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Abstract
Background Aging is associated with an increased incidence and mortality of Pseudomonas aeruginosa-induced 
pneumonias. This might be partly due to age-dependent increases in inflammatory mediators, referred to as inflamm-
aging and a decline in immune functions, known as immunosenescence. Still, the impact of dysregulated immune 
responses on lung infection during aging is poorly understood. Here, we aimed to mimic inflamm-aging using ex vivo 
precision-cut lung slices (PCLS) and neutrophils – as important effector cells of innate immunity – from young and old 
mice and investigated the influence of aging on inflammation upon infection with P. aeruginosa bacteria.

Methods Murine PCLS were infected with the P. aeruginosa standard lab strain PAO1 and a clinical P. aeruginosa 
isolate D61. After infection, whole-transcriptome analysis of the tissue as well as cytokine expression in supernatants 
and tissue lysates were performed. Responses of isolated neutrophils towards the bacteria were investigated by 
quantifying neutrophil extracellular trap (NET) formation, cytokine secretion, and analyzing expression of surface 
activation markers using flow cytometry.

Results Inflamm-aging was observed by transcriptome analysis, showing an enrichment of biological processes 
related to inflammation, innate immune response, and chemotaxis in uninfected PCLS of old compared with young 
mice. Upon P. aeruginosa infection, the age-dependent pro-inflammatory response was even further promoted 
as shown by increased production of cytokines and chemokines such as IL-1β, IL-6, CXCL1, TNF-α, and IL-17A. In 
neutrophil cultures, aging did not influence NET formation or cytokine secretion during P. aeruginosa infection. 
However, expression of receptors associated with inflammatory responses such as complement, adhesion, 
phagocytosis, and degranulation was lower in neutrophils stimulated with bacteria from old mice as compared to 
young animals.
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Introduction
In the elderly, respiratory infections are the leading infec-
tion-related cause of death worldwide with increasing 
incidences of influenza, COVID-19, and bacterial pneu-
monias [1–3]. In bacterial lung infections, the gram-neg-
ative Pseudomonas aeruginosa is, after Staphylococcus 
aureus, the second major cause of ventilator-associated 
and hospital-acquired pneumonia [4, 5] and particularly 
elderly individuals show a growing risk for developing P. 
aeruginosa lung infections [6].

With advancing age, the immune function declines, a 
feature known as ‘immunosenescence’ [7], that is accom-
panied by a dysregulated chronic low-grade inflam-
mation referred to as ‘inflamm-aging’ [8]. Although 
inflamm-aging is a heterogenic phenomenon with tissue-
specific attributes, some pro-inflammatory cytokines 
including tumor necrosis factor-α (TNFα), interleukin-6 
(IL-6), and IL-8 are classically associated with inflamm-
aging and increasingly observed in serum and lungs of 
the elderly [9, 10]. This age-related increase was shown to 
be associated with an increased risk of developing com-
munity-acquired pneumonia in a longitudinal study over 
6.5 years [11]. Furthermore, the pro-inflammatory milieu 
correlates with an increased neutrophil influx observed 
in lungs of many healthy, clinically normal elderly indi-
viduals [9, 10, 12]. Hence, these changes in immunity 
could contribute to the increased morbidity and mortal-
ity rates of P. aeruginosa pneumonias in the elderly [6, 13, 
14].

One hallmark of the inflammatory response towards 
pulmonary P. aeruginosa infections is the early, massive 
influx of neutrophils into the lungs [6, 15]. Their primary 
function is to eliminate the pathogens with phagocyto-
sis, secretion of bacterio-toxic granules, or by secreting 
neutrophil extracellular traps (NETs) [16, 17], which trap 
and eliminate the bacteria [16–19]. However, although 
neutrophils possess an important function in pathogen 
elimination, their defense mechanism not only damages 
invading bacteria, but also the lung tissue itself, contrib-
uting to the severity of pneumonia due to lung injury [20, 
21]. Hence, their presence in lung infection represents 
a double-edged sword. With aging, neutrophil effec-
tor function often is reported to be decreased, including 
migration towards inflammatory stimuli [22, 23], phago-
cytosis [24, 25], and intracellular killing [23]. However, 
although neutrophils are key cells in P. aeruginosa lung 

infections, little is known about the impact of age on neu-
trophil function in response to the bacterium.

