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Abstract
Impact Bronchopulmonary dysplasia has multiple definitions that are currently based on phenotypic characteristics. 
Using an unsupervised machine learning approach, we created BPD subclasses (e.g., endotypes) by clustering whole 
microarray data. T helper 17 cell differentiation was the most significant pathway differentiating the BPD endotypes.

Introduction Bronchopulmonary dysplasia (BPD) is the most common complication of extreme prematurity. 
Discovery of BPD endotypes in an unbiased format, derived from the peripheral blood transcriptome, may uncover 
patterns underpinning this complex lung disease.

Methods An unsupervised agglomerative hierarchical clustering approach applied to genome-wide expression 
of profiling from 62 children at day of life five was used to identify BPD endotypes. To identify which genes were 
differentially expressed across the BPD endotypes, we formulated a linear model based on least-squares minimization 
with empirical Bayes statistics.

Results Four BPD endotypes (A, B,C,D) were identified using 7,319 differentially expressed genes. Across BPD 
endotypes, 5,850 genes had a p value < 0.05 after multiple comparison testing. Endotype A consisted of neonates 
with a higher gestational age and birthweight. Endotypes B-D included neonates between 25 and 26 weeks and 
a birthweight range of 640 to 940 g. Endotype D appeared to have a protective role against BPD compared to 
Endotypes B and C (36% vs. 62% vs. 60%, respectively). The most significant pathway focused on T helper 17 cell 
differentiation.

Conclusion Bioinformatic analyses can help identify BPD endotypes that associate with clinical definitions of BPD.
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Introduction
Ever since its description over half a century ago, bron-
chopulmonary dysplasia (BPD) remains the most com-
mon complication associated with extreme prematurity 
[1]. Currently, BPD affects approximately 18,000 pre-
mature newborns per year and costs the United States 
$2.5  billion annually [2]. This chronic lung disease is 
characterized by an arrest in lung development second-
ary to chronic exposure to positive pressure ventilation 
and supplemental oxygen [3]. Histologically, BPD is hall-
marked by a decreased number of lung alveolar cells, an 
immature capillary network, and increased fibrin deposi-
tion in the basal membrane [4]. The incidence of BPD is 
inversely proportional to gestational age and is associated 
with significant morbidity and mortality [5]. Long-term 
sequelae from BPD include cognitive deficits, hearing 
and/or visual impairment, and decreased pulmonary 
function [6]. Despite significant advances in neonatal 
care, therapies for BPD are largely ineffective and in fact 
rates continue to increase due to the higher probability of 
survival of smaller premature neonates [2].

Due to the evolution of the disease, and the advent of 
newer respiratory modalities, the definition of BPD has 
undergone several different iterations [7]. Broadly, BPD 
is defined by the need for supplemental oxygen at 28 
days postnatal age or 36 weeks postmenstrual age and 
its severity is classified based on the mode of respira-
tory support used [8]. However, the shortcoming with all 
previous and current definitions of BPD is that they are 
largely clinical and pay no heed to the complex patho-
physiological pathways at play in the development of 
different disease phenotypes. This highlights the need 
to better classify BPD to potentially improve: (i) the pre-
diction of pulmonary outcomes in neonates, and (ii) the 
development of therapies that target the appropriate 
patients.

A bioinformatic approach towards identifying ‘endo-
types’ of BPD has not been previously conducted. An 
endotype is defined as a subclass of a disease that is 
characterized by its unique pathobiological mechanism 
[9]. Leveraging computer science, biology, genetics, sta-
tistics, and mathematics with clinical data and “-omic” 
technology may offer a more comprehensive assessment 
of pathways underpinning the heterogeneity in pheno-
typic presentations of BPD [10]. For instance, Wong et 
al. have distinguished three endotypes for pediatric sep-
sis using genome-wide expressing profiling [11]. Through 
unsupervised hierarchical clustering of gene expression, 
they characterized a pediatric sepsis endotype that was 
associated with a higher illness severity and mortality 
rate. Gene pathways that were altered in this endotype 
included the adaptive immune system and glucocorticoid 
receptor signaling, which may serve as future targets for 
drug discovery.

