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Abstract 

Alpha-1-antitrypsin deficiency (AATD) is a genetic disorder associated with a 5–tenfold decrease in lung levels 
of alpha-1-antitrypsin (AAT) and an increased risk for obstructive lung disease. α-defensins are cationic broad-spec-
trum cytotoxic and pro-inflammatory peptides found in the azurophilic granules of neutrophils. The concentration 
of α-defensins is less than 30 nM in the bronchoalveolar lavage fluid of healthy controls but is up to 6 μM in AATD 
individuals with significant lung function impairment. Alveolar macrophages are generally classified into pro-inflam-
matory (M1) or anti-inflammatory (M2) subsets that play distinct roles in the initiation and resolution of inflammation. 
Therefore, monocyte-macrophage differentiation should be tightly controlled to maintain lung integrity. In this study, 
we determined the effect of α-defensins on monocyte-macrophage differentiation and identified the molecular 
mechanism of this effect. The results of this study demonstrate that 2.5 μM of α-defensins inhibit the phosphoryla-
tion of ERK1/2 and STAT3 and suppress the expression of M2 macrophage markers, CD163 and CD206. In addition, 
a scratch assay shows that the high concentration of α-defensins inhibits cell movement by ~ 50%, and the phago-
cytosis assay using flow cytometry shows that α-defensins significantly reduce the bacterial phagocytosis rate 
of monocyte-derived macrophages (MDMs). To examine whether exogenous AAT is able to alleviate the inhibitory 
effect of α-defensins on macrophage function, we incubated MDMs with AAT prior to α-defensin treatment and dem-
onstrate that AAT improves the migratory ability and phagocytic ability of MDMs compared with MDMs incubated 
only with α-defensins. Taken together, this study suggests that a high concentration of α-defensins inhibits the acti-
vation of ERK/STAT3 signaling, negatively regulates the expression of M2 macrophage markers, and impairs innate 
immune function of macrophages.
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Introduction
Defensins are small cysteine-rich  cationic peptides of 
approximately 30 amino acids. They are broad-spectrum 
antimicrobial peptides that form an essential element 
of innate immunity. Defensins are classified into two 

subfamilies, α- and β-defensins, based on their disulfide 
bond linkages [1–3]. α-defensins are mainly produced by 
neutrophils, whereas β-defensins are produced by epithe-
lial cells. The expression of defensins could be induced 
upon infection or inflammation [4, 5]. α-defensins are 
one of the major products secreted by activated human 
neutrophils [6]. They comprise 30 to 50% of the total 
protein content of the azurophilic granules of neutro-
phils, and activated neutrophils release up to 10% of their 
defensin content extracellularly [7]. Defensins are known 
to protect the host through their antimicrobial activities, 
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but they can exert both negative and positive immu-
nomodulatory effects, depending on their concentra-
tions. At low concentrations, defensins are beneficial to 
host cells by promoting the clearance of invading patho-
gens, while at high concentrations, they are cytotoxic and 
induce the expression of proinflammatory cytokines. At 
concentrations exceeding 10 μg/ml, α-defensins increase 
the expression levels of CXCL5, CXCL8 and IL-1β in 
lung epithelial cells. At a concentration of 20  μg/ml, 
α-defensins reduce the viability of lung epithelial cells by 
30% [4, 8].

Alpha-1 antitrypsin (AAT) is the most abundant ser-
ine protease inhibitor in human plasma and plays an 
important role in limiting lung injury triggered by pro-
teases such as neutrophil elastase [9, 10]. AAT defi-
ciency (AATD) results from mutations in the  SERine 
Protein INhibitor-A1 (SERPINA1) gene [11]. A hall-
mark of AATD is the accumulation of alveolar neutro-
phils, which leads to a high concentration of neutrophil 
products including α-defensins [12, 13]. As the number 
of alveolar neutrophils is significantly higher in AATD 
individuals, the concentration of α-defensins is highly 
increased in the lower respiratory tract. The concentra-
tion of α-defensins is less than 30  nM in the lower res-
piratory tract of healthy controls but is, on average, 2 μM 
in that of AATD individuals with mild lung disease [7]. 
The concentration is increased to 6 μM in the lower res-
piratory tract of AATD individuals with more severe lung 
function impairment [14]. This suggests that the concen-
tration of α-defensins could be correlated to the severity 
of lung diseases in AATD individuals. However, it is still 
unclear what role α-defensins play in the pathogenesis of 
AATD-associated lung disease.

Alveolar macrophages reside at the interface between 
air and lung tissue, serving as the front line of cellular 
defense against respiratory pathogens. Macrophage dif-
ferentiation occurs in concomitance with the acquisition 
of functional phenotypes, and the ability of macrophages 
to obtain different functional phenotypes allows them 
to respond with appropriate immune functions. During 
lung inflammation, airway macrophages are depleted 
and replaced by recruited monocytes that differentiate 
to macrophages [15]. Depletion of alveolar macrophage 
increases the severity of acute inflammation, pulmonary 
neutrophil infiltration, lung tissue damage, and sepsis 
[16, 17]. Thus, monocyte-macrophage differentiation is 
critical in regulating the inflammatory response and in 
curtailing inflammation during the resolution phase of 
lung inflammation. It was previously found that the num-
ber of alveolar macrophages is significantly decreased 
in the lower respiratory tract of AATD individuals, and 
α-defensins inhibit M-CSF–induced macrophage dif-
ferentiation, contributing to the pathogenesis of chronic 

myelomonocytic leukemia [14, 18]. Based on those find-
ings, we suspect that a high concentration of α-defensins 
could suppress monocyte-macrophage differentiation, 
which could lower the number of alveolar macrophages 
and impair innate immunity in AATD individuals.

Extracellular signal-regulated kinase 1/2 (ERK), a com-
ponent of the mitogen-activated protein kinase (MAPK) 
family, controls cell proliferation and cell development by 
the transmission of extracellular signals to intracellular 
targets [19, 20]. ERK 1/2 signaling is activated by growth 
factors, and activated ERK signaling plays a critical role 
during macrophage differentiation and polarization [21]. 
STAT3 is a downstream molecule of ERK1/2 [22]. The 
activation of ERK1/2 and STAT3 signaling is important 
in M2 macrophage differentiation [23, 24]. STAT3 is a 
transcription factor that regulates the expression of M2 
macrophage markers such as CD163 and CD206 [25, 
26]. Several studies were previously conducted to exam-
ine the effect of α-defensins on the phosphorylation of 
ERK1/2 and reported that α-defensins induce the phos-
phorylation of ERK1/2. However, all the studies were car-
ried out using cancer cell lines such as A549, U937, and 
HT-29 and treated the cells with α-defensins for a very 
short period, 30 min, or treated the cells with too high a 
concentration of α-defensins, 50 µg/ml [27, 28]. To deter-
mine the role of α-defensins at the concentration found 
in the lower respiratory tract, we examined the effect 
of α-defensins on the phosphorylation of ERK1/2 using 
experimental conditions which are biologically relevant 
for AATD individuals.