The growing incidence as well as the high mortality 
of P. aeruginosa-induced pneumonias makes it an espe-
cially challenging disease in the elderly. Still, although 
several studies report inflamm-aging in healthy elderly, 
changes in the host immune response towards P. aerugi-
nosa pneumonias upon aging are not well characterized. 
Understanding immunological changes within the lungs 
as well as neutrophil response upon aging could be key 
in improving treatment strategies and reducing mortality 
rates in elderly individuals suffering from P. aeruginosa 
lung infections. Therefore, we aimed to mimic inflamm-
aging and its impact on P. aeruginosa infection by using 
ex vivo precision-cut lung slices (PCLS) and neutrophils 
of young and old mice. Within PCLS, all lung-resident 
cells are present, enabling reflection of in vivo immuno-
logical changes and the investigation of complex immune 
responses as demonstrated previously [26]. Using ex vivo 
lung slices and isolated cells as a suitable testing sys-
tem to study mechanisms of lung infection in aging, we 
hypothesized that inflamm-aging is promoted upon P. 
aeruginosa infection of PCLS and neutrophils. Results 
gained from this study shall provide new insights into 
immunological changes during P. aeruginosa lung infec-
tions with aging and, with that, build a basis for further 
research to improve course and outcome of the disease in 
the elderly.

Methods
Animals
Young (10 to 15 weeks) and old (18 to 21 months) male 
C57BL/6NCrl-mice were sacrificed for organ removal in 
accordance with the German Animal Protection Law and 
European Council Directive on the protection of animals 
used for scientific purposes (2010/63/EU). A limitation of 
our study is the usage of male mice only without includ-
ing female animals.

Bacterial strains
A laboratory reference strain PAO1 (DSZM #19,880, 
DSMZ Braunschweig, Germany) and a clinically isolated 
P. aeruginosa strain, D61, from a cystic fibrosis patient 
(kindly provided by Tümmler and colleagues, Hannover 
Medical School, Germany) [27] were used and cultured 
as described in the online supplement.

Conclusions By using PCLS and neutrophils from young and old mice as immunocompetent ex vivo test systems, 
we could mimic dysregulated immune responses upon aging on levels of gene expression, cytokine production, 
and receptor expression. The results furthermore reflect the exacerbation of inflammation upon P. aeruginosa lung 
infection as a result of inflamm-aging in old age.
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Preparation and infection of precision-cut lung slices
Murine PCLS were prepared as described previously [28, 
29], with some modifications (see online supplement). 
Two PCLS/well were infected in DMEM/F-12 with 
1 × 105 colony forming units (CFU) P. aeruginosa PAO1 
or D61 or left uninfected (control) and incubated at 
37 °C, 5% CO2 (technical triplicates). For better compara-
bility, PCLS of young and old mice were always processed 
and infected simultaneously in experimental replicates. 
Eight hours post infection (p.i.), supernatants and tissue 
lysates of technical replicates were pooled, supplemented 
with protease inhibitor cocktail (Sigma-Aldrich), and ali-
quots were stored at -80 °C until usage.

RNA isolation and transcriptomics
RNA was isolated according to an optimized protocol 
for PCLS [30]. Transcriptome analyses were done using 
the Affymetrix GeneChip™ Whole Transcript (WT) 
PLUS Reagent Kit and the GeneChip™ mouse Clariom™ S 
Arrays according to the manufacturer’s recommendation 
(ThermoFisher Scientific) (see online supplement). Data-
base for Annotation, Visualization and Integrated Dis-
covery (DAVID) online tool [31, 32] and Enrichr [33–35] 
were used for enrichment analysis (gene ontology term) 
of biological processes.

Cytokine measurements
Cytokines were measured in PCLS supernatants and 
lysates using DuoSet ELISA Kits (IL-6, CXCL1, CCL3; 
biotechne) and Meso Scale Discovery (MSD) assay 
(TNF-α, IL-1β, CCL20, IL-17A; Meso Scale Diagnostics) 
according to the manufacturer’s instructions. The sum of 
extrinsic und intrinsic cytokine concentrations was nor-
malized to the total protein content determined by bicin-
choninic acid (BCA) assay (PierceTm BCA Protein Assay 
Kit). Cytokines in the supernatant of stimulated neutro-
phils were measured with the LEGENDplex cytokine 
array (13-plex virus response panel, BioLegend) accord-
ing to the supplier’s protocol.

Isolation of neutrophils
Neutrophils were isolated from the bone marrow of 
young and old mice as described previously [36]. Iso-
lated cells were counted, tested for viability with try-
pan blue and purity by generating cytospins stained 
with the DiffQuick staining kit (Medion Diagnostics). 
Neutrophils from young and old mice were always 
processed simultaneously within each experimental 
replicate.

Quantification of NETs
NET formation of 100,000 neutrophils/well was quanti-
fied by measuring fluorescence of SYTOX green, stain-
ing extracellular DNA, for 4  h using the Tecan reader 

(excitation: 485  nm, emission: 535  nm) (for details see 
online supplement).

Visualization of NETs
Scanning electron microscopy (SEM) imaging of NETs 
was performed as previously described [37] after co-
culturing neutrophils and bacteria at a multiplicity of 
infection (MOI) of 10 for 4  h (see online supplement). 
Imaging was done at 10  kV and 1270 x and 5000 x 
with the Zeiss Crossbeam 540 (Carl Zeiss Microscopy 
GmbH).