Similar to BPD, asthma is a complex inflammatory air-
way disease that clinically manifests heterogeneously. In 
a review article focused on asthma endotyping, Anderson 
argues that the current manner in which new therapies 
for asthma patients are tested is flawed [12]. Specifically, 
he states the inclusion criteria of randomized trials for 
asthma patients are based on characteristics that can be 
readily measured (e.g., eosinophilia, forced expiratory 
volume in 1  s, IgE levels), instead of selecting patients 
that are most likely to respond to the new agent. Conse-
quently, such processes result in high drug failure rates 
and outcomes that may not be generalizable to other 
asthma patients. He proposes establishing subclasses of 
the disease to produce more precise definitions/variants 
of asthma and the establishment of biomarkers and/or 
pathways that more accurately explain the intricacies of 
asthma.

Using publicly-available whole microarray data [13], 
we performed an unsupervised hierarchical clustering 
technique to identify BPD endotypes. Furthermore, we 
analyzed pathways that were unique to each endotype 
and examined their association to BPD severity. Finally, 
we conducted a supervised machine learning approach to 
determine an early discriminatory ability of BPD endo-
type employing the top differentially expressed genes.

Methods
Subjects
A secondary analysis of a microarray dataset (GSE32472) 
from the National Library of Medicine’s Gene Expres-
sion Omnibus (https://www.ncbi.nlm.nih.gov/geo/) was 
performed. The study was conducted in Poland between 
the years 2008 and 2010 and included preterm newborns 
with birthweight ≤ 1500  g and who required respiratory 
support at the time of enrollment. This dataset included 
97 neonates. Further details regarding the dataset have 
been previously reported [13]. Peripheral blood sam-
pling for microarray gene expression was examined on 
day of life five. Institutional review board approval was 
not required as this study used publicly available de-iden-
tified information. The primary objective was to create 
endotypes for bronchopulmonary dysplasia (BPD) using 
whole blood microarray gene expression data.

Data analysis
Gene expression data preparation and analysis
Our first goal was to identify differentially expressed 
genes between neonates with or without BPD. Boxplots 
and histograms were created to assess for normal distri-
bution of gene expression. We began from a working list 
of 33,252 genes per patient. Next, gene counts were log2 
transformed followed by quantile normalization. Genes 
with expression levels < 50% of total expression from all 
samples were excluded as low levels across all samples 
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are not likely to be differentially expressed. Outliers were 
weighted per Ritchie et al. [14]. Genes were considered 
significant if the false discovery rates (FDR), by Benjamini 
and Hochberg-adjusted P values, were less than 5%.

Unsupervised machine learning (ML) model
We utilized an unsupervised agglomerative hierarchical 
clustering approach to identify BPD endotypes. ‘Unsu-
pervised learning uses algorithms to discover hidden 
patterns or data groupings without the need for human 
intervention’ [15]. Hierarchical clustering groups similar 
data in a continuous fashion until a difference is seen, at 
which point one cluster is formed and the beginning of 
another cluster ensues. Using the cluster package (version 
2.2.2) in R, we created a dendrogram of the subclasses 
via Ward’s linkage using Euclidean distances. A priori, 
we decided to segment the clusters based on no more 
than third-order branching of the dendrogram. We chose 
Ward’s linkage as our clustering method as it is an estab-
lished method for producing well-defined and compact 
clusters, which is particularly advantageous when iden-
tifying subtypes or endotypes within complex biological 
data [16]. Euclidean distance was chosen because it is a 
widely accepted metric that measures similarity or dis-
similarity between data points [16].

Moreover, we utilized the cluster package in R as it 
offers a comprehensive suite of clustering methods and 
extensive visualization tools, making it a widely accepted 
and trusted tool in bioinformatics and data analysis [17]. 
To further visualize the BPD endotypes we conducted 
principal component analyses. Principal component 
analysis is a visual representation of a mathematical com-
putation that decreases the dimension of data by like 
samples.

