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Abstract 

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with a poor prognosis. Current/available 
clinical prediction tools have limited sensitivity and accuracy when evaluating clinical outcomes of IPF. Research 
has shown that focal adhesion kinase (FAK), produced by the protein tyrosine kinase 2 (PTK2) gene, is crucial in IPF 
development. FAK activation is a characteristic of lesional fibroblasts; Thus, FAK may be a valuable therapeutic 
target or prognostic biomarker for IPF. This study aimed to create a gene signature based on PTK2-associated genes 
and microarray data from blood cells to predict disease prognosis in patients with IPF. PTK2 levels were found to be 
higher in lung tissues of IPF patients compared to healthy controls, and PTK2 inhibitor Defactinib was found to reduce 
TGFβ-induced FAK activation and increase α-smooth muscle actin. Although the blood PTK2 levels were higher in IPF 
patients, blood PTK level alone could not predict IPF prognosis. From 196 PTK2-associated genes, 11 genes were 
prioritized to create a gene signature (PTK2 molecular signature) and a risk score system using univariate and multi-
variate Cox regression analysis. Patients were divided into high-risk and low-risk groups using PTK2 molecular signa-
ture. Patients in the high-risk group experienced decreased survival rates compared to patients in the low-risk group 
across all discovery and validation cohorts. Further functional enrichment and immune cell proportion analyses 
revealed that the PTK2 molecular signature strongly reflected the activation levels of immune pathways and immune 
cells. These findings suggested that PTK2 is a molecular target of IPF and the PTK2 molecular signature is an effective 
IPF prognostic biomarker.

Introduction
Idiopathic pulmonary fibrosis is the most prevalent and 
the most fatal form of idiopathic interstitial pneumo-
nias, with an average survival rate of 2.5 to 3.5 years [1]. 

Although the precise cause of IPF is not yet understood, 
it is believed to result from repetitive alveolar dam-
age coupled with dysfunctional alveolar wound-healing 
molecular mechanisms [2], an increase in myofibroblasts, 
and abnormalities in macrophages and fibrocytes [3]. 
Identifying effective IPF biomarkers could help clinicians 
more accurately predict outcomes, monitor disease pro-
gression, and guide treatment decisions for IPF patients. 
Additionally, new markers could also provide insights 
into the underlying mechanisms of the disease and could 
potentially lead to the development of new therapies.

Currently, forced vital capacity (FVC) is the most com-
monly used prognostic marker for IPF [4]. FVC may not 
always accurately reflect disease severity, particularly in 
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early stage patients or those with preserved lung volumes. 
FVC is often affected by factors such as age, gender, and 
height and may not be sensitive enough to detect sub-
tle changes in disease progression. In addition to FVC, 
several other prognostic tools are used for IPF, includ-
ing high-resolution computed tomography (HRCT) [5], 
gender, age, lung physiology (GAP) index [6], the com-
posite physiologic index (CPI) [7], and blood biomarkers 
[8]. These tools provide additional information and may 
be used to predict mortality and disease progression, but 
accuracy is limited. Therefore, the development of new 
and improved prognostic markers for IPF is an important 
area of research.

Transforming growth factor (TGF)-β activation has 
been implicated in both IPF and airway remodeling [9]. 
It is considered a central pro-fibrotic cytokine in IPF 
[9]. TGF-β1 promotes myofibroblast differentiation and 
enhances fibrotic responses in the lung [10]. Myofibro-
blasts are recognized as the primary cell type responsible 
for increasing production of extracellular matrix (ECM) 
proteins and activating focal adhesion kinase (FAK) [11]. 
FAK, an integrin-associated cytoplasmic tyrosine kinase 
encoded by the protein tyrosine kinase 2 (PTK2) gene, 
plays a critical role in organ fibrosis and the develop-
ment of fibrotic disorders [12, 13]. As such, it is a poten-
tial target for anti-fibrotic therapy in IPF. Several studies 
of mouse models have shown that FAK inhibitors may 
block TGF-β1-induced myofibroblast differentiation, 
reduce ECM production, and alleviate pulmonary fibro-
sis [14–16].