Flow cytometry of neutrophil activation
For flow cytometric analysis, 100,000 neutrophils/sam-
ple were incubated with bacteria at a MOI of 5. After 
4 h, supernatant of technical duplicates was pooled and 
supplemented with protease inhibitor cocktail for cyto-
kine secretion analysis and cells were stained for surface 
expression markers CD11b, CD32, CD88, CD16, and 
CD32 (details in online supplement).

Co-culture of PCLS and neutrophils
PCLS and neutrophils from young and old donor mice 
were co-cultured in a 2 × 2 design. Two PCLS were com-
bined with 100,000 neutrophils per well and infected with 
1 × 105 CFU PAO1 in technical duplicates, as described. 
Notably though, old mice were significantly older than in 
previous experiments (26 to 27 months old), due to avail-
ability issues. Co-culture was performed for 4  h before 
supernatants were harvested, and tissue was lysed as 
described. Total cytokine content was quantified using 
the LEGENDplex cytokine array (13-plex virus response 
panel, BioLegend) according to the supplier’s protocol 
and the sum of extrinsic und intrinsic cytokine concen-
trations was normalized to the total protein content as 
described.

Statistics
Statistical analyses were done with the SigmaPlot® 
software, version 13.0.0.83 (SYSTAT® Software Inc.). 
Data was analyzed by two-way ANOVA followed by a 
multiple-pairwise comparison Bonferroni-test. If the 
normality test failed, data were transformed with the 
natural logarithm (ln) prior to analysis. Alternatively, 
Mann-Whitney Rank Sum Test was applied with Bon-
ferroni correction. Differences were considered as 
significant for p < 0.05. Graphs depicted in boxplots 
were created using Prism 9 (GraphPad). Box plots 
display the median with the 25th and 75th percentile 
and whiskers mark the lowest and highest value. For 
co-culture experiments, cytokine levels were analyzed 
by 3-way ANOVA to test for age-effects in PCLS, age-
effects in neutrophils, and PAO1-infection effects 
(p < 0.05).
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Results
Immune-related processes are age-dependently regulated 
in PCLS, both under uninfected conditions and upon P. 
aeruginosa infection
To investigate the impact of the aging host immune 
response towards bacterial infections, lung slices of 
young and old mice were infected ex vivo with P. aerugi-
nosa and comparatively analyzed. The infection was per-
formed with PAO1 as a standard laboratory strain as well 
as D61, isolated from a chronically infected cystic fibrosis 
patient. Genome-wide transcriptome analysis was per-
formed after ex vivo infection of PCLS from young ver-
sus old mice. Notably, a difference was observed when 
comparing uninfected control conditions with an unbi-
ased clustering approach, as samples of young vs. old 
mice clustered into two distinct groups (Supplementary 
Fig. S1). This supports the notion that aging already alters 
baseline conditions in the lung tissue.

Upon P. aeruginosa infection with PAO1 or D61, sepa-
rate clusters of uninfected and infected control groups 
were present in the unsupervised clustering (Fig.  1A). 
Strikingly, the infected cluster itself split into distinct 
clusters between young and old, indicating age-depen-
dent regulation of genes upon infection with either of the 
two P. aeruginosa strains. When comparing gene signa-
tures from lung tissue of old versus young mice in each of 
the three conditions (uninfected control, PAO1- or D61-
infected), a total of 498 genes were found to be differen-
tially regulated (> 2-fold change, p < 0.05; Fig.  1B). Most 
differentially expressed genes (DEGs) (49%) were spe-
cifically regulated in lung tissue from old vs. young mice 
without bacteria, confirming the strong age-effect under 
baseline conditions. On the other hand, 10% (PAO1) and 
11% (D61) DEGs were unique for the respective bacteria, 
indicating additional strain-specific differences within 
age-regulated genes.

To determine biological processes affected by age, we 
performed gene ontology-enrichment analysis of the 
DEGs (≥ 2-fold change, p < 0.05) in DAVID. Of note, for 
the control conditions, only immune-related processes 
such as ‘immune response’, ‘immune system process’, and 
‘chemokine-mediated signaling pathway’ were among the 
top 10 biological processes, with age-related ‘inflamma-
tory response’ at the top of the list (Fig. 2A). This finding 
strongly indicates inflamm-aging within the ex vivo lung 
tissue. Likewise, immune-related processes were among 
the top 10 list for PAO1- and D61-infected PCLS of old 
compared to young mice. As expected, certain immune 
processes towards bacteria were also affected, such as 
‘response to lipopolysaccharide’ (Fig.  2B,  C). Similarly, 
when using Enrichr as an alternative gene set enrichment 
analysis software, gene ontology biological processes 
related to immunity were significantly affected during 
aging, further supporting inflamm-aging under control 

conditions and upon P. aeruginosa infection (Supplemen-
tary Fig. S2).