Differential gene expression across BPD endotypes
To identify which genes were differentially expressed 
across the BPD endotypes we formulated a linear model 
based on least-squares minimization with empirical 
Bayes statistics using the limma package in R statistical 
software version 4.1.0. The model calculated the log fold 
change, probability value, and adjusted probability val-
ues between the different endotype groups (Endotype A 
versus the average expression of Endotype B, C, and D; 
Endotype B versus average expression of Endotypes A, 
C, and D, etc.). This approach allowed for a systematic 
analysis to identify genes that show significant expres-
sion differences across the groups, providing insights into 
the molecular characteristics of each endotype. Volcano 
plots were plotted to graphically interpret the differences 
in gene expression between the endotypes. Phenotypic 
information was merged with genes with an adjusted 
p value < 1% to describe clinical information differing 
the BPD endotypes. BPD was divided into mild BPD vs. 

moderate/severe BPD. We defined BPD in this manner 
as the two most common BPD definitions use the time-
points at 28 days or 36 weeks. BPD at 28 days is captured 
by neonates with mild disease, while BPD at 36 weeks 
includes neonates with moderate to severe BPD. Another 
reason for a binary definition of BPD is that a small por-
tion of the neonates in this study developed moderate or 
severe BPD.

Pathway analysis
Genes with an adjusted p value < 1% were grouped into 
gene ontologic pathways using the R package gprofiler2. 
Pathways were organized according to WikiPathways 
based on their log p adjusted values. The program per-
forms functional enrichment analysis based on the genes 
inputted. Afterwards, ShinyGo 0.76.3, an open-source 
software platform for visualizing complex networks, was 
used to create a map to demonstrate the interactions of 
the biologic pathways (http://bioinformatics.sdstate.edu/
go/) [18].

Top genes to identify BPD endotypes
To reduce the number of differentially expressed genes 
that can be used to predict BPD endotypes, we per-
formed supervised machine learning. Specifically, we 
carried out a random forest split using the Boruta pack-
age in R using differentially expressed genes (e.g., Endo-
type A versus average expression of other Endotypes 
B, C, and D; Endotype B versus average expression of 
Endotypes A, C, and D, etc.) with a q value < 1%. The ran-
dom forest machine learning algorithm is ‘an ensemble 
learning algorithm, which is a combination of multiple 
base decision trees’ (page 1104) [19]. The top 20 genes, 
based on adjusted p values, were used in a multivariate 
adaptive regression spline (MARS) algorithm to exam-
ine their predictive performance in discriminating the 
BPD endotypes. We used MARS as it has an automatic 
feature selection for best predictors. The data was split 
into a training (2/3) and test cohort (1/3). To minimize 
overfitting, we used 10-fold cross-validation repeated five 
times. Default hyperparameters within the caret package 
in R was used and no data were imputed. Metrics used 
to test the predictive performance of the model included: 
sensitivity, specificity, positive predictive value, negative 
predictive values, and the area under the receiver operat-
ing characteristic curve. Finally, we used a heatmap and 
boxplot to picture the gene differences across the BPD 
endotypes.

Results
Genes differentially expressed in neonates with BPD
To identify BPD subclasses, we first had to identify genes 
that were differentially expressed in preterm infants with 
or without BPD. Of the 97 very low birthweight neonates, 
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62 (63.9%) were diagnosed with BPD. The whole microar-
ray data included 33,252 genes per patient. Gene expres-
sion levels less than the median for all samples were 
removed. After multiple comparison testing, by adjusting 
p values via the Benjamini and Hochberg method, 7,319 
genes (22%) had an FDR < 0.05 (Supplemental File 1).

Development of BPD endotypes
Agglomerative unsupervised hierarchical clustering was 
performed on the 7,319 differentially expressed genes to 
classify the potential BPD endotypes. A priori we decided 
that no more than three branches from the dendrogram 
would be used to stratify the subclasses. Figure 1 depicts 
the four BPD endotypes, that were arbitrarily assigned 
the names A, B, C, and D, as a dendrogram and principal 
components analysis.