In the present study, we investigated the effect of 
α-defensins on monocyte-macrophage differentiation 
and therefore compared the expression levels of mac-
rophage markers between controls and α-defensin-
treated cells. We determined that α-defensins increase 
the expression level of CD80, an M1 macrophage marker, 
but reduce the expression levels of CD163 and CD206, 
M2 macrophage markers, during M-CSF and GM-CSF-
derived macrophage differentiation. We also compared 
the levels of phosphorylated ERK1/2 and STAT3 between 
controls and α-defensin-treated cells and determined that 
the levels of phosphorylated ERK1/2 and STAT3 are sig-
nificantly decreased as the concentration of α-defensins is 
increased. This observation might explain the inhibitory 
effect of α-defensins on M2 macrophage differentiation. 
Our results show that a high concentration of α-defensins 
significantly reduces the migratory ability and the phago-
cytic capability of MDMs. This indicates that a high 
concentration of α-defensins could negatively modu-
late  innate immunity of macrophages in AATD indi-
viduals. AAT binds to α-defensins and neutralizes their 
cytotoxic effects on bronchial epithelial cells [29, 30]. In 
this study, we demonstrate that exogenous AAT at least 
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partially alleviates the inhibitory effect of α-defensins on 
macrophage motility and phagocytosis. This result sub-
stantiates that AAT augmentation therapy might miti-
gate α-defensin-associated lung diseases. It is essential to 
understand the inhibitory effects of α-defensins on lung 
homeostasis and evaluate the efficacy of AAT against 
α-defensins to complement currently available therapies 
or develop more effective therapies for AATD-associated 
lung disease. Due to the general thought that α-defensins 
are beneficial to host cells, the role of α-defensins in the 
pathogenesis of AATD-associated lung disease has been 
seldom studied. The findings of this study bring new 
insights into the pathogenesis of α-defensin-associated 
lung disease in AATD individuals and serve to identify a 
potential therapeutic target to reduce the burden of lung 
disease in AATD individuals.

Materials and methods
Monocyte isolation and macrophage differentiation
Peripheral blood mononuclear cells (PBMCs) were iso-
lated either from Leukopaks (obtained from LifeSouth 
Community Blood Center, Gainesville, FL) or blood 
samples of outpatient volunteers (University of Florida 
Institutional Review Board protocol 2015-01051), using 
Ficoll-gradient centrifugation. Monocytes were purified 
from PBMCs using a monocyte enrichment kit (Stemcell 
Technology, Vancouver) following the manufacturer’s 
instruction. Monocytes were plated in 12-well plates at 
one million cells per well and incubated in RPMI 1640 
containing 10% FBS, 100 Units/ml penicillin, 100 μg/ml 
streptomycin, and 250 ng/ml Amphotericin B overnight. 
The stabilized monocytes were incubated in macrophage 
differentiation media (RPMI 1640 containing recom-
binant human GM-CSF (0.5  ng/ml) and recombinant 
human M-CSF (5 ng/ml)) in the presence or absence of 
α-defensins for 16  h. MDMs were harvested for RNA 
extraction using the Qiagen RNeasy kit (Qiagen, Hilden).

Gene expression by qRT‑PCR
Total RNAs (500  ng) extracted from monocytes and 
MDMs were reverse transcribed using SuperScript® 
VILO Master Mix (Invitrogen, Carlsbad) according to 
the manufacturer’s instruction. Quantification of PCR 
products was performed by 7500 Fast Real-time PCR 
(Applied Biosystems, Foster City). SensiFAST Real-Time 
PCR Kit (Bioline, London) was used to produce fluores-
cence-labeled PCR products and to monitor increasing 
fluorescence during repetitive cycling of the amplifica-
tion reaction. TaqMan probes/primers specific for CD64, 
CD80, CD86, CD163, CD204, and CD206 genes, and for 
the 18S rRNA gene, as the internal control, were used in 
the real-time PCR reaction. Expression levels of the genes 
were obtained using the classical 2^(-ΔΔCt) method.

Flow cytometry
The percentage of CD206-positive cells were com-
pared among monocytes, MDM controls, and 2.5 μM of 
α-defensin-treated MDMs using flow cytometry. Cells 
were washed with PBS and centrifuged at 350 g for 5 min 
at room temperature. The cell pellet was resuspended in 
100 μl of PBS and incubated with 5 μl of BV421 mouse 
anti-human CD206 at 4  °C for 30  min, protected from 
light. After the incubation, the labeled cells were fixed 
with 4% paraformaldehyde at 4  °C for 30 min. The fixed 
cells were washed with PBS and analyzed on a BD FACS-
Canto II instrument (BD Biosciences). 10,000 events were 
acquired per sample. The percentage of CD206-positive 
cells was measured by the BD FACSCanto II flow cytom-
eter with BD FACSDiva 8.0.1 software (BD Biosciences).

Western blot analysis
Total proteins were extracted from MDMs using RIPA 
lysis buffer (Cell Signaling Technology, Danvers) with 
0.1% SDS, protease and phosphatase inhibitors. The pro-
tein concentration of each sample was measured using 
a standard Bradford assay (BioRad, Hercules) and equal 
amounts of protein samples were loaded onto an SDS 
polyacrylamide gel (BioRad, Hercules). After gel electro-
phoresis, the proteins were transferred onto a nitrocel-
lulose membrane using a wet-transfer system, and the 
membrane was blocked in Tris-buffered saline with 0.1% 
Tween 20 (TBST) containing 5% nonfat dry milk. When 
detecting the phosphorylated form of any target pro-
teins, Tris-buffered saline with 0.1% Tween 20 (TBST) 
containing 5% BSA was used as a blocking solution. The 
membrane was immunoblotted overnight at 4  °C with 
primary antibodies: CD163 (Novus Biologicals, Little-
ton), ERK1/2, phosphor-ERK1/2 and phosphor-STAT3 
(Cell Signaling Technology, Danvers) at a dilution of 
1:1,000 in TBST. Horseradish peroxidase-conjugated 
anti-rabbit antibody (BioRad, Hercules) was used for 
secondary labeling at 1:1,000 in TBST for 1  h at room 
temperature. The membrane was reprobed with GAPDH 
rabbit polyclonal antibody (Proteintech, Rosemont) at 
1:5,000 in TBST. A horseradish peroxidase-conjugated 
anti-rabbit (BioRad, Hercules) was used for secondary 
labeling at 1:5,000 in TBST for 1 h at room temperature. 
Protein bands were visualized by enhanced chemilumi-
nescence (ECL, GE Healthcare, Chicago).