DAVID analysis further indicated changes in biological 
processes related to adaptive immunity, including ‘adap-
tive immune response’ and ‘antigen processing and pre-
sentation of exogenous peptide antigen via MHC class II’. 
This is in line with the observation that immunoglobulin-
associated genes were among the top-regulated DEGs 
of lung slices from old vs. young mice, including Jchain 
or Fc receptors for IgE and IgG (Fcgr2b, Fcer1g, Fcgr3), 
both under uninfected conditions and upon P. aeruginosa 
infection (Supplementary Tables S1, S2, S3).

Notably, in infected and uninfected PCLS, chemo-
taxis and neutrophil chemotaxis were among the top 10 
biological processes affected by age. Within these pro-
cesses, expression of genes encoding for receptors asso-
ciated with neutrophil and macrophage chemotaxis was 
increased in an age-dependent manner (Fig.  3). These 
receptors are associated with general activation of innate 
immune cells (Fcer1g), phagocytosis (Fcgr3: CD16, Itgam: 
CD11b), formation of complement receptor complexes 
(C5ar1: CD88, Itgb2: CD18) or amplifying production of 
pro-inflammatory cytokines induced by toll-like recep-
tors (Trem1).

Additionally, in line with a strong age-effect on ‘inflam-
matory response’ within DAVID, an age-dependent gene 
expression of pro-inflammatory cytokines was found 
(Table  1). Under control conditions, cytokines typically 
associated with inflamm-aging, namely Il1b, Il6, and 
Cxcl1 were significantly up-regulated in lung tissue from 
old compared to young mice. Upon infection, the expres-
sion of Il17a increased in an age-dependent manner, 
leading to significantly elevated levels in P. aeruginosa-
infected PCLS of old versus young mice.

The production of pro-inflammatory cytokines and 
chemokines was further analyzed on protein level. Con-
trol conditions without bacteria revealed no age-depen-
dent differences in total protein content of TNF-α, IL-1β, 
IL-6, CCL3, CCL20, or CXCL1 (Fig.  4A-F). Amount of 
IL-17A, however, was significantly increased when inves-
tigating PCLS of old compared to young mice (Fig. 4G). 
PCLS reflect a low tissue volume and, thus, a low num-
ber of immune cells is present (Supplementary Fig. S3). 
Therefore, the relatively short cultivation period might 
not be sufficient to induce age-dependent differences of 
most cytokines on protein level without stimulation of 
the tissue.

Upon P. aeruginosa infection of lung tissue from 
old mice, production of all pro-inflammatory media-
tors was increased compared to PCLS of young 
mice infected with the same bacterial strain. Nota-
bly, these differences were mostly significant for the 
clinical isolate D61 but not for the laboratory strain 
PAO1. Increased cytokine production was not due to 
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Fig. 1 Age-dependent gene expression in PCLS under control conditions and upon P. aeruginosa infection. PCLS of young and old mice were 
infected with 1 × 105 CFU/well PAO1 or D61 or cultured without bacteria (Ctrl), washed 1 h p.i. and transferred into new wells. Infection was continued for 
7 h and genome-wide transcriptome analysis was performed on tissue slices of old vs. young mice. (A) Overview of gene expression analysis depicted as 
unsupervised hierarchical clustering. (B) Venn diagram showing the distribution of differentially expressed genes (≥ 2-fold change, p < 0.05) of lung tissue 
of old compared to young mice
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Fig. 2 Biological processes specifically affected by age include immune-related processes in uninfected and P. aeruginosa-infected PCLS. 
PCLS of young and old mice were infected with 1 × 105 CFU/well PAO1 or D61 or cultured without bacteria (Ctrl). After 8 h, whole genome analysis was 
performed. Differentially regulated genes (≥ 2-fold change, p < 0.05) were analyzed in DAVID for enrichment analysis of biological process ontology. The 
top 10 biological processes are displayed for Ctrl (A), PAO1-infected (B), and D61-infected PCLS (C), ranked based on their p-value
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differences in cell amount as shown by comparable pro-
tein content of PAO1- and D61-infected PCLS (Supple-
mentary Fig. S4) and did not affect viability of tissue 
slices. However, bacterial load was lower in D61- com-
pared to PAO1-infected PCLS, which seemed to be due 
to a lower growth of the clinical isolate (Supplementary 
Fig. S5), indicating not only age- but also strain-spe-
cific differences in host immune responses towards the 
host-adapted strain. In contrast, fold changes of cyto-
kine gene expression of old compared to young were 
more pronounced in PAO1- than D61-infected PCLS 
with significant increases in Tnf and Il1b expression 
(Table  1). Together, these data show increased inflam-
matory responses in lung tissue upon aging which 
is further increased upon P. aeruginosa infection on 
transcriptome and protein level. A summary of age-
dependently regulated genes and proteins can be found 
in Supplementary Table S4.