Differentially expressed genes across BPD endotypes
Using linear models and empirical Bayes methods, genes 
were tested for significance across the four endotypes. 
Five thousand eight hundred fifty-eight genes had a p 
value < 5% after multiple comparison testing. Supplemen-
tal Fig. 2 shows volcano plots depicting the differentially 
expressed genes according to BPD endotype (e.g., Endo-
type A versus average expression of other Endotypes B, 
C, and D; Endotype B versus average expression of Endo-
types A, C, and D, etc.). Fig.  2 depicts the differentially 
expressed genes across the BPD endotypes via Venn 
diagram and a heatmap. The number of genes that were 
differentially expressed in each cluster were 4,311, 2,965, 

2,625, and 4,051 for Endotype A, Endotype B, Endotype 
C, and Endotype D, respectively. Whereas, 1,207 genes 
were differentially expressed in all endotypes. To work 
with a more manageable dataset we opted to include only 
genes with a p value < 1% (n = 4,553 genes).

Phenotypic characteristics of BPD endotypes
The BPD case group consisted of 62 neonates. Table  1 
provides the demographic characteristics of the cohort 
separated by the four endotypes. Endotype A was com-
prised of neonates with a larger gestational age and 
birthweight. As expected, they had the lowest rates of 
moderate/severe BPD (7.7%). Endotypes B, C, and D 
had gestational ages between 25 weeks to 26 weeks and 
a birthweight range between 690 and 940  g. Interest-
ingly, Endotype D had a low rate of moderate/severe BPD 
compared to Endotypes B and C (36% vs. 62% vs. 60%, 
respectively).

Pathways involved in differentially expressed genes across 
BPD endotypes
The 4,553 differentially expressed genes represented 
part of four Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways seen in Fig. 3A. The pathway with the 
largest log adjusted value dealt with T helper 17 cell dif-
ferentiation, followed by T cell receptor signaling. The 
genes aligning with the T helper 17 cell differentiation 
pathway can be viewed in Supplemental Fig.  3. Fig.  3B 
highlights the biological processes involved in the dif-
ferentially expressed genes. Eleven of the 19 (57.9%) 

Fig. 1 A) Unsupervised hierarchical clustering of 62 neonates with BPD demonstrated as a dendrogram. Agglomerative clustering with Euclidean dis-
tances and Ward’s linkage was used to create four endotypes up to the third-order branching patterns of the condition tree. B) Principal components 
analysis demonstrating spatial separation among the BPD endotypes based on 7,319 genes differentially expressed in BPD
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processes focused on the immune system. Specifically, 
neutrophil activation or degranulation were among the 
top processes.

Predicting endotype on day of life 5
Using supervised machine learning, we identified 20 
genes that could serve as predictors for BPD endotype on 
day of life 5 (Fig. 4A). The table summarizes the discrim-
inatory ability of the genes. To decrease the number of 
genes used to separate the endotypes, we passed a MARS 
algorithm on the top 20 genes (Supplemental Figs. 4 and 
5). Fig.  4B illustrates the genes that were automatically 
selected as the best predictors for stratifying BPD endo-
types. Overall, Endotype A had the lowest normalized 
expression of these genes, while the subsequent endo-
types had a gradual increase in gene expression.

Discussion
We have identified four BPD endotypes using whole 
genome microarray data from peripheral blood obtained 
in the first week of life. Pathway analysis clarified that 
T helper cell and T cell signaling distinguishes the BPD 
endotypes. We then identified a simplified combination 
of four genes that may be used for targeted discrimina-
tion across the BPD endotypes. Overall, these findings 
suggest that peripheral blood-based transcriptomics, 
combined with machine learning methods may help 
identify BPD subclasses in premature neonates.

Despite over 50 years of studying BPD, effective ther-
apies for this condition are largely lacking [20]. Data 
derived from preclinical work and small-sized pilot stud-
ies have translated to multiple clinical trials; however, 
most of these studies have failed to show a reduction in 
BPD rates [21]. Reasons for these failures include studies 

Table 1 Patient characteristics according to proposed BPD endotypes
Variable Endotype A (n = 13) Endotype B (n = 13) Endotype C (n = 25) Endotype D (n = 11) P value
Gestational age (weeks) 28.0

(26.0, 29.0)
25.0
(24.0, 26.0)

26.0
(25.0, 29.0)

26.0
(25.0, 26.0)

0.017

Birthweight (grams) 950
(800, 1,140)

690
(600, 800)

940
(720, 1,030)

800
(700, 850)