Trypan blue staining
Monocytes were plated in 12-well plates at 300,000 cells 
per well and differentiated in macrophage differentiation 
media. At day 7 of macrophage differentiation, MDMs 
were incubated in the presence or absence of α-defensins 
(Anaspec, Fremont) for 16  h. Trypan blue staining was 
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used to measure cell membrane integrity. MDMs were 
incubated with 0.1% of trypan blue for three minutes and 
washed with PBS three times. The images of three differ-
ent groups, MDM controls, 1  μM of α-defensin-treated 
MDMs, and 2.5  μM of α-defensin-treated MDMs, were 
taken using a light microscope at 40X magnification. The 
number of trypan-blue positive cells were counted and 
compared among the three different MDM groups.

MTT assay
Cell viability of MDMs, which were incubated 
with or without α-defensins, was measured using a 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) assay. After α-defensin treatment, cells 
were washed with PBS to remove the extracellular par-
ticles and treated with MTT (0.5  mg/ml) for 30  min at 
37  °C. Subsequently, the media containing the MTT 
reagent was removed and replaced with dimethyl sul-
foxide (DMSO). The cell culture plate was incubated for 
five minutes to solubilize formazan crystals. Each well 
was pipetted again to mix, and absorbance at 570  nm 
was measured using a microplate reader (SpectraMax 
M3 ROM v3.0.22). Cell viabilities of α-defensin-treated 
MDMs were normalized to that of MDM controls.

Scratch assay
Monocytes were plated in 12-well plates at 300,000 cells 
per well and differentiated in macrophage differentia-
tion media. At day 7 of macrophage differentiation, the 
scratch was performed in the well with pipette tips and 
washed with PBS. Subsequently, the cells were cultured in 
RPMI 1640 media with or without α-defensins for 16 h. 
The number of cells which migrated into the scratched 
area was counted and compared between MDM controls 
and α-defensin-treated MDMs.

Bacterial phagocytosis by MDMs
Heat-killed Staphylococcus aureus conjugated with Alexa 
Fluor 488 (ThermoFisher S-23371) was used to exam-
ine the phagocytic ability of MDMs. Lyophilized bac-
teria were dissolved in PBS with 2  mM sodium azide 
using sonication. MDMs were treated with α-defensins 
for 16  h. MDM controls and α-defensin-treated MDMs 
were incubated with the heat-killed fluorescent bacteria 
at a multiplicity of infection (MOI) of 10 for one hour. 
The non-ingested bacteria were removed by repeated 
washing with PBS. MDMs were incubated in 0.4% trypan 
blue solution for ten seconds to quench the fluorescence 
of bacteria attached to the plasma membrane of MDMs. 
Phagocytosed bacteria were visualized using a fluo-
rescence microscope (BZ-X700, Keyence, Osaka). The 
cell membrane of live MDMs was stained using Mem-
Glow™ 560 fluorogenic probes (Cytoskeleton, Denver). 

To calculate the phagocytosis rate of each MDM sam-
ple, fluorescent intensity and number of MDMs were 
measured with BZ software, and the fluorescent inten-
sity was normalized to the cell number. To examine the 
effect of exogenous AAT on bacterial phagocytosis by 
α-defensins-treated MDMs, MDMs were incubated with 
2.5 μM or 10 μM of AAT prior to α-defensin treatment. 
MDM samples were then incubated with the heat-killed 
fluorescent bacteria at an MOI of 10 for one hour. The 
phagocytosis rate of MDMs was analyzed by CytoFLEX 
flow cytometer with CytExpert software (Beckman Coul-
ter, Brea). A minimum of 20,000 events were acquired 
per sample.

AAT treatment
Lyophilized AAT (Prolastin-C) was reconstituted with 
deionized water, following the manufacturer’s instruc-
tion, and stored at -80  °C. To examine whether AAT is 
able to alleviate the inhibitory effect of α-defensins on 
cell motility and the phagocytic ability of MDMs, MDMs 
were incubated with 2.5  μM or 10  μM of AAT prior to 
α-defensin treatment.

Statistical analysis
Results are expressed as mean and standard deviation or 
percentage as appropriate. Comparisons between groups 
were made by using non-parametric tests, Wilcoxon 
matched-pairs signed rank test or one-way analysis of 
variance (ANOVA). A p-value < 0.05 was considered sig-
nificant. All analyses were performed using the Graph-
Pad Prism 9.3.0 (GraphPad software, San Diego) software 
package.

Results
The effect of α‑defensins on monocyte‑macrophage 
differentiation
M-CSF and GM-CSF are hematopoietic growth fac-
tors. M-CSF is ubiquitously produced by many cells and 
controls macrophage numbers in many tissues. M-CSF-
derived macrophages are often used as a model for tis-
sue macrophages. GM-CSF has a low basal circulating 
level but is elevated during inflammatory reactions. GM-
CSF is essential for alveolar macrophage differentiation 
and for maintenance of alveolar macrophage functions 
throughout life [31, 32]. Because M-CSF and GM-CSF 
have different functions, we wanted to examine the effect 
of α-defensins on M-CSF-derived macrophage differen-
tiation and GM-CSF-derived macrophage differentiation 
separately. To examine the effect of α-defensins on the 
initiation of monocyte-macrophage differentiation, we 
incubated monocytes with M-CSF for 16 h and examined 
the expression levels of M1 macrophage markers CD64, 
CD80, and CD86, and M2 macrophage markers CD163, 
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CD204, and CD206 [33]. The expression levels of the 
macrophage markers were highly increased by M-CSF, 
as shown in Fig. 1A–F. When cells were incubated with 
M-CSF in the presence of 2.5  μM of α-defensins, the 
expression levels of M1 macrophage markers CD80 
and CD86 were significantly increased by α-defensins 
(p-value = 0.0312 and p-value = 0.0469, Fig. 1B, C, respec-
tively). The expression levels of M2 macrophage mark-
ers, CD163 and CD206, were significantly reduced by 
α-defensins during M-CSF-derived macrophage differ-
entiation (p-value = 0.0312 and p-value = 0.0312, Fig. 1D, 
F respectively). The expression level of CD204 was also 
reduced by α-defensins, but the decrease was not sig-
nificant (Fig.  1E). To examine the effect of α-defensins 
on GM-CSF-derived macrophage differentiation, mono-
cytes were differentiated in the presence of GM-CSF, 
and the expression levels of the three different M1 
macrophage markers and the three different M2 mac-
rophage markers were compared among monocytes, 
GM-CSF-treated cells, and GM-CSF and α-defensin-
treated cells. GM-CSF also increased the expression 