Blood biomarkers have been shown to correlate with 
the progression and development of IPF [8]. However, 
these biomarkers remain experimental and are not widely 
used in clinical trials. Non-invasive biomarkers that 
reveal specific pathways and gene sets across blood sam-
ples from IPF patients could be valuable tools for deter-
mining disease stages, predicting clinical outcomes, and 
assisting in selecting personalized treatments. Despite 
TGF-β1-ECM-FAK being recognized as key proteins in 
IPF and FAK inhibitors being used in several IPF ani-
mal model studies [14, 15], no research has focused on a 
FAK-based gene signature for IPF prognosis.

In this study, we confirmed that FAK is upregulated in 
IPF lung tissue and therefore FAK inhibition can be used 

as a therapeutic strategy against TGF-β1-induced ECM 
remodeling. Importantly we identified a PTK2-associated 
gene signature by analyzing our discovery cohort and the 
STRING database using univariate and multivariate COX 
regression analyses. We included 11 genes to create a risk 
score prognostic system. We verified this gene signature 
in discovery and validation cohorts, demonstrating that 
this risk score system is an independent and robust prog-
nostic gene signature for IPF.

Methods
Acquisition of datasets
To determine PTK2 expression levels in IPF patients and 
healthy controls, we conducted a systematic search of the 
GEO database using the keywords “idiopathic pulmonary 
disease,” “lung tissues,” and “microarray.” The criteria for 
inclusion included: investigations that had IPF patients 
and healthy individuals as healthy control, microarray 
datasets, and studies that utilized samples from lung 
tissues. On the other hand, the criteria for exclusion 
included: studies based on animal research, application 
of RNA-sequencing datasets, lack of a healthy control 
group, and studies that provided data derived from non-
lung tissue samples. Many studies were excluded due to 
presence of animal research, RNA-sequencing data, and 
non-lung tissue samples, or the absence of healthy con-
trols. We included three datasets in this study (Table 1), 
from which we downloaded and normalized microarray 
data. The transcripts per kilobase million (TPM) normal-
ization method was used for gene expression normali-
zation in this study. Three microarray datasets [17–19], 
comprising 98 lung tissue samples in total, were included 
in this study. These IPF lung tissue samples were collected 
from diagnostic surgical biopsy or transplantation involv-
ing IPF patients. On the other hand, normal lung tissues 
were gathered from surrounding tissues during lung can-
cer resections or standard lung volume reduction from 
healthy donors. We then extracted sample count, mean, 
and standard deviation values for both healthy controls 
and IPF patients from the microarray data. A random-
effects model meta-analysis was performed using the R 
package “meta” (version 6.2-1).

Additionally, we carried out a systematic search in the 
GEO database for datasets containing clinical outcomes 

Table 1 Datasets Summary

Type Sample Count (IPF/Healthy 
Control)

Platform

GSE24206 Lung tissue 17 (11/6) Affymetrix Human Genome U133 Plus 2.0 Array

GSE110147 Lung tissue 33 (22/11) Affymetrix Human Gene 1.0 ST Array

GSE53845 Lung tissue 48 (40/8) Agilent-014850 Whole Human Genome Microarray
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for IPF patients. The keywords used were “idiopathic pul-
monary disease,” “clinical outcome,” “microarray,” “sur-
vival,” and “blood.” The criteria for inclusion included: 
microarray datasets, studies that contained clinical out-
comes, and those that used blood samples. On the other 
hand, our exclusion criteria included: animal-based 
research studies, use of RNA-sequencing datasets, stud-
ies without clinical outcome data, and studies that pro-
vided data derived from non-blood samples. Three 
datasets were included in this study (Table 2), and micro-
array data were downloaded and normalized accordingly. 
The three microarray datasets [20–22], including 172 
peripheral blood samples from IPF patients, were utilized 
to generate and validate a prognostic gene signature. 
These IPF patients were tracked from the point of blood 
collection until death, transplant, or final follow-up. 
Thus, clinical outcomes have been recorded, including 
time to such outcomes. GSE27957 served as the discov-
ery cohort, while GSE28042 and GSE93606 functioned as 
validation cohorts.

