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Abstract 

Introduction Interstitial lung disease (ILD) may be difficult to distinguish from other respiratory diseases due to over‑
lapping clinical presentation. Recognition of ILD is often late, causing delay which has been associated with worse 
clinical outcome. Electronic nose (eNose) sensor technology profiles volatile organic compounds in exhaled breath 
and has potential to detect ILD non‑invasively.  We assessed the accuracy of differentiating breath profiles of patients 
with ILD from patients with asthma, chronic obstructive pulmonary disease (COPD), and lung cancer using eNose 
technology.

Methods Patients with ILD, asthma, COPD, and lung cancer, regardless of stage or treatment, were included 
in a cross‑sectional study in two hospitals. Exhaled breath was analysed using an eNose (SpiroNose) and clinical data 
were collected. Datasets were split in training and test sets for independent validation of the model. Data were ana‑
lyzed with partial least squares discriminant and receiver operating characteristic analyses.

Results 161 patients with ILD and 161 patients with asthma (n = 65), COPD (n = 50) or lung cancer (n = 46) were 
included. Breath profiles of patients with ILD differed from all other diseases with an area under the curve (AUC) 
of 0.99 (95% CI 0.97–1.00) in the test set. Moreover, breath profiles of patients with ILD could be accurately dis‑
tinguished from the individual diseases with an AUC of 1.00 (95% CI 1.00–1.00) for asthma, AUC of 0.96 (95% CI 
0.90–1.00) for COPD, and AUC of 0.98 (95% CI 0.94–1.00) for lung cancer in test sets. Results were similar after exclud‑
ing patients who never smoked.

Conclusions Exhaled breath of patients with ILD can be distinguished accurately from patients with other respiratory 
diseases using eNose technology. eNose has high potential as an easily accessible point‑of‑care medical test for iden‑
tification of ILD amongst patients with respiratory symptoms, and could possibly facilitate earlier referral and diagno‑
sis of patients suspected of ILD.
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Background
Worldwide, over 500 million people suffer from a res-
piratory disease and numbers are increasing, including 
numbers of patients with interstitial lung disease (ILD). 
However, ILDs still remain rare diagnoses. The over-
all global prevalence of ILD is approximately 0.09% [1]. 
Due to the lack of knowledge on ILD and the non-spe-
cific symptoms, recognizing patients suspected for ILD 
is poor amongst primary care physicians and community 
hospitals [2, 3]. Besides nonspecific disease presentation, 
various patient and healthcare related factors play a role 
[4]. Moreover, lung