levels of all the M1 macrophage markers, CD64, CD80, 
and CD86, during the monocyte-macrophage differentia-
tion, but α-defensins had no effect on the expression of 
M1 macrophage markers during GM-CSF-derived mac-
rophage differentiation (Fig.  1G–I). GM-CSF induced 
the expression levels of M2 macrophage markers, CD163 
and CD206, but α-defensins significantly reduced the 
expression levels of CD163 and CD206 during GM-CSF-
derived macrophage differentiation (p-value = 0.0312 and 
p-value = 0.0312, Fig.  1J and L). Therefore, regardless of 
the growth factor, α-defensins consistently suppressed 
the expression of M2 macrophage markers CD163 and 
CD206 during monocyte-macrophage differentiation.

Because monocytes are differentiated into alveo-
lar macrophages in the presence of both M- and 
GM-CSF in the pulmonary alveoli, it was intriguing 
to examine the effect of α-defensins on monocyte-
macrophage differentiation when monocytes were 
incubated with M- and GM-CSF together. The result 
shows that α-defensins significantly increased the 
expression level of CD86 (p-value = 0.0464, Fig.  2A), 

Fig. 1 The effect of α-defensins on macrophage differentiation. MDMs were differentiated using either M-CSF or GM-CSF and incubated 
with 2.5 µM of α-defensins for 16 h. A–C The expression levels of M1 macrophage markers, CD64, CD80, and CD86, were compared among three 
different groups: monocyte, M-CSF-treated monocyte (M-CSF), and M-CSF and α-defensin-treated monocyte (M + D). Their relative expression 
is represented by fold change. D–F The expression levels of M2 macrophage markers, CD163, CD204, and CD206, were also compared 
among the groups (monocyte, M-CSF, and M + D). G–I The expression levels of M1 macrophage markers were compared among three different 
groups: monocyte, GM-CSF-treated monocyte (GM-CSF), and GM-CSF and α-defensin-treated monocyte (GM + D). Their relative expression 
is represented by fold change. J–L The expression levels of M2 macrophage markers were also compared among the groups (monocyte, GM-CSF, 
and GM + D). Statistical analysis was conducted using Wilcoxon test. Statistical significance is denoted by (*) (p-value < 0.05)
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but the expression levels of M2 macrophage mark-
ers CD163 and CD206, were significantly decreased as 
the concentration of α-defensins were increased dur-
ing M- and GM-CSF-derived monocyte-macrophage 
differentiation (p-value = 0.0075 and p-value = 0.008, 
Fig.  2B, C, respectively). Taken together, the results 
propose that a high concentration of α-defensins could 
modulate monocyte-macrophage differentiation by 
affecting the expression of macrophage markers in 
the lower respiratory tract of AATD individuals. Fig-
ures  1 and 2 focus on the effect of α-defensins on the 
initiation of the process of monocyte-macrophage dif-
ferentiation. It was intriguing to examine the effect 

of α-defensins in MDMs, which were differentiated 
with M- and GM-CSF for seven days. We found that 
α-defensins significantly reduce the expression of 
CD206 in MDMs (Additional file 1: Fig. S1). This sug-
gests that α-defensins could modulate monocyte-mac-
rophage differentiation not only in the initiation of the 
process, but also that it could modify the phenotypes 
of differentiated macrophages. On the other hand, we 
compared the inhibitory effect of α-defensins on the 
expression of CD206 between MDMs with the M-AAT 
allele (M-MDM) and with the Z-AAT allele (Z-MDM). 
The Z variant is responsible for the most severe form 
of AAT deficiency. This result showed that α-defensins 

Fig. 2 The effect of α-defensins on M-CSF and GM-CSF-induced macrophages. MDMs were differentiated using both M-CSF and GM-CSF 
and incubated with two different concentrations of α-defensins, 1 µM and 2.5 µM, for 16 h. A The expression level of CD86 was compared 
between MDM controls and α-defensin-treated MDMs. B, C The expression levels of CD163 and CD206 were compared between the two 
MDM groups. The relative expression of the macrophage markers is represented by fold change. Statistical analysis was conducted using 
One-way ANOVA. Statistical significance is denoted by (*) (p-value < 0.05). The protein levels of the M2 macrophage markers were also examined 
in α-defensin-treated MDMs. D Cell surface distribution of CD206 was examined using flow cytometry. E The percentage of CD206-positive cells 
was compared between MDM controls and α-defensin-treated MDMs. F The protein level of CD163 was examined using a Western blot assay. G 
The protein band intensities were measured using NIH ImageJ software and compared between MDM controls and α-defensin-treated MDMs. 
Statistical analysis was conducted using Wilcoxon test. Statistical significance is denoted by (*) (p-value < 0.05)
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reduce the gene expression level of CD206 in both M- 
and Z-MDMs, and the reduced expression level was 
similar between the two MDM groups (Table  1). The 
sample number was six for each group, and none of the 
individuals had lung disease when blood was collected. 
The characteristics of the control and AATD individu-
als used in Table 1 were previously described [34].

The protein levels of CD206 and CD163 reduced 
by α‑defensins
Alveolar macrophages are characterized by a high level 
of CD206 and CD163 [35]. CD206 is a mannose recep-
tor primarily expressed on the surface of macrophages. 
CD206  on the surface of alveolar macrophages inter-
acts with glycoproteins and glycolipids found on the 
surface of invading pathogens, including bacteria, 
viruses, and fungi. Therefore, CD206 plays an impor-
tant role in the innate immunology of macrophages. 
We compared the cell surface levels of CD206 between 
MDM controls and α-defensin-treated MDMs using 
flow cytometry. The percentage of CD206-positive cells 
was highly increased by growth factors M- and GM-
CSF, but significantly reduced when the cells were incu-
bated with 2.5 μM of α-defensins, as shown in Fig. 2D, 
E (p-value = 0.0312). CD163 is a scavenger receptor 
and has a capacity for ligand binding and endocytosis 
[35]. Thus, CD163 functions as an innate immune sen-
sor for gram-positive and gram-negative bacteria [36]. 
We tried to examine the effect of α-defensins on the 
cell surface distribution of CD163 using flow cytom-
etry, but flow cytometry did not work for this purpose 
because the human genome contains the CD163-L1 
gene, which was produced by duplication of CD163 in 
late evolution [37]. Therefore, CD163 antibody binds to 
both CD163 and CD163-L1. Instead of flow cytometry, 
we performed Western blotting to examine the effect 
of α-defensins on the protein level of CD163. Because 
the molecular weights of the two proteins are differ-
ent, CD163 was separated from CD163-L1 on the SDS 
gel. The result shows that, consistently with the gene 
expression of CD163, the protein level of CD163 was 
highly increased by growth factors but significantly 
reduced by 2.5 μM of α-defensins, as shown in Fig. 2F, 
G (p-value = 0.0312).