0.017

Sex 0.3
 Girl 7 (54%) 4 (31%) 7 (28%) 6 (55%)
 Boy 6 (46%) 9 (69%) 18 (72%) 5 (45%)
BPD Severity 0.007
 Mild 12 (92%) 5 (38%) 10 (40%) 7 (64%)
 Moderate/severe 1 (7.7%) 8 (62%) 15 (60%) 4 (36%)
Continuous variables described as median (IQR); Categorical variables described as n (%)

Statistics used included Kruskal-Wallis rank sum test and Fisher’s exact test

Fig. 2 A) Venn diagram illustrating overlap/separation of genes by BPD endotype. B) Unsupervised hierarchical clustering of 62 neonates with BPD 
and heatmap summarizing peripheral blood gene expression on day 5 across endotypes. Each column represents a sample and the four endotypes are 
clustered according to color. Each row represents a gene and the colors indicate the magnitude of expression (all genes have been log2 transformed and 
quantile normalized). Blue denotes low gene expression and red represents high expression
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Fig. 4 A) Performance metrics of top 20 genes used to predict BPD endotype on day 5. B) Boxplots with median and interquartile range of expression of 
four genes identified via machine learning that discriminates the BPD endotypes. Kruskal-Wallis test used to assess statistical differences among groups

 

Fig. 3 A) Barplot describing gene ontologic processes involved in the 4,553 differentially expressed genes (q value < 1%) expressed between the BPD 
endotypes by the negative log false discovery rate. B) Biologic processes involved in the differentially expressed genes within the BPD endotypes

 



Page 7 of 9Moreira et al. Respiratory Research          (2023) 24:284 

targeting neonates with set inclusion criteria that focus 
on phenotypic information that does not necessarily cor-
relate with the underlying diseases processes [22]. For 
example, most of the studies will include neonates with 
a birthweight ≤ 1500  g or a gestational age less than 32 
weeks. However, our work suggests that more targeted 
efforts to identify those neonates most likely to benefit 
from particular interventions are needed, and that these 
efforts should focus on characteristics that can be directly 
related to disease processes. Phenotypic classification of 
patient populations is not enough- as we demonstrate 
here, transcriptomic data should be leveraged to produce 
a holistic understanding of patient population structure 
and generate appropriate inclusion or exclusion criteria.

In this case, although Endotypes B, C, and D, had simi-
lar gestational ages, two of the groups (B and C) had a 
much higher rate of moderate-severe BPD. These are 
the neonates that should be targeted in clinical trials. 
Early, novel intervention in these specific populations 
may demonstrate BPD mitigation, while continuing with 
standard of care for neonates belonging to Endotypes A 
and D could help save valuable resources when design-
ing future clinical trials. Identification of BPD subclasses 
could thus aid in developing therapies that are more pre-
cise because the endotypes are surrogates of the under-
lying mechanisms of a particular neonate’s lung disease 
[22].

Long known to be critical influencers of lung develop-
ment, the T-cell receptor signaling pathways are com-
plex networks of molecular interactions responsible for 
maintaining the balance between innate and adaptive 
immunity [23]. In preterm infants, the immature immune 
system must contend with a sudden barrage of environ-
mental pathogens and invasive medical interventions in 
a setting of hemodynamic instability, metabolic dysfunc-
tion, and oxidative stress [24]. Additionally, because pre-
natal inflammatory insults often contribute to preterm 
birth, many preterm infants have already experienced an 
intrauterine immune challenge before they even encoun-
ter the extrauterine environment [25]. Varying combina-
tions of these endogenous and exogenous inflammatory 
risk factors interact with the newborn biome to produce 
the variety of disease phenotypes that are observed in 
BPD [20].

