlation was not significant. Although the 

Fig. 3 Manhattan plots for the results of pleiotropic analyses. (A) FEV1-GORD pleiotropic analysis and (B) FEV1/FVC-IBD pleiotropic analysis. The red dashed 
lines indicate the genome-wide significance level at P = 5 × 10− 8, and the black dashed lines indicate the suggestive significance level at P = 1 × 10− 6. The 
blue point indicates the locus was associated with lung function (P-values of the variants within the lead variant 500 kb were lower than 5× 10−8); orange 
indicates the locus was associated with GIT disease; purple indicates the locus was associated with both traits; red indicates the locus was associated 
with neither trait

 



Page 8 of 13Jiang et al. Respiratory Research          (2023) 24:315 

local genetic correlations covered the genomic regions 
spanning about 1.6  Mb in width on average [20], the 
resolution is still not high enough to neglect the influ-
ence of the heterogeneous effects on the estimation. For 
instance, we observed inconsistent effects across variants 
in the FEV1-GORD pleiotropic analysis, specifically 14 

of the 24 lead variants showed the same effect direction 
between FEV1 and GORD GWASs, while the other ten 
lead variants showed the reverse effect direction. Thus, 
the pleiotropic analysis of a single variant provided finer 
granularity to explore the shared genetic characteristics 
across traits.

Fig. 4 Regional association plots for the pleiotropic loci. (A-C) The three panels are GORD GWAS, FEV1 GWAS, and pleiotropic analysis, respectively; the 
colocalization PP4 of GORD and FEV1 GWASs was 0.947. (D-F) The three panels are IBD GWAS, FEV1/FVC GWAS, and pleiotropic analysis, respectively; the 
colocalization PP4 of IBD and FEV1/FVC GWASs was 0.742. The lead variants in the pleiotropic analyses are colored purple, and the other variants are col-
ored based on their LD r2 with the lead variant
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The pleiotropic analyses showed significant 
genetic overlap between lung function and GIT dis-
eases. We identified a missense variant in SLC39A8 
(rs13107325, PPLACO=3.13 × 10− 8 for FEV1-GORD and 
PPLACO=5.72 × 10− 11 for FVC-GORD). The two pairs of 
traits were both colocalized in SLC39A8 with PP4 greater 
than 0.9. SLC39A8 (solute carrier family 39 member 
8) encodes a member of zinc transporter proteins and 

functions in the import of zinc from extracellular and 
intracellular areas to the cytoplasm. Zinc homeostasis is 
crucial for immune function which plays an important 
role in inflammation [41]. Given that inflammation can 
lead to lung function impairment [42], and inflamma-
tion in the esophagus is a complication of GORD [43], 
we postulate that rs13107325 might affect lung function 

Fig. 5 Relevant tissue and cell types for the pleiotropic results. The heritability enrichment for each trait pair was estimated using S-LDSC based on 220 
tissue and cell-type specific histone marks. Only the 28 tissue and cell-type specific histone marks that had a P-value of less than 0.05/220 in at least one 
trait pair are presented. Notably, the heritability of a minimum of six trait pairs was found to be enriched in five specific markers, which are highlighted in 
red. The color and size of the circles indicate the enrichment at the tissue and cell-type specific histone mark. * indicates P < 0.05/220
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and the progression of GORD through the dysfunction of 
zinc transportation and subsequent immune imbalance.

In addition, we identified a missense variant in TYK2, 
associated with FEV1/FVC and IBD (rs12720356, 
PPLACO=1.38 × 10− 8). FEV1/FVC and IBD were colocal-
ized with PP4 of 0.742. TYK2 (tyrosine kinase 2) encodes 
a member of the tyrosine kinase and functions in signal 
transduction of diverse cytokines, such as interleukin 
12 and type I interferons, which can further regulate 
the inflammatory process [44]. Notably, TYK2 inhibi-
tion has been established as a promising therapeutic tar-
get for immune-mediated inflammatory diseases [44]. 
Tofacitinib, an inhibitor of TYK2, has been used in the 
treatment of ulcerative colitis, and baricitinib has been 
approved for the treatment of COVID-19 [29]. Based on 
the pleiotropy and colocalization results, TYK2 was likely 
a promising drug target for both lung and GIT diseases.