Identification of PTK2‑related genes
We obtained PTK2-related genes and protein–protein 
interaction (PPI) networks from the STRING database 
(https:// string- db. org/), using the following settings: 
inclusion of all active interaction sources, high confi-
dence interaction score (0.7), and a maximum of 500 
interactors. We are using "FAK" as the protein name 
input and "Homo sapiens" as the organisms input. Only 
the first shell containing proteins that directly interact 
with FAK was included in this study. Tab-separated value 
files were downloaded for further analysis, and KEGG 
analysis was also conducted within the database.

Kaplan–Meier analysis for the PTK2 single‑gene model
The patients in these datasets were divided into PTK2 
high and low groups using the median PTK gene 

expression value as the cutoff. The Kaplan–Meier method 
was used to estimate the survival curves of IPF patients, 
which was carried out using R packages “survminer” 
(version 0.4.9) and “survival” (version 3.5-5). The groups 
were compared via the log-rank test.

Construction of risk score prognostic model
Univariate and multivariate Cox regression analyses, 
employing the same R packages as the Kaplan–Meier 
method, were conducted to assess the prognostic impact 
and create a gene signature model for prediction. To 
analyze the prognostic roles of the PTK2-related genes, 
we conducted univariate Cox regression analysis in the 
discovery cohort. IPF patients without follow-up data 
were excluded from this analysis. Genes with a log-rank 
P value < 0.05 were considered significant and identified 
as IPF survival-associated genes (Table 3). Subsequently, 
a multivariate Cox regression analysis was performed to 
select these IPF survival-associated genes for the devel-
opment of a risk-scoring system. Genes with a log-rank 
P value < 0.05 were included in this system (Table  4). 
The formula for the risk-scoring system is presented as 
follows:

n: The number of genes included in PTK2-related gene 
signature;  ei: Standardized gene expression of the ith 
gene; βi: Regression coefficient of the ith gene.

Validation of the risk score prognostic model
Time-dependent ROC curve analysis was performed 
using the R package “timeROC” (version 0.4). The violin 
plots were generated by the R package “ggplot2” (version 
3.4.0). All analyses were two-tailed, and a p-value < 0.05 
was considered statistically significant.

risk score =

n

i=1

(ei ∗ βi)

Table 2 Demographic summary

GSE27957 GSE93606 GSE28042

Count Percentage (%) Count Percentage (%) Count Percentage (%)

Sex

 Male 38 84.44 33 64.71 44 57.89

 Female 7 15.56 18 35.29 32 42.11

Clinical outcome

 Survivors 32 71.11 20 39.22 25 32.89

 Non-survivors 13 28.89 31 60.78 51 67.11

Age (years)

 <  = 65 23 51.11 24 47.06 29 38.16

 > 65 22 48.89 27 52.94 47 61.84

https://string-db.org/
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The patients in these datasets were divided into high-
risk and low-risk groups using the median risk score as 
a cutoff. We identified differentially expressed genes 

(DEGs) between the high-risk and low-risk patients 
with a |fold change (FC)|> 1.2 and false discovery rate 
(FDR) < 0.05 as cutoffs, utilizing the R package “limma” 
(version 3.54.2). For functional enrichment analysis, we 
performed GSVA and GSEA analyses using the R pack-
ages “GSVA” (version 1.46.0) and “GSEA-MSigDB/
GSEA_R” (version 1.2). Heatmaps were created with the 
R package “gplots” (version 3.1.3), while gene correla-
tions and corresponding heatmaps were analyzed and 
generated using the R packages “Hmisc” (version 5.0-1), 
“ggplot2” (version 3.4.0), and “corrplot” (version 0.92).

Estimation of immune cell proportions
As immune cells and the immune system play crucial 
roles in IPF progression, we assessed the proportions of 
immune cells in the blood and compared these between 
the high-risk and low-risk groups. The Cibersort algo-
rithm (R script, version 1.04) was employed to estimate 
immune cell proportions in the discovery cohort.

Cell culture and western blot
Human lung fibroblast cells (IMR90) were obtained from 
ATCC (CCL-186) and maintained in DMEM medium 
supplemented with 10% fetal bovine serum (FBS) and 
1% penicillin/streptomycin at 37 °C with 5%  CO2 atmos-
phere. At 70% cell confluency, we serum-starved the 
IMR90 for 24 h. A commercially available FAK inhibitor, 
Defactinib (2 μM), was utilized to treat TGF-β (2 ng/ml) 
matured IMR90 at passage 5 in vitro.