The activation of ERK/STAT3 signaling inhibited 
in α‑defensins‑treated cells
It was previously suggested that BmKDfsin3, one of the 
scorpion defensins, inhibits the phosphorylation of p38 
[38]. p38 is well known for playing a key role in mac-
rophage polarization [39]. BmKDfsin3 has six cysteine 
residues and the cysteine residues form three intramolec-
ular disulfide bridges, which is the same as α-defensins. 
Therefore, we suspected that α-defensins suppress the 
expression of M2 macrophage markers by inhibiting the 
phosphorylation of p38 during M- and GM-CSF-derived 
macrophage differentiation. To address this question, 
we differentiated MDMs using M- and GM-CSF in the 
absence or presence of α-defensins and compared the 
level of phosphorylated p38 between MDM controls 
and α-defensin-treated MDMs. The level of phospho-
rylated p38 was highly increased by the growth factors. 
However, unlike the scorpion defensin, α-defensins did 
not decrease the level of phosphorylated p38 during 
monocyte-macrophage differentiation (Additional file  1: 
Fig. S2). Besides p38 signaling, ERK1/2 is an essential 
molecule for growth factor-driven macrophage prolif-
eration, survival, or differentiation [21]. It was previously 
found that the activation of ERK signaling enhances mac-
rophage phenotypic polarization from proinflammatory 
M2b to anti-inflammatory M2a [40]. To examine whether 
ERK1/2 is involved in α-defensin-suppressing M2 mac-
rophage marker expression, we compared the level of 
total ERK1/2 and the level of phosphorylated ERK1/2 
among monocytes, MDM controls, MDMs incubated 
with 1  μM of α-defensins, and MDMs incubated with 
2.5  μM of α-defensins. The level of total ERK1/2 was 
very similar across the four different samples as shown in 
Fig. 3A. This indicates that α-defensins have no effect on 
the transcription and translation of ERK1/2. Figure  3A 
also shows the level of phosphorylated ERK1/2 in the four 
different samples. The level of phosphorylated ERK1/2 
was highly increased by the growth factors but signifi-
cantly decreased by α-defensins during M- and GM-CSF-
derived macrophage differentiation (p-value = 0.0312, 
Fig.  3B). It is known that ERK1/2 is an upstream mole-
cule of STAT3, which regulates the expression of CD163 
and CD206. Indeed, the phosphorylation of ERK1/2 and 
STAT3 are important for M2 macrophage polarization. 
To examine whether α-defensins inhibit the phospho-
rylation of STAT3, we compared the levels of phospho-
rylated STAT3 among the four different samples. The 
result shows that the level of phosphorylated STAT3 was 
highly increased by M- and GM-CSF but significantly 
decreased by α-defensins (p-value = 0.0312, Fig.  3C, D). 
Figure 3B shows that the protein level of total STAT3 was 
not reduced by α-defensins. Therefore, the result suggests 

Table 1 The expression of CD206 reduced by α-defensins

D1μM (%) P‑value D2.5 μM (%) P‑value

M-MDM 34.9 ± 26 0.73 53 ± 17 0.891

Z-MDM 41.6 ± 6.6 51 ± 9.8
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that α-defensins inhibit the phosphorylation of STAT3 
in MDMs. U0126 inhibits the activation of ERK1/2 [41]. 
We incubated MDMs with U0126 and confirmed that the 
phosphorylation of STAT3 is inhibited when the phos-
phorylation of ERK1/2 is inhibited by U0126. The pro-
tein level of CD163 and the expression level of CD206 
were also decreased in U0126-treated MDMs (Addi-
tional file 1: Fig. S3). This indicates that ERK1/2 signaling 
regulates the phosphorylation of STAT3 and the expres-
sion of CD163 and CD206 in M- and GM-CSF-derived 
macrophages.

Membrane damage using trypan blue staining
Most defensins accomplish their antimicrobial activ-
ity through interaction with membranes of pathogens. 
Positively charged defensin peptides interact with the 
negatively charged head of phospholipid groups in cel-
lular membranes when a critical defensin concentration 
is reached, which permeabilizes cell membranes of sus-
ceptible microorganisms. It was intriguing to examine 
whether a high concentration of α-defensins is able to 

permeabilize the cell membrane of MDMs. We assessed 
the membrane integrity of MDMs using trypan blue 
staining. Trypan blue is cell membrane impermeable. 
Therefore, it only enters cells when the plasma mem-
brane is compromised. Trypan blue-positive cells were 
detected in α-defensin-treated MDMs, and the number 
of trypan blue-positive cells was significantly increased 
as the concentration of α-defensins was increased 
(p-value = 0.0026, Fig. 4A–D). It was previously reported 
that a high concentration of α-defensins is cytotoxic 
in lung epithelial cells [8]. To examine whether a high 
concentration of α-defensins is cytotoxic in MDMs, 
we measured and compared cell viability of MDM con-
trols and α-defensin-treated MDMs using an MTT 
assay. The result shows that cell viability is very similar 
between MDM controls and α-defensin-treated MDMs 
(Fig.  4E). This indicates that even the highest concen-
tration of α-defensins, 2.5 μM, did not induce cell death 
when MDMs were incubated with it for 16 h. This result 
is consistent with previous findings [42]. The authors of 
the study incubated lung epithelial cells with α-defensins 

Fig. 3 The phosphorylation of ERK1/2 and STAT3 inhibited by α-defensins. Total proteins were isolated from monocytes, MDM controls, 
and α-defensin-treated MDMs. A Equal amounts of total proteins of the four different samples were analyzed via SDS-PAGE of phosphorylated 
ERK1/2 and total ERK1/2. C Equal amounts of total proteins of the four different samples were analyzed via SDS-PAGE of phosphorylated STAT3 
and total STAT3. B and D The protein band intensities of the phosphorylated ERK1/2 and phosphorylated STAT3 were measured using NIH ImageJ 
software and compared among the samples. Statistical analysis was conducted using Wilcoxon test. Statistical significance is denoted by (*) 
(p-value < 0.05)
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(5  μg/ml) for 72  h and found that cell viability was not 
reduced by α-defensins, but about 15% of the cells were 
trypan blue-positive [43]. However, we could not rule 
out that α-defensins could cause cell death when MDMs 
are incubated either with concentrations of α-defensins 
higher than 2.5  μM or incubated with α-defensins for 
longer than 16 h.