Neutrophil surface activation markers are age-
dependently regulated upon P. aeruginosa infection, while 
NET formation is not
Neutrophils have a crucial role in microbial defense, how-
ever, they also contribute to the development of injury 
and tissue damage in infection [20, 21]. In PCLS, where 
neutrophils are scarcely present, an increased expression 
of pro-inflammatory cytokines and chemokines related 
to neutrophil recruitment and activation such as CXCL1, 
CCL3, or IL-17A was measured, particularly in PCLS of 
old mice upon infection with D61. Additionally, we found 
gene expression of receptors related to neutrophil che-
motaxis to be differentially regulated in PCLS of old vs. 
young mice. We therefore further analyzed age-depen-
dent neutrophil activation and stimulation ex vivo with a 
focus on cytokine secretion, NET formation, and surface 
molecule expression to investigate their potential contri-
bution to pulmonary defense and inflammation with age.

Fig. 3 Expression of receptors associated with immune cell chemotaxis are age-dependently regulated. PCLS of young and old mice were in-
fected with 1 × 105 CFU/well PAO1 or D61 or cultured without bacteria (Ctrl). Whole genome analysis was performed 8 h p.i. Differentially regulated genes 
(≥ 2-fold change, p < 0.05) were analyzed in DAVID for enrichment analysis of biological process ontology and signal intensity of chosen genes encoding 
for receptors associated with ‘neutrophil chemotaxis’ are shown. * p < 0.05, ** p < 0.01, *** p < 0.001 compared with respective control (Ctrl) within one 
age group. # p < 0.05, ## p < 0.01, ### p < 0.001, between the two age groups, based on the p-value analyzed using the Transcriptome Analysis Console 
Software (TAC 4.0, Thermo Fisher Scientific). All other conditions are not significant
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NET formation was induced upon co-culture of P. 
aeruginosa bacteria with neutrophils from young and 
old mice as visualized by fluorescence microscopy show-
ing DNA protrusions speckled with myeloperoxidase 
(Supplementary Fig. S6). Quantitative analysis of NET 
formation with SYTOX green measurement of relative 
fluorescence units showed strain-related differences with 
a higher NET generation after PAO1 exposure compared 
to D61 (Fig. 5A). This finding was supported qualitatively 
by SEM imaging where NET formation was more pro-
nounced under PAO1 stimulation (Fig.  5B). Increased 
NET formation in response to PAO1 might be due to a 
higher bacterial load in culture supernatants compared to 
D61 (Supplementary Fig. S7). No age-related differences 
in NET formation were found though, neither quantita-
tively, nor qualitatively.

In contrast to NET formation, a significant age-depen-
dent difference in surface molecule expression by neu-
trophils was observable upon P. aeruginosa stimulation 
(Fig. 6A). This was assessed by the expression of neutro-
phil surface activation markers such as CD11b, CD16, 
and CD88. In neutrophils isolated from bone marrow 
of old mice, there was a reduced expression of CD11b 
and CD16 after PAO1 and a lower CD16 and CD88 
expression after D61 exposure compared with neutro-
phils isolated from young animals. Furthermore, strain-
dependent differences were observed with an increased 
response for CD11b, CD16, and CD32 and a decreased 
response for CD88 with PAO1 compared with D61 
exposure.

Relatively low cytokine expression levels were detected 
after 4  h of bacterial exposure – of 13 measured cyto-
kines only an increase in early cytokines IL-1β and 
TNF-α was detected – with strain-specific differences 
in TNF-α secretion of neutrophils of old mice (Fig. 6B). 
Nevertheless, the results provide evidence for age- and 
strain-specific changes in neutrophil responses towards 
P. aeruginosa infection such as neutrophil recruitment 
and activation which are summarized in Supplementary 
Table S4.

Inflammatory response in co-culture experiments
To investigate the impact of neutrophils and PCLS on 
age-dependent inflammatory responses of uninfected 
and P. aeruginosa-infected lung slices, PCLS from young 
and old mice were co-cultured with neutrophils isolated 
from the same mice in a 2 × 2 design and infected with 
PAO1 for 4  h. Analysis of cytokines indicated a global 
PCLS age-effect and PAO1 infection-effect for CXCL1, 
IL-6, and IL-1β, while for TNF-α only a global infection-
effect was observed (Supplementary Fig. S8). For IL-1β, a 
PCLS age-effect was additionally detected within PAO1 
infection, indicating that an increased amount of IL-1β 
is produced by infected PCLS from old compared with Ta
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young mice after 4  h. However, in the chosen setting, 
no neutrophil effects were observed in the co-culture 
system.