DHLF-IPF, diseased human adult lung fibroblasts, 
were obtained from Lonza (CC-7231) and maintained 
in FBM-2 fibroblast growth medium at 37  °C with a 5% 
 CO2 atmosphere. When the cell confluency reached 70%, 
we treated the DHLF-IPF cells with Defactinib (2 μM) at 
passage 5 in vitro.

Table 3 44 gene Signature Summary

Gene Name Coefficient Hazard ratio P_value

ACTA1 5.100 160.000 0.012

ACTN1 1.300 3.700 0.008

ARHGEF6 − 2.500 0.082 0.005

ARHGEF7 − 5.600 0.004 0.013

ASAP1 1.900 6.700 0.013

BMX 2.100 8.500 0.006

CASP6 − 1.700 0.190 0.016

CASP7 − 2.200 0.110 0.001

CAST − 1.500 0.210 0.010

EDIL3 1.200 3.500 0.007

EZR − 2.400 0.090 0.003

FCER1A − 0.780 0.460 0.009

FGR 2.800 17.000 0.017

FLT1 4.100 62.000 0.014

FYN − 2.200 0.110 0.008

HCK 1.400 4.100 0.040

HSP90AA1 − 2.000 0.140 0.026

ITGA4 − 2.700 0.066 0.002

ITGA5 1.900 6.900 0.023

ITGB7 − 1.700 0.180 0.008

LCK − 1.600 0.200 0.001

MAPK1 3.400 29.000 0.016

MAPK8IP3 5.700 310.000 0.007

MEF2C − 2.500 0.083 0.012

NCK1 − 2.400 0.093 0.001

NOLC1 − 2.500 0.081 0.006

PIK3CA − 2.200 0.110 0.016

PIK3R1 − 2.100 0.120 0.001

PIK3R3 − 3.500 0.031 0.002

PLCG1 − 3.000 0.050 0.000

PRKACB − 1.600 0.210 0.001

PTEN 2.000 7.200 0.012

PTPN13 − 4.200 0.015 0.002

PVRL1 4.000 54.000 0.015

RASA1 − 1.700 0.190 0.049

SH3GL1 5.900 370.000 0.005

SIRPA 1.100 3.000 0.026

SOCS3 1.900 6.400 0.010

SPTAN1 − 2.700 0.065 0.002

STAT3 1.800 6.300 0.017

SYK 2.200 8.800 0.012

TLN1 1.800 5.800 0.015

UTRN − 2.100 0.120 0.008

WAS 2.300 10.000 0.032

Table 4 11 gene signature summary

Gene Name Coefficient P_value

ACTN1 − 17.5 0.007

ASAP1 18.9 0.004

BMX 16.3 0.007

EDIL3 4.94 0.037

FGR 29 0.022

HCK − 11.7 0.028

ITGA5 27.4 0.026

MAPK8IP3 22.3 0.049

PTEN 13.9 0.013

SIRPA − 23.9 0.003

SOCS3 15.4 0.009
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The evaluation of FAK phosphorylation and typical 
fibrosis markers (pY397-FAK, FAK, and alpha smooth 
muscle actin (α-SMA)) was conducted through western 
blot analysis. A series of primary antibodies including 
anti-pY397-FAK (1:1000; D20B1, Cell Signaling), anti-
FAK (1:1000; 3285T, Cell Signaling), anti-⍺-SMA (1:1000; 
A2547, Sigma) and anti-β-actin (1:1000; A1978, Sigma) 
were used in this study.

Statistical analyses
GraphPad Prism software (GraphPad Software, San 
Diego, CA) was used to perform all statistical calcula-
tions for experiments other than transcriptomic analysis. 
The means ± SDs were calculated, and significance was 
determined by either the unpaired t-test or ANOVA. For 
ANOVA, Tukey’s multiple comparisons test was utilized. 
A p-value < 0.05 was considered significant.