MDM migration after incubation with α‑defensins
When MDMs were incubated with 1  μM or 2.5  μM of 
α-defensins, trypan blue was able to penetrate some of 
the α-defensin-treated MDMs. This indicates that a high 
concentration of α-defensins could cause cell membrane 
damage in MDMs. To examine whether α-defensins have 
an inhibitory effect on the migratory ability of MDMs, 
we conducted a scratch assay. After making a scratch, 
MDMs were incubated in the absence or presence of 
α-defensins for 16 h. The number of cells that migrated 
into the scratched area were counted and compared 
between MDM controls and α-defensin-treated MDMs. 
The result shows that the cell migration rate of MDMs 

was significantly decreased as the concentration of 
α-defensins was increased. 2.5 μM of α-defensins reduced 
the migratory ability of MDMs by 50% (p-value = 0.0015, 
Fig.  5A, B). This indicates that a high concentration of 
α-defensins suppresses the migratory ability of MDMs.

Bacterial clearance by macrophages impaired 
by α‑defensins
Alveolar macrophages are the primary phagocytes of the 
innate immune system, clearing bacteria from the lower 
respiratory tract. Therefore, their ability to clear invad-
ing pathogens is critical in maintaining lung homeostasis. 
The results of the present study show that cell migratory 
ability and the expression levels of CD163 and CD206 
are reduced by α-defensins in MDMs. Cell motility is an 
essential feature for macrophages to phagocytose invad-
ing pathogens. CD163 and CD206 are also important for 
bacterial phagocytosis by macrophages. It was intrigu-
ing to examine the effect of α-defensins on bacterial 
phagocytosis by MDMs. MDMs were incubated in the 
absence or presence of α-defensins, and then the cells 

Fig. 4 Cell viability of α-defensin-treated MDMs. MDMs were incubated with 1 µM or 2.5 µM of α-defensins for 16 h. A–C MDM controls 
and α-defensin-treated MDMs were stained with 0.1% of trypan blue for three minutes, and the images of trypan blue-stained MDMs were captured 
using a light microscope. D The percentage of trypan blue-positive cells was calculated and compared between samples. Statistical analysis 
was conducted using One-way ANOVA. Statistical significance is denoted by (*) (p-value < 0.05). E Cell viability of each MDM sample was measured 
using an MTT assay. Statistical analysis was conducted using One-way ANOVA, and (ns) indicates no statistical difference among the samples
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were incubated with fluorescently labeled heat-killed 
bacteria. The phagocytic ability of the MDMs was evalu-
ated using fluorescent microscopy. The result shows that 
α-defensins suppress bacterial phagocytosis by MDMs, 
shown in Fig.  6A, B. One-way ANOVA found that the 
phagocytosis rate was reduced as the concentration of 
α-defensins was increased (p-value < 0.0001).

Exogenous AAT helps recover α‑defensin‑causing 
macrophage impairment
Intravenous AAT suppresses neutrophil-mediated injury, 
and thus AAT augmentation therapy has been used to 
treat patients with AATD-associated diseases. It is known 

that AAT binds to α-defensins and neutralizes harmful 
effects of α-defensins on bronchial epithelial cells [29, 
44]. This implies that exogenous AAT could alleviate the 
inhibitory effect of α-defensins on the migratory ability 
of MDMs. To examine that, we incubated MDMs either 
with α-defensins only or α-defensins and AAT together 
after making a scratch. After 16  h of incubation with 
the treatment, the number of cells that migrated into 
the scratched area was counted and compared between 
α-defensin-treated MDMs with and without AAT. Com-
pared with MDMs incubated with 2.5 μM of α-defensins 
only, the migratory ability of MDMs improved with the 
addition of AAT, as shown in Fig.  5C. The migratory 

Fig. 5 The effect of α-defensins on the migratory ability of MDMs. At day 7 of MDM differentiation, the scratch was performed. MDMs were 
incubated with or without α-defensins for 16 h. A The images of MDM controls and α-defensin-treated MDMs were taken using a light microscope; 
bar 200 µm. B The cells that moved into the scratched area were counted and compared among the three different MDM groups. C MDMs were 
incubated with 2.5 µM or 10 µM of AAT. After the incubation with AAT for one hour, MDMs were treated with 2.5 µM of α-defensins for 16 h. The 
images of the three different MDM groups (2.5 µM of α-defensin-treated MDMs, 2.5 µM of α-defensin and 2.5 µM of AAT-treated MDMs, and 2.5 µM 
of α-defensin and 10 µM of AAT-treated MDMs) were taken using a light microscope; bar 200 µm. D The cells that moved into the scratched 
area were counted and compared among the three different MDM groups. Statistical analysis was conducted using One-way ANOVA. Statistical 
significance is denoted by (*) (p-value < 0.05)
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Fig. 6 The bacterial phagocytosis of α-defensin-treated MDMs. MDMs were treated with 1 µM or 2.5 µM of α-defensins for 16 h and incubated 
with Heat-killed Staphylococcus aureus-conjugated with Alexa Fluor 488 at a multiplicity of infection (MOI) of 10 for one hour. A MDMs 
phagocytosing bacteria are visualized using a fluorescence microscope; bar 50 μm. Red and green indicate the host cell membrane and digested 
bacteria, respectively. B Green fluorescent intensity was normalized to the number of MDMs and compared among the different MDM groups. 
More than 10,000 cells, originating from six separate experiments, were evaluated for each MDM group. Statistical analysis was conducted using 
One-way ANOVA. Statistical significance is denoted by (*) (p-value < 0.05)