Within our cohort, endotypes A and D both had 
reduced incidence of severe disease, but as seen on the 
heatmap in Fig. 2B, patterns of gene expression in these 
endotypes appear to mirror each other, with endotype A 
exhibiting reduced expression where endotype D exhibits 
increased expression, and vice versa. While we must con-
sider the role of gestational age and increased lung matu-
rity in endotype A, it appears that an attenuated early 
inflammatory response may represent the most beneficial 
strategy for prevention of severe BPD. This is consistent 

with many studies which have shown that increases in T 
helper 2 induced cytokines are associated with BPD [13, 
25–27]. However, among the infants born more prema-
turely (endotypes B, C, and D) it appears that an early, 
robust inflammatory response may be protective against 
development of severe BPD (endotype D). Indeed, Aba-
lavanan et al. found that lower concentrations of inter-
leukin-17 in the blood were associated with BPD or 
death [28]. Moreover, this large study also found that an 
impaired transition from the innate immune response 
via neutrophil activation associated with BPD or death. 
Similarly, when we assessed biologic processes altered 
on day of life 5 we found that neutrophils were critical in 
the protection/development of BPD. Because these data 
represent one time point only, we cannot say with cer-
tainty, but it seems likely that the inflammatory response 
in group D must be transient, else we would expect to see 
increased lung injury and arrested development in the 
setting of an uncontrolled inflammatory response. Hum-
berg et al. explain the effects of such “sustained inflam-
mation” as a moderator between survival and long-term 
morbidities in preterm infants [29].

To some extent, endotypes B and C also appear to have 
mirrored expression patterns, although the effect is less 
dramatic, the magnitude of differences in gene expression 
levels in these endotypes appears to be smaller. Still, these 
endotypes are associated with the highest rates of severe 
disease despite the fact that they contain infants of simi-
lar sizes and gestational ages. These endotypes do tend 
to have more males, although this difference was not sta-
tistically significant. Male sex has often been associated 
with poorer respiratory outcomes [2, 8, 26]. Endotype B 
exhibits an overall modest decrease in gene expression, 
which may represent a maladaptive anti-inflammatory 
response or immune exhaustion. In particular, endotype 
C appears to be quite mixed, with greater variation in all 
measured parameters. As this is also the most common 
endotype in our cohort, and has the second-highest rate 
of severe disease, future studies should focus on untan-
gling this variation.

A major challenge in the implementation of precision 
medicine is the assessment of disease parameters for the 
identification of patients most likely to benefit from a 
particular treatment. Because it would be highly imprac-
tical and inefficient to perform transcriptomic profiling 
of all the genes for clinical diagnostics, we developed a 
simplified algorithm based on four genes that can dis-
criminate between the four BPD endotypes. This algo-
rithm would utilize a small peripheral blood sample, even 
a blood spot, to classify infants by BPD endotype as early 
as day of life five.

Although our work shows promise, our study does 
have limitations. For example, our study includes a small 
number of neonates with BPD from a homogeneous 
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population derived from a single center. Validation of 
our model in an external cohort of neonates would 
strengthen the generalizability of our findings. Another 
limitation is that our data is retrospective in nature and 
would need to be reproduced in a prospective manner. 
Strengths of this study include leveraging bioinformat-
ics with artificial intelligence to develop BPD endotypes 
for the first time. Furthermore, we used an unsuper-
vised algorithm to identify patterns within the genes to 
decrease selection bias that often occurs when using a 
supervised approach [30]. We also generated a simpli-
fied signature of four genes that can potentially be used 
for early classification of infants into our BPD endotypes, 
with implications for individually-tailored intervention 
strategies.

In the future, it will be also important to understand 
how gene expression levels and associated biological 
pathways within the proposed endotypes may change 
over time, in order to identify targets for interventions. 
It will also be important to determine the relationships 
between BPD endotypes and clinical factors such as pre-
natal infection, exposure to corticosteroids, and postna-
tal medical interventions including ventilation strategies 
and nutritional support [29, 31].  A recent abstract by 
Ofman et al., employed a similar unsupervised machine 
learning algorithm for BPD endotyping. However, their 
analysis focuses on clinical data and not bioinformatic 
data [29]. BPD remains a complex and costly disease 
with long-term implications on an individual’s health 
and quality of life [30]. As medical technology contin-
ues to improve, allowing for the survival of increasingly 
smaller, sicker babies, the impact of BPD on global health 
will only expand. New therapeutic and preventive strat-
egies are desperately needed to combat the detrimental 
effects of this disease. Emerging multi-omic technologies 
can provide the multifaced insight needed to meet these 
challenges.
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