Results
FAK is upregulated in IPF lungs
The confirmation of PTK2 gene expression up-regulation 
in IPF has yet to be established. We decided to employ 
a meta-analysis to examine PTK2 gene expression in IPF 
lung tissues using the GEO database, including three 
transcriptomic datasets in our research (Table 1). Forest 
plots with a random effect model revealed higher PTK2 
gene expression levels in IPF compared to healthy con-
trols (heterogeneity p-value: 0.014, Fig.  1A). The funnel 
plot depicted in Fig. 1B demonstrates an absence of bias 
in the included studies. Based on all three transcriptomic 
studies, we have confirmed an increase in FAK/PTK2 
expression in lung tissues from IPF patients.

FAK inhibitor Defactinib can attenuate TGF‑β induced 
fibrosis in vitro
Next, we examined the feasibility of inhibiting FAK to 
treat IPF. Defactinib, a highly selective FAK inhibitor was 
used to treat TGF-β (2 ng/ml) challenged lung fibroblast 

cells (IMR90) and DHLF-IPF cells in vitro. We assessed 
FAK phosphorylation (pY397-FAK) and common fibrosis 
marker alpha smooth muscle actin (α-SMA) via western 
blot (Additional file 2: Fig. S1A, B, Additional file 3: Fig. 
S2A, B, Additional files 4, 5, 6, 7). The α-SMA is com-
monly utilized as an indicator for identifying subsets of 
fibroblasts that drive the progression of fibrosis. Defac-
tinib diminished both pY397-FAK and fibrotic marker 
α-SMA in TGF-β activated fibrotic IMR90 and DHLF-
IPF cells. Meanwhile, we observed that Defactinib could 
restore the TGF-β remodeled cellular morphology of 
IMR9 and DHLF-IPFAQ5 cells (Additional file  2: Fig. 
S1C, Additional file  3: Fig. S2C). These data confirmed 
that FAK is a viable therapeutic target for IPF in this 
in vitro model of fibrosis.

Blood PTK2 has limited diagnostic power
We hereby confirm that the PTK2 gene, which 
encodes for FAK, is a potential biomarker for IPF. In 
this study, we analyzed three GEO datasets compris-
ing IPF patients with clinical outcomes and blood 
samples. GSE27957 was used as the discovery cohort, 
while GSE28042 and GSE93606 were used as valida-
tion cohorts. Table 2 presents a summary of the demo-
graphic information for these datasets. Although FAK 
is increased in IPF tissues, our data does not suggest 
that the PTK2 gene alone can predict the prognosis of 
IPF patients. We observed that increased expression 
levels of the PTK2 gene in peripheral blood mononu-
clear cells (PBMCs) were associated with improved 
survival in IPF patients in the discovery cohort only, 
with no significant correlations found in the valida-
tion cohorts (Fig.  2A–C). The differences in clinical 
outcomes for PTK2 in IPF patients are complex, and 
disease processes often involve changes in the expres-
sion patterns of groups of genes with similar biological 
functions or strong correlations. Therefore, a significant 
alteration in these gene sets is more biologically reliable 

Fig. 1 Meta analysis of gene expression of PTK2 in IPF patients (A–B). Gene expression of FAK/PTK2 was higher in lung tissue samples of individuals 
with IPF when compared to healthy controls (A)



Page 6 of 12Feng et al. Respiratory Research          (2023) 24:304 

and interpretable than a change in a single gene such 
as PTK2. Consequently, we have initiated the develop-
ment of a gene signature based on PTK2-related genes 
to better predict the prognosis of IPF patients.

A FAK‑associated gene signature model is established
The overall study workflow is depicted in Fig. 3A. PTK2-
related genes were acquired from the STRING database 
with the search parameters including all active interac-
tion sources (see Additional file 1: Table S1), the highest 
confidence interaction scores, and the maximum num-
ber of interactors. A total of 196 genes were identified 
as PTK2-associated in the STRING network, yielding a 
significant protein–protein interaction (PPI) enrichment 
score (p-value for enrichment < 1.0e−16). Through Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis, VEGF signaling pathways, ECM–receptor inter-
action, and focal adhesion pathways were found to be 
enriched among these genes (Fig. 3B).