Fig. 7 The phagocytic ability of α-defensin-treated MDMs improved by the AAT treatment. To examine the effect of exogenous AAT 
on α-defensin-induced injury to the MDM phagocytosis, six different samples were prepared, and without control (No phagocytosis), five samples 
were incubated with Heat-killed Staphylococcus aureus-conjugated with Alexa Fluor 488 at a multiplicity of infection (MOI) of 10 for one hour. The 
five different samples were monocytes, MDM controls, 2.5 µM of α-defensin-treated MDMs, 2.5 µM of α-defensin and 2.5 µM of AAT-treated MDMs, 
and 2.5 µM of α-defensin and 10 µM of AAT-treated MDMs. A The percentage of phagocytosis-positive cells was measured using flow cytometry. 
B To examine the effect of α-defensins on MDM phagocytosis, phagocytosis rates were compared among the four different MDM groups. The 
phagocytosis rate of MDM controls was set to 100%, and phagocytosis rates of the other MDM groups were normalized to the phagocytosis rate 
of MDM controls. Statistical analysis was conducted using One-way ANOVA. Statistical significance is denoted by (*) (p-value < 0.05)
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ability of MDMs was significantly increased as the con-
centration of AAT was increased (p-value = 0.0019, 
Fig.  5D). As exogenous AAT alleviated the inhibitory 
effect of α-defensins on the migratory ability of MDMs, 
it was worthwhile to examine whether exogenous AAT 
blocks the inhibitory effect of α-defensins on the phago-
cytic ability of MDMs. We incubated MDMs either with 
α-defensins alone or α-defensins and AAT together. 
Then, we incubated cells with heat-killed fluorescent bac-
teria and measured the phagocytosis rate of each sample 
using flow cytometry. 2.5 μM of α-defensins reduced the 
phagocytic ability of MDMs by 50%. However, 1 μM and 
2.5 μM of AAT increased the phagocytosis rate of MDMs 
to 65% and 75%, respectively, as shown in Fig. 7A. One-
way ANOVA found that the phagocytosis rate of MDMs 
was significantly increased as the concentration of AATs 
was increased (p-value = 0.0117, Fig. 7B).

Discussion
The concentration of α-defensins is substantially higher 
in the lower respiratory tract of AATD individuals than 
control individuals, due to the accumulation of alveo-
lar neutrophils, and the α-defensin concentration is 
increased as lung function impairs in AATD individuals 
[14]. Because α-defensins are well known for their anti-
microbial property, it has been assumed that α-defensins 
are only beneficial to host cells. However, their antimi-
crobial activity is dependent on their environment. For 
example, α-defensins were very efficient to kill gram-
positive and gram-negative bacteria in 10  mM phos-
phate buffer containing certain nutrients, but they had 
remarkably reduced bactericidal activity in nutrient-free 
buffer [1]. The antimicrobial activity of α-defensins in the 
lung has not been determined. Therefore, it is not clear 
whether the excessive amount of α-defensins helps to 
suppress bacterial infection in those lung diseases by kill-
ing the invading pathogens.

One of previous studies on α-defensins found that 
α-defensins could inhibit M-CSF-derived monocyte-
macrophage differentiation. The study demonstrated that 
α-defensins inhibit the gene expression of CD163 and 
MCP1 in a dose-dependent manner during the M-CSF-
derived macrophage differentiation. This suggests that 
α-defensins could modulate macrophage differentiation 
in the lung of AATD individuals. Because both growth 
factors, M- and GM-CSF, are present in the lower respir-
atory tract and GM-CSF is important for alveolar mac-
rophage differentiation [32, 45], we examined the effect 
of α-defensins on M- and GM-CSF-derived microphage 
differentiation, and found that the expression level of M1 
macrophage marker CD86 is significantly increased by 
α-defensins while the expression level of M2 macrophage 

markers CD163 and CD206 is significantly decreased by 
α-defensins. This might suggest that α-defensins could 
enhance M1 macrophage polarization but inhibit M2 
macrophage polarization. The level of CD86 is signifi-
cantly increased in patients with an acute asthma exac-
erbation and correlated with the severity of asthma [46]. 
In addition, the expression level of CD86 is increased 
after lung transplantation, and the number of CD86-pos-
itive alveolar macrophages is increased during rejection 
episodes [47]. Interestingly, it was previously reported 
that chronic stimulation of airway epithelial cells by 
α-defensins causes inflammation and fibrosis, leading to 
chronic rejection following human lung transplantation 
[48]. Therefore, the increased expression level of CD86 
by α-defensins in macrophages could exacerbate airway 
diseases and promote chronic rejection of the new lung 
in AATD individuals. This study shows that the pro-
tein levels of both CD163 and CD206 are significantly 
reduced by α-defensins. It was experimentally proven 
that CD163 and CD206  are involved in phagocytosis of 
numerous strains of bacteria [49]. CD163 reduces iron 
bioavailability by mediating haptoglobin-hemoglobin 
uptake and hence could restrict bacterial growth in the 
pulmonary alveolus [50]. CD206  is a transmembrane 
pattern recognition receptor and plays a role in the 
phagocytosis of immune cells and bacteria as well as in 
pinocytosis through binding a variety of carbohydrates 
[26]. The result of this study suggests that a high con-
centration of α-defensins could add more risk for bacte-
rial infection-mediated lung diseases by reducing the 
expression of CD163 and CD206 in AATD individuals. 
Interestingly, it was previously reported that AATD indi-
viduals are susceptible to recurrent bacterial infection 
which affects their respiratory tract [51].