We identified other pleiotropic genes involved in the 
immune response. For instance, MST1 (macrophage 
stimulating 1, encoding a growth factor protein pro-
duced by macrophages) and its receptor MST1R have 
been shown to play an important role in immune regu-
lation and inflammation response [45, 46]. We found 
that MST1 showed pleiotropic effects in FEV1-IBD and 

FVC-IBD pairwise traits with the lead variant rs3197999 
(a missense variant, PPLACO=1.73 × 10− 11 and 1.53 × 10− 10, 
respectively). rs3197999 was a significant eQTL for 
MST1 in GTEx v8 multiple tissues, with P = 5.5 × 10− 16 
in esophagus mucosa [12]. Additionally, a shared variant 
near MST1R was identified in FVC-GORD pleiotropic 
analysis (PPLACO=5.23 × 10− 10). Notably, crizotinib, the 
inhibitory drug of MST1R, has been used to treat non-
small cell lung cancer. These findings highlighted the 
drug-repurposing potential of immune-related genes for 
lung and GIT diseases.

Furthermore, we found other pleiotropic genes as drug 
targets for lung and GIT diseases, such as pralsetinib 
targeting DDR1 for the treatment of non-small cell lung 
cancer and trimebutine targeting CACNA1D for the 
treatment of IBS. We also observed nominally significant 
enrichment of pleiotropic genes in drug targets indicated 
for digestive system diseases. These findings emphasized 
pleiotropic genes as targets for drug repurposing. The 
proposed repurposed drugs were based on drug data-
base mining and reflected the observational effects. Thus, 
future clinical studies are required to investigate whether 
these drugs are effective in the treatment of lung and GIT 
diseases.

Table 1 Pleiotropic genes as targets for approved or investigational drugs
Trait pair Lead SNP PPLACO Nearest Gene Drug Indication Action*

FEV1-PUD rs13430465 1.33 × 10− 8 RDH14 Vitamin A Vitamin A deficiency Substrate

FEV1-GORD rs1431721 2.30 × 10− 8 CHRM3 Oxyphencyclimine Peptic ulcer disease Antagonist

FEV1-IBD rs1008833 3.26 × 10− 9 PIK3C2B Fostamatinib Chronic immune 
thrombocytopenia

Inhibitor

FEV1-IBD rs9270979 5.29 × 10− 24 HLA-DRB1 Glatiramer Multiple sclerosis Binder

FEV1-IBS rs4367292 1.23 × 10− 8 HSPA4 Phenethyl 
isothiocyanate

Leukemia, lung cancer (in trials) Unknown

FVC-PUD rs13430465 9.67 × 10− 9 RDH14 Vitamin A Vitamin A deficiency Substrate

FVC-GORD rs13425141 7.06 × 10− 9 MAP2 Estramustine Prostate cancer Antagonist

FVC-GORD rs7613360 5.23 × 10− 10 MST1R Crizotinib Non-small cell lung cancer Inhibitor

FVC-IBD rs1008833 4.91 × 10− 8 PIK3C2B Fostamatinib Chronic immune 
thrombocytopenia

Inhibitor

FVC-IBD rs4705885 7.98 × 10− 11 HINT1 Sofosbuvir Hepatitis C virus infections Substrate

FVC-IBD rs9270911 1.16 × 10− 23 HLA-DRB1 Glatiramer Multiple sclerosis Binder

FVC-IBS rs9268846 2.16 × 10− 9 HLA-DRA 1D09C3 Cancer (in trials) Unknown

FVC-IBS rs3017666 2.28 × 10− 11 GANAB Miglitol Non-insulin-dependent diabetes 
mellitus

Antagonist

FEV1/FVC-PUD rs1264318 1.13 × 10− 9 DDR1 Pralsetinib Non-small cell lung cancer Inhibitor

FEV1/FVC-GORD rs11720018 9.10 × 10− 10 CACNA1D Trimebutine Irritable bowel syndrome Inhibitor

FEV1/FVC-GORD rs4790311 1.10 × 10− 8 SMG6 Grn163l Leukemia and solid tumors Unknown

FEV1/FVC-IBD rs9270911 3.28 × 10− 20 HLA-DRB1 Glatiramer Multiple sclerosis Binder

FEV1/FVC-IBD rs4944210 4.76 × 10− 8 NARS2 Asparagine Nutritional supplementation Unknown

FEV1/FVC-IBD rs12720356 1.38 × 10− 8 TYK2 Tofacitinib Ulcerative colitis Inhibitor

FEV1/FVC-IBS rs4367292 2.50 × 10− 8 HSPA4 Phenethyl 
isothiocyanate

Leukemia, lung cancer (in trials) Unknown

FEV1/FVC-IBS rs9260603 3.05 × 10− 13 HLA-A Nelipepimut-S Prostate and breast cancer. Unknown

FEV1/FVC-IBS rs8070954 3.63 × 10− 8 SMG6 Grn163l Leukemia and solid tumors Unknown
For each gene, only one available drug was listed (all drugs are listed in Additional file 1: Table S6). Drugs indicated for gastrointestinal tract and lung diseases were 
marked in bold. *: Unknown indicates the drug belongs to the investigational group in the DrugBank database
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To reveal the shared biological mechanism, we per-
formed the S-LDSC and MAGMA gene property analy-
ses. We observed that pleiotropic variants were relevant 
to GIT and lung tissues by both methods. For example, 
we found SLC39A8 was highly expressed in the GTEx 
v8 lung tissue, and TYK2 was ubiquitously expressed in 
lung, colon, and esophagus tissues (Additional file 2: Fig. 
S6) [12]. Furthermore, SLC39A8 expression was specifi-
cally enhanced in lung and alveolar cells [47, 48]. More-
over, we discovered that variants exhibiting pleiotropy 
were most significantly enriched in tissue and cell type-
specific regions marked by H3K4me1. This suggests that 
these pleiotropic variants may exert their effects by regu-
lating gene expression within these specific tissues. These 
findings highlighted the shared biological mechanism 
between lung function and GIT diseases.

Although we observed the protective effect of lung 
function on GIT disease in the epidemiologic study, we 
did not observe significant causal relationships between 
lung function and GIT diseases in the bidirectional 
MR analyses. Given that epidemiologic studies may be 
affected by undetected confounding, while MR is less 
susceptible to confounding effects, we suggested that 
GIT diseases and lung function are more likely to be 
associated rather than causative. The pleiotropic genes 
might influence pairwise traits through horizontal pleiot-
ropy, or other ways such as gut microbes, rather than ver-
tical pleiotropy (causality). Horizontal pleiotropic genes 
might facilitate drug repurposing because the drug tar-
gets could influence both traits simultaneously.

There were several limitations in our study. First, due to 
the relatively small number of cases of GIT diseases, the 
statistical power might be insufficient, especially for the 
global genetic correlation estimation. Therefore, we used 
the nominal significance threshold and further focused 
on pleiotropic analyses of each variant to determine the 
shared genetic characteristics across traits. Second, there 
were overlapped samples between lung function and GIT 
disease GWASs, which may bias the causal estimates 
of two-sample MR. To address this concern, we further 
performed MR sensitivity analyses based on GIT GWAS 
summary statistics from the FinnGen to avoid sample 
overlap with the UKB. Third, although we identified 
pleiotropic variants present in lung function and GIT dis-
eases, we did not observe causal relationships between 
lung function and GIT diseases, suggesting the com-
plex genetic (including both global and local) and phe-
notypic relationships underlying lung and gut diseases. 
Fourth, we focused exclusively on the European popula-
tion, which attenuated the bias of population structure 
but restricted the application of our findings to other 
populations. Replication in other populations is needed. 
Fifth, we investigated the relationships between GIT dis-
eases and lung function, instead of pulmonary diseases, 

which may neglect the direct associations between lung 
and gut diseases. Further studies that focus on the shared 
genetic characteristics of pulmonary diseases with GIT 
diseases are needed. However, it is important to note that 
lung function serves as a crucial indicator of lung health. 
Emphasizing lung function can aid in the early detection 
of changes related to pulmonary diseases and support the 
development of effective therapeutic approaches.

Conclusions
In conclusion, our study revealed the genetic correlations 
and genetic overlap, but not causal relationships between 
lung function and GIT diseases. The pleiotropic genes 
could be used as drug targets of lung and GIT diseases 
and were enriched in drug targets indicated for diges-
tive system diseases, highlighting their potential in drug 
repurposing.
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