Subsequently, we aimed to identify IPF survival-related 
genes from the 196 genes by performing univariate Cox 
regression analysis, a method commonly employed in 
clinical research to examine the relationship between 
patient survival time and a single predictor variable. Of 
the 196 genes, 44 were found to be associated with IPF 
prognosis (Table  3). Multivariate Cox regression analy-
sis was then used to create a gene signature, with 11 
genes demonstrating significant log-rank test p-values 
being included in the final PTK2-associated gene sig-
nature (Table  4). These genes exhibited strong interac-
tions within the PPI network (Fig. 3C). Notably, only the 
FAK-associated pathway of focal adhesion was enriched 
among these genes (Fig.  3D). Interestingly, the correla-
tion matrix (Fig.  3E) revealed a strong positive correla-
tion between a group of several genes, including FGR, 
HCK, ITGA5, ASAP1, and SIRPA.

PTK2‑associated gene signature is used to predict IFP 
survival in both discovery and validation cohorts
We used the expression levels and Cox coefficients of 
the 11 genes to calculate risk scores for individual IPF 
patients. First, we compared risk scores between non-
survivors and survivors. Interestingly, our gene signature 
was able to distinguish non-survivors from survivors in 
both the discovery and validation 1 cohorts (Fig.  4A), 
which was further validated by the receiver operating 
characteristic (ROC) curve (Fig. 4B).

To assess the reproducibility of our risk score system, 
we analyzed 11-gene risk profiles in these independent 
IPF cohorts. Using the median value of the risk score as 
a cutoff, patients were divided into high-risk and low-
risk groups, and Kaplan–Meier curves were performed 
to evaluate our risk score system’s performance. Remark-
ably, the 11-gene risk score system significantly predicted 
mortality in the discovery, validation 1, and validation 
2 cohorts (Fig.  4C). We also conducted ROC curves to 
evaluate the risk score at 1-, 3-, and 5-year overall sur-
vival. The discovery and validation 1 cohorts exhibited 
a relatively better performance in separating the two 
groups (Fig. 4D). These results reinforced the potential of 
PTK2-associated genes in predicting IPF patient progno-
sis and suggested an overlapping clinical outcome-related 
gene signature between PTK2 and IPF.

Immune cell activation is found in high‑risk patients
To identify alterations in enriched pathways between 
high-risk and low-risk groups in the discovery phase, we 
analyzed differentially expressed genes (DEGs) between 
the two groups. A total of 577 up-regulated and 685 
down-regulated genes, depicted in the volcano plot 
(Fig.  5A), were identified in the high-risk group. Up-
regulated genes were primarily enriched in immunity or 
cancer-related pathways (Fig. 5B), while down-regulated 

Fig. 2 Kaplan Meier curve for single gene PTK2 in IPF. High PTK2 gene expression in blood samples was not strongly associated with prognosis 
of IPF (A–C)
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genes were enriched in mRNA translation or neurode-
generative disease-related pathways (Fig.  5C). To inves-
tigate pathway activity changes in the high-risk group, 
we conducted gene set variation analysis (GSVA), a 
framework that transforms gene expression profiles into 
pathway expression patterns. A total of 16 significant 
pathways (Fig. 5D) were detected in the high-risk group, 
with several immunity or cancer-related pathways reap-
pearing in the GSVA heatmap. Gene set enrichment 
analysis (GSEA) results, including a list of KEGG path-
ways, also confirmed the enrichment of focal adhesion, 
MAPK, JAK-STAT, and VEGF pathways in the high-risk 
group (Fig. 5E).

Since immune cell activation plays a crucial role in the 
development and progression of IPF [23–27], we ana-
lyzed estimated proportions of immune cells in these two 
groups to evaluate immune cell regulation in the high-
risk group. We employed Cibersort, a powerful tool for 

assessing percentages of immune cell type in blood based 
on gene expression profiles from RNA-sequencing data. 
The estimated proportions of immune cells showed that 
monocytes, natural killer cells, neutrophils, and T and B 
cells constituted the largest portions in total blood sam-
ples from the discovery cohort (Fig. 5F). Compared to the 
low-risk group, the high-risk group exhibited increased 
percentages of neutrophils and plasma cells, along with 
decreased percentages of activated or resting CD4+ T 
cells (Fig. 5G).