There are accumulating data to support that α-defensins 
function as immunomodulatory molecules through P2Y6 
signaling. One previous study on α-defensins found that 
α-defensins inhibit neutrophil apoptosis by acting on 
the P2Y6 receptor, and another study suggested that 
α-defensins induce the expression of IL-8 in lung epithe-
lial cells through the P2Y6 signaling [52, 53]. Interestingly, 
it was suggested that the P2Y6 receptor plays an impor-
tant role in M-CSF-derived macrophage differentiation 
[54], and α-defensins inhibit M-CSF-derived differentia-
tion through P2Y6 [18]. The present study demonstrated 
that α-defensins reduce the gene expression and protein 
level of CD163 and CD206 by inhibiting the phosphoryla-
tion of ERK1/2. Given that ERK1/2 is a downstream mol-
ecule of the P2Y6 receptor [55], α-defensins might inhibit 
the phosphorylation of ERK1/2 through the P2Y6 recep-
tor, suppressing M2 macrophage phenotypes during M- 
and GM-CSF-derived macrophage differentiation.
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This study demonstrated that a high concentration of 
α-defensins causes cell membrane damage and conse-
quently reduces the migratory ability of MDMs. Cati-
onic antimicrobial peptides including α-defensins, target 
anionic lipids, including cardiolipin and phosphatidyl 
glycerol, on the cell surface, which are abundant in micro-
organisms. However, in the mammalian cell membrane, 
electrically neutral phospholipids, including sphingomye-
lin and phosphatidylcholine, are predominant. Therefore, 
the binding affinity of cationic antimicrobial peptides is 
much higher to the membrane of microorganisms than 
that of mammalian cells [56–58]. It might explain why a 
low concentration of α-defensins are beneficial to the host 
cells by killing invading pathogens, but a high concentra-
tion of α-defensins cause damage to the membrane of 
host cells. The present study found that a high concentra-
tion of α-defensins significantly reduced the phagocytic 
capability of macrophages. The migratory and phagocytic 
abilities of macrophages are critical for lung homeostasis. 
The lung is constantly exposed to large amounts of dust 
particles and pathogens, and alveolar macrophages are 
major effector cells in innate host defense against those 
inhaled irritants by virtue of their phagocytic ability. In 
addition, alveolar macrophages are central regulators of 
the resolution of inflammation because of their ability to 
engulf apoptotic neutrophils. The active phagocytosis of 
dying cells by macrophages could prevent necrotic cell-
causing inflammation and lead to the induction of anti-
inflammatory signaling in macrophages by inhibiting the 
expression of inflammatory cytokines, including CXCL-8 
[59]. In contrast, when apoptotic cells are not efficiently 
cleared by alveolar macrophages, the apoptotic cells go to 
secondary necrosis and release potentially injurious cyto-
plasmic contents into the alveolus causing further tissue 
injury [60, 61]. It was previously reported that MDMs 
with the Z-AAT allele have impaired efferocytosis [62]. 
The result of the present study shows that the migra-
tory and phagocytic abilities of MDMs are decreased as 
the concentration of α-defensins is increased. The con-
centration of α-defensins is hundreds of times higher in 
AATD individuals than healthy individuals, and the con-
centration is increased proportionally with the severity 
of lung disease in AATD individuals. Findings from pre-
vious studies and this study suggest that the phagocytic 
ability of macrophages to clear dead cells is impaired 
by the accumulation of Z-AAT and the phagocytosis of 
invading pathogens is inhibited by excessive amounts of 
α-defensins in AATD individuals, which could be respon-
sible for chronic inflammation in the lung of AATD 
individuals.

AAT augmentation therapy with periodic intravenous 
infusion of pooled human serum AAT is used in indi-
viduals with AATD-associated lung diseases. It is very 

intriguing to examine whether exogenous M-AAT could 
be used to treat α-defensin-associated lung diseases. 
To test the possibility, we incubated α-defensin-treated 
MDMs with M-AAT and found that exogenous M-AAT 
can improve the migratory and phagocytic abilities of 
MDMs when the cells are impaired by a high concentra-
tion of α-defensins. Because the assay was conducted to 
determine the therapeutic use of M-AAT on α-defensin-
causing macrophage impairment, Z-AAT was not con-
sidered to be used for the purpose in the assay. This result 
implies that AAT augmentation therapy might alleviate 
α-defensin-associated lung diseases. However, the pre-
sent study showed that AAT treatment was not sufficient 
to fully prevent macrophage migration and phagocyto-
sis impairment from α-defensins. Compared with MDM 
controls, the phagocytic capability of MDMs treated with 
2.5  μM of α-defensins was reduced to 50%, and exog-
enous AAT treatment recovered the MDM phagocytic 
capability to 75%. Therefore, developing a new therapy 
which could complement the currently existing AAT 
augmentation therapy is essential to reduce the burden of 
α-defensin-associated lung disease in AATD individuals. 
For this reason, more studies on α-defensins are needed 
to determine more comprehensive molecular mecha-
nisms underlying α-defensins-impairing macrophage 
functions and to find therapeutic targets for α-defensin-
associated lung diseases.

Conclusion
Alveolar macrophages play an essential role in innate 
immunity through efficient clearance of inhaled 
microbes, damaged tissue, and cells following injury and 
infection. The present study demonstrates that excessive 
α-defensins could impair monocyte-macrophage dif-
ferentiation and therefore their immune function. Due 
to the general thought that α-defensins are beneficial to 
host cells, the role of α-defensins in the pathogenesis of 
AATD-associated lung diseases has been seldom studied. 
The present study demonstrates that a high concentra-
tion of α-defensins suppresses the expression of M2 mac-
rophage markers, inhibits macrophage migration, and 
impairs macrophage phagocytosis. Also, this study sug-
gests that a high concentration of α-defensins suppresses 
the expression of M2 macrophage markers by inhibiting 
ERK1/2 signaling during M- and GM-CSF-derived mac-
rophage differentiation. The findings of this study bring 
new insights into the pathogenesis of α-defensins in 
AATD-associated lung diseases and provide the experi-
mental basis for further research on new treatments 
complementing AAT augmentation therapy, which has 
been the only specific therapy for AATD individuals for 
the last three decades.
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Additional file 1: Figure S1. α-defensins reduce the expression level 
of CD206 in MDMs. MDMs were differentiated using M-CSF and GM-
CSF for seven days and then incubated with different concentrations 
of α-defensins for 16 h. The expression level of CD206 was compared 
between MDM controls and α-defensin-treated MDMs for 16 h. Their 
relative expression is represented by fold change. Statistical analysis was 
conducted using Wilcoxon test. Statistical significance is denoted by (*) 
(p-value < 0.05). Figure S2. α-defensins have no effect on the phosphoryl-
ation of p38. Total proteins were isolated from monocytes, MDM controls, 
and α-defensin-treated MDMs. A Equal amounts of total proteins of the 
samples were analyzed via SDS-PAGE of phosphor-p38, and B protein 
band intensities of the phosphorylated p38 were compared among the 
samples. The protein band intensities were measured using NIH ImageJ 
software, and statistical analysis was conducted using Wilcoxon test. 
(ns) indicates not significant statistically. Figure S3. Phosphorylation of 
STAT3 positively regulated by ERK1/2. MDMs were incubated with the 
two different concentrations of U0126, an ERK1/2 inhibitor, overnight. A 
The total proteins were isolated from MDM controls and U0126-treated 
MDMs and subjected to Western blot assay; the protein levels of total 
ERK1/2, phosphor-ERK1/2, phosphor-STAT3, and CD163 were compared 
between MDMs controls and U0126-treated MDMs. B Using qRT-PCR, the 
expression level of CD206 was compared between MDM controls and 
U0126-treated MDMs. The relative expression of CD206 is represented by 
fold change. Statistical analysis was conducted using One-way ANOVA. 
Statistical significance is denoted by (*) (p-value < 0.05).
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