Discussion
The concept of increasing inflammation during aging, 
referred to as ‘inflamm-aging’, has long been established 
in the field of aging. Still, the impact of further challenges 

such as bacterial infections upon inflamm-aging are 
poorly described. Here, we show that early events of 
inflamm-aging defined as altered, dysregulated inflam-
matory responses with aging can be mimicked ex vivo 
using PCLS and that inflammation during aging is ampli-
fied upon P. aeruginosa infection of lung slices and neu-
trophil cultures.

Fig. 4 Pro-inflammatory cytokines of PCLS are increased in an age-dependent manner upon infection with P. aeruginosa. PCLS were infected 
with P. aeruginosa PAO1 or D61 for 8 h. Supernatants and lysates of technical duplicates (Ctrl) or triplicates (PAO1 and D61) were pooled and cytokine lev-
els were measured. The sum of extrinsic and intrinsic protein levels of TNF-α (A), IL-1β (B), IL-6 (C), CCL3 (D), CCL20 (E), CXCL1 (F), and IL-17A (G) is depicted 
in relation to the total amount of protein. * p < 0.05, ** p < 0.01, *** p < 0.001, compared with respective control (Ctrl) within one age group. # p < 0.05, ## 
p < 0.01, between the two age groups. All other conditions are not significant
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Inflamm-aging in lung slices of old mice
To depict age-related changes of biological processes 
in gene expression of PCLS, DAVID gene ontology-
enrichment analysis was done on gene array data sets 

of uninfected control PCLS derived from young and old 
mice. The results revealed that DEGs were highly asso-
ciated with immunological processes such as inflamma-
tory response, immune system process, and chemotaxis 

Fig. 5 NET formation is lower in response to the clinical P. aeruginosa isolate and differs morphologically. Neutrophils of young and old mice 
were left unstimulated (Ctrl), stimulated with a PMA/ionomycin cocktail, PMA/ionomycin plus DNase I or bacteria (PAO1 or D61) at MOI of 5 for 4 h. (A) 
NET formation was monitored by adding SYTOX green and measurement of relative fluorescence units (RFU). SYTOX green signal was normalized to 
unstimulated control neutrophils (Ctrl) to yield the fold change compared with Ctrl. n = 6 mice per age group. *** p < 0.001, compared with respective 
control within one age group. $ p < 0.05, between two bacterial strains within one age group. All other conditions not significant. No differences between 
the two age groups. (B) NET formation was investigated using scanning electron microscopy. Representative images are shown for neutrophils of young 
(A-C) and old mice (D-F), scale bar = 10 μm. NET formation of neutrophils from young mice in response to PAO1 (G) or D61 (H) is shown as a close-up 
image, scale bar = 2 μm
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in PCLS from old compared with young mice. This, 
hence, provides strong evidence of age-related altera-
tion in the immune response and coincides with the 
described phenomena of inflamm-aging and immu-
nosenescence [reviewed by 38]. Furthermore, DAVID 
analysis indicated age-dependent changes in adaptive 
immune response, underlined by a highly increased 
expression of genes associated with immunoglobu-
lins, including the common joining chain (Jchain), and 

Fc receptors for IgE and IgG. These findings support 
results of previous studies reporting increased IgG 
concentrations in serum and bronchoalveolar lavage of 
elderly humans (13, 37) and could, together with altered 
antibody specificities in elderly humans [reviewed in 
39], contribute to an increased self-reactivity in aging. 
Furthermore, detailed analysis of genes and proteins 
frequently related to inflamm-aging such as IL-6, 
TNF-α, CXCL1, and IL-1β was done. We measured a 

Fig. 6 Neutrophil surface markers are age-dependently regulated upon P. aeruginosa exposure. Neutrophils of young and old mice were left 
unstimulated (Ctrl) or stimulated with bacteria (PAO1 or D61) at MOI of 5 for 4 h. A Receptor expression of CD11b, CD16, CD32, and CD88 was analyzed 
using flow cytometry and is depicted as mean fluorescence intensity (MFI). B Secretion of TNF-α and IL-1β was analyzed in culture supernatants. n = 6 
mice per age group. * p < 0.05, ** p < 0.01, *** p < 0.001, compared with respective control within one age group. # p < 0.05, ## p < 0.01, between the two 
age groups. $ p < 0.05, $$$ p < 0.001, between two bacterial strains within one age group. All other conditions are not significant
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significantly increased gene expression of Il1b, Il6, and 
Cxcl1 in PCLS of old compared with young mice. Simi-
lar observations were also made in previous studies, 
showing a significant induction of gene expression of 
Il1b, Tnfa, and Ccl8 in lung tissue of 15-month-old com-
pared with 3-month-old mice [40]. At protein level, we 
found a significant age-dependent increase in IL-17A. 
IL-17A is mainly produced by natural killer or T helper 
17 cells and supports the recruitment of neutrophils to 
the site of inflammation [reviewed in 41]. The observed 
discrepancies between transcriptome and protein data 
emphasize the complexity of regulatory networks from 
gene expression to protein synthesis. This could include 
temporal differences in detection sensitivity or addi-
tional translational regulations that are not reflected in 
the gene expression analysis. Notably though, an age-
related increase in inflamm-aging-related cytokines 
IL-1β, IL-6, and CXCL1 in PCLS of old mice was also 
observed in neutrophil co-culture experiments that 
were performed with 3 month and > 26 month old mice 
(Supplementary Fig. S8), supporting our hypothesis that 
inflamm-aging can be detected and mimicked in ex vivo 
lung slices.