Discussion
IPF is a progressive, chronic, and fatal fibrotic lung dis-
ease. Although considered rare, its occurrence is nearly 
as frequent as brain and stomach cancers [28, 29]. IPF 
prognosis remains poor, partly due to the absence of reli-
able prognostic biomarkers to guide personalized treat-
ment. The lack of effective biomarkers to predict IPF 

Fig. 3 A gene signature associated with PTK2 was generated to predict the prognosis of IPF. In the discovery cohort, a pipeline illustrated 
in flowchart (A) was used to generate a gene signature associated with PTK2, followed by KEGG analysis (B) to identify all pathways enriched 
among PTK2-associated genes. The 11 genes within the PTK2-associated gene signature were then subjected to a PPI network analysis (C), 
additional KEGG analysis (D), and correlation heatmap analysis (E)
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development and progression makes it challenging to 
determine whether patients should receive novel thera-
pies or undergo lung transplantation. Recent evidence 
suggests that gene signatures in blood samples may be 
crucial and efficient tools for predicting IPF prognosis 
and development [30, 31]. As a result, establishing a risk 
score system based on a gene signature for IPF is crucial 
for predicting patient outcomes.

In this study, we identified and analyzed an 11-gene 
signature based on PTK2-associated genes and IPF-
survival-related genes in peripheral blood from 177 
IPF patients across three independent, transplant-free 
cohorts. The upregulation of PTK2 expression in IPF 
was determined through a meta-analysis. We discovered 

a total of 196 PTK2-associated genes in the STRING 
database. Out of these 196 genes, 44 were identified as 
survival-related genes in IPF patients using univariate 
COX regression analysis. Subsequently, we developed 
an 11-gene signature and corresponding risk score sys-
tem through multivariate COX regression analysis. By 
employing our PTK2-associated gene signature-gener-
ated risk score system, we derived risk profiles that dif-
ferentiated two IPF patient groups with significantly 
different clinical outcomes in all three cohorts. The find-
ings of this study may aid in identifying high-risk patients 
and implementing personalized treatment in the future.

FAK is a component of Focal Adhesions (FAs), which 
is a complex structure formed at the cell’s plasma 

Fig. 4 Validation of PTK2-GS in discovery and validation cohorts. Violin plot (A) and ROC curve (B) of the PTK2-GS in IPF non-survivors and survivors. 
Kaplan Meier Curve (C) and Survival ROC curve for 1, 2 and 3 years of the PTK2-GS in IPF High-Risk and Low-Risk patients
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membrane during interaction with the extracellular 
matrix via integrins. Acting as bridges to carry signals 
from outside to the cellular cytoskeleton, FAs facilitate 
mechanotransduction in endothelial cells. These struc-
tures, coupled with integrins and mechanotransduction 
pathways, are crucial for fibroblast migration, prolif-
eration, and survival. To date, studies on mechanotrans-
duction pathways in IPF have discovered several key 
signaling pathways, including Rho/ROCK and MRTF-A 
signaling pathways. Inhibiting the Rho/ROCK pathway 
reduces lung fibroblast differentiation [32] and α-SMA 
expression [33], while an MRTF-A knockout also leads 
to reduced α-SMA expression [34]. Meanwhile, integrin 
inhibitors have emerged as potential drug targets for IPF 
treatment in recent years. Clinical trials by Ganesh Raghu 
et  al. showed that the integrin inhibitor BG00011 sup-
pressed TGF-β activation and may interrupt fibrogenesis 

in a Phase II study [35, 36]. An ongoing clinical trial of 
Pliant’s dual αvβ1/β6 inhibitor showed potential effec-
tiveness in a Phase II IPF treatment trial [37].

Nintedanib has recently been approved for treating 
IPF patients. Several clinical studies [38, 39] have dem-
onstrated that the tyrosine kinase receptor inhibitor 
Nintedanib is a secure and proficient treatment for IPF 
patients by diminishing the FVC decline rate. A study by 
Yu et al. [15] determined that Nintedanib therapy could 
impede bleomycin-induced FAK activation, thereby 
inhibiting bleomycin-induced endothelial mesenchymal 
transition. We utilized Defactinib, a selective and effec-
tive ATP-competitive FAK inhibitor, to establish the sig-
nificance of FAK activation in cell fibrosis progression. 
Our in  vitro model of fibrosis confirmed that Defac-
tinib could reduce the expression of the fibrotic marker 
α-SMA and restore the cellular morphology of fibroblast 

Fig. 5 Alternation of gene expression pattern between IPF High-Risk and Low-Risk patients. Differentially expressed genes between the two 
groups were depicted in a volcano plot (A). KEGG analysis was conducted on the up-regulated (B) and down-regulated (C) genes. In the discovery 
cohort, gene set variation analysis (D) and gene set enrichment analysis (E) were performed to discover pathways enriched in High-Risk patients. 
Furthermore, Cibersort was used to estimate the immune cell proportions (F), and changes in immune cell proportions between High-Risk 
and Low-Risk patients were presented in G 
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cells. This led us to hypothesize that FAK-related path-
ways and associated gene expression levels might be use-
ful in predicting IPF prognosis. Our PTK2 gene signature 
validated this hypothesis and introduced a new gene sig-
nature to predict clinical outcomes for IPF patients.

Our GSEA, GSVA, and KEGG analysis data revealed 
that most signaling pathways enriched in the high-risk 
group were immune and cancer-related pathways, such 
as MAPK, JAK-STAT, VEGF, PI3K-AKT. This indicates 
that the inflammatory response, which is the primary 
regulator of IPF’s pathological processes, was heightened 
in the high-risk group. The fibrogenic cytokine TGF-β 
can induce the transcription of extracellular signal-reg-
ulated protein kinase (ERK1/2) target genes, leading to 
secondary activation of the PI3K-AKT pathway. The PI3K 
pathway plays a crucial role in the proliferation and dif-
ferentiation of myofibroblasts induced by TGF-β [40, 41]. 
PI3K inhibitors can prevent the TGF-β-induced increase 
in cell proliferation in IPF [41]. The pathway of VEGF (an 
angiogenesis factor) activation has been implicated in IPF 
pathogenesis [42]. VEGF inhibitors demonstrated dose-
dependent inhibition of TGF-β-induced differentiation in 
IPF [43]. The genes in our PTK2-associated gene signa-
ture are involved in various biological activities strongly 
linked to the proliferation and differentiation of myofi-
broblasts in IPF.

Immune cells play a crucial role in the development 
of IPF, as confirmed by numerous studies. Our findings 
regarding immune cell infiltration levels show that the 
estimated proportions of neutrophils and plasma B cells 
are increased in the high-risk group, aligning with prior 
research on immune cells in IPF. Gregory et al. [44] dis-
covered that neutrophil elastase, a neutrophil-derived 
serine proteinase, could promote myofibroblast differen-
tiation in IPF. Additionally, Achaiah et al. [45] suggested 
that the blood neutrophil ratio was a prognostic indicator 
of disease progression, with an elevated neutrophil ratio 
being linked to rapid lung function decline. Regarding 
plasma cells, Xue et  al. [46] demonstrated that abnor-
malities in plasma B cells were strongly associated with 
patients exhibiting reduced survival years. Meanwhile, 
our study found that the estimated proportion of CD4+ T 
cells was decreased in the high-risk group. CD4+ T cells 
in the blood may have a protective role in IPF, as iden-
tified in a study that showed a decreased percentage of 
CD4+ CD28+ T cells in PBMCs could reduce transplant-
free survival [22].

Our study’s findings indicate that our gene signa-
ture serves not only as a statistical tool for predicting 
IPF prognosis but also offers valuable insights into the 
underlying pathological processes, immune responses, 
and signaling pathways; however, this study has limita-
tions. First, our transcriptome analysis from microarray 

datasets cannot reveal alterations in overall immune 
status and pathways, thus, limiting our ability to make 
generalizations about the overall pathway. Second, since 
the datasets are independent and from different studies, 
some clinical characteristics may be incomplete, such as 
lung function data and grading. Third, the protein levels 
associated with these genes have yet to be established. 
Future tests using proteomics techniques could uncover 
these changes. Fourth, the stage of IPF at the time of 
blood sample collection could impact our prognostic 
model. Future investigations will be conducted to exam-
ine how the stage of IPF influences our blood-borne gene 
signature. Therefore, these findings should be interpreted 
with caution.

In summary, our study developed a novel PTK2-asso-
ciated gene signature with the potential to predict prog-
nosis, serving as a valuable biomarker and therapeutic 
target for patients with IPF.
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