Age-related inflammatory response upon P. aeruginosa 
infection of murine lung slices
Similar to uninfected control PCLS, genes of processes 
associated with the immune system were strongly regu-
lated with aging upon P. aeruginosa infection. Of note, 
age-dependent differences of cytokines and chemo-
kines increased after P. aeruginosa infection on protein 
level. These differences were mostly significant for D61, 
despite lower bacterial load compared to PCLS infected 
with PAO1, indicating an increased immunogenic-
ity of the host-adapted strain. Possibly, mutations in 
the quorum-sensing gene lasR found in D61 [27] alters 
opsonization, therefore affecting immune responses as 
shown in a recent study [42]. On gene expression level, 
age-dependent differences only were observed for Tnf 
and Il1b of PAO1-infected lung slices and Il17a after 
infection with either of the two bacterial strains. Gener-
ally, our results of age-dependently increased cytokine 
responses towards bacteria support findings of in vivo 
stimulation of aged mice using LPS of P. aeruginosa or 
Escherichia coli, leading to age-dependently increased 
levels of TNF-α, IL-1β, IL-6, CCL3, CXCL1, and IL-17A 
in lung homogenates or bronchoalveolar lavage fluid of 
challenged mice [43–45].

Increased concentrations of CXCL1, IL-17A, and CCL3 
observed in our study could contribute to the enhanced 
neutrophil infiltration seen in elderly mice stimulated 
with LPS or infected with P. aeruginosa compared with 
young animals [43–46]. Additionally, within the DAVID 

analysis, we found (neutrophil) chemotaxis among the 
top regulated processes with age, further underlining the 
influence of aging on chemotactic potential of immune 
cells. Increased gene expression of receptors associated 
with macrophage or neutrophil chemotaxis in PCLS 
of old compared to young mice could synergize with 
enhanced chemokine levels to further promote recruit-
ment of cells into the aging lung and add to increased 
infiltration of neutrophils under inflammatory stimuli. 
Together, this might represent a compensatory mecha-
nism for reduced neutrophil pathogen clearance seen in 
aging [22–24].

Age-dependent neutrophil activation upon P. aeruginosa 
infection
Based on the crucial role of neutrophils during P. aeru-
ginosa infection and our findings in lung tissue hinting 
towards age-related changes in neutrophil function, 
we further analyzed activation of the granulocytes 
upon P. aeruginosa stimulation in neutrophil cultures. 
Recent data showed improved pulmonary immune 
responses of old mice infected with Klebsiella pneu-
monia upon bone marrow transplantation with cells 
from young mice [47], hinting that function of bone 
marrow-derived cells, including neutrophils, declines 
with age and impacts pulmonary infection. Therefore, 
we considered bone marrow-derived neutrophils as a 
suitable model to investigate age-dependent NET for-
mation as well as cytokine release and expression of 
surface activation markers with and without P. aerugi-
nosa infection.

NET formation has been shown to play an impor-
tant role in innate immunity, as NETs immobilize and 
neutralize pathogens including bacteria [16]. Although 
it has been reported previously that neutrophils from 
aged mice have a reduced NET formation in response 
to the gram-positive bacterium S. aureus [48], we did 
not see age-dependent changes in NETs towards P. 
aeruginosa which might be due to different mecha-
nisms of NET formation towards the gram-negative 
P. aeruginosa. However, we found NET formation of 
neutrophils in response to the clinical isolate D61 to 
be lower as compared to PAO1. These findings support 
previous reports stating that NET release of human 
neutrophils is lower when using late clinical P. aeru-
ginosa isolates compared to early isolates of the same 
cystic fibrosis patient [49]. Lower NET formation might 
be accounted for by a reduced bacterial growth of late 
clinical P. aeruginosa isolates as compared to early iso-
lates or PAO1 which was found by us and others [50, 
51]. Furthermore, NET formation is reported to be 
reduced towards P. aeruginosa strains with mutations 
in the master regulator lasR [52], such as found for D61 
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[27], which might further explain differences in NET 
formation and hints towards immune evasion of the 
host-adapted strains.

Besides NET formation, we also addressed cytokine 
release and expression of surface activation markers in 
neutrophils isolated from young and old mice. In con-
trast to PCLS, no age-related differences were found 
in cytokines released by neutrophils and the cytokine 
response was generally low – only the very early pro-
inflammatory cytokines IL-1β and TNFα were detect-
able 4 h after infection with P. aeruginosa. This might 
be explained by the early time point and the fact that 
neutrophils primarily respond to TNF-α and IL-1β, but 
are not described as main producers of these cytokines 
[49] – in contrast to alveolar macrophages that reside 
in PCLS [53, 54]. Nevertheless, significant differ-
ences were found in surface activation molecules with 
age and infection. A decline in CD11b (integrin α M, 
ITGAM) and CD16 (FcγRIII) was present on neutro-
phils from old compared with young mice upon stimu-
lation with P. aeruginosa. CD11b is both a complement 
receptor (CR3) and a cell adhesion molecule that is 
required for cell recruitment to the site of inflamma-
tion and CD16 is involved in phagocytosis and neu-
trophil degranulation. These surface molecules are 
generally upregulated in inflammation and neutrophil 
activation [55], which we also observed after ex vivo 
stimulation with P. aeruginosa, although to a lesser 
extend in neutrophils from old mice. In human blood 
neutrophils, levels of CD16 expression were reported 
to be decreased in comparison to younger donors [55, 
56], and levels of CD11b neutrophil expression were 
reported to be either unaffected [56] or decreased [55] 
with aging. Upon LPS challenge of neutrophils from 
mice, however, similar observations of a reduced CD16 
and CD11b activation with increasing age were made 
[55], confirming the findings of our results. Addition-
ally, a decreased stimulation was found in neutro-
phils from old compared with young mice in response 
to exposure with the D61 strain for CD88 (C5AR1; 
complement component 5a receptor). Together, these 
results provide evidence that ex vivo activation of 
neutrophils from old mice was reduced upon bacte-
rial challenge. These findings are in contrast to the 
observation of increased gene expression levels in the 
PCLS of old mice upon exposure with P. aeruginosa, 
where C5ar1, Fcer1g, Fcgr3, Itgb2, and Itgam were 
measured to be up-regulated. Both findings are, how-
ever, in line with the literature and provide evidence 

that inflamm-aging in the lung is increased with age, 
but neutrophil activation without additional stimula-
tion of pulmonary and systemic immune response is 
reduced. This most likely complements the phenotype 
of immunosenescence as observed in in vivo studies in 
old mice with pulmonary infection [46, 57], where an 
increased inflammation and neutrophil recruitment 
with lowered bacterial killing add to the pathology of 
lung injury. Nevertheless, it has to be considered that 
the PCLS model can only mimic very early inflam-
matory responses of infection since recruitment of 
inflammatory cells including neutrophils, monocytes, 
and lymphocytes is lacking. Our pilot experiment 
combining infected PCLS with neutrophils in a co-
culture model did not indicate any influence of neu-
trophils on cytokine production. This could, however, 
also be due to experimental settings that do not allow 
cell recruitment over time, as static co-culture models 
can only poorly mimic complex spatial and temporal 
interactions. Future studies combining PCLS and iso-
lated neutrophils in dynamic co-culture models, such 
as provided in organ-on-chip systems, could therefore 
help to unravel the impact of neutrophil recruitment 
and immunological mechanisms in age-dependent dif-
ferences of P. aeruginosa-induced pneumonia.

Conclusions
In summary, our results provide new evidence that very 
early events of pulmonary inflamm-aging can be mim-
icked ex vivo in tissue slices of distal lungs and that aging 
promotes pulmonary inflammation upon P. aeruginosa 
infection. The results presented here provide mecha-
nistic insights into first host responses to P. aeruginosa 
infection. These were particularly characterized by an 
increased production of pro-inflammatory cyto- and 
chemokines in lung tissue with advancing age, similarly 
as in murine in vivo models or human samples, indicat-
ing that the model is well suited for ex vivo investiga-
tions of pulmonary infections in aging. Furthermore, ex 
vivo neutrophil activation in P. aeruginosa infection was 
also impaired with aging as shown by a decline in surface 
receptors. These findings (summarized in Fig. 7) comple-
ment the phenotype of immunosenescence and inflamm-
aging that promotes enhanced tissue damage and severity 
of P. aeruginosa pneumonias in the elderly. In turn, rebal-
ancing immune responses in aging patients might reduce 
the incidence of severe pneumonias and associated mor-
tality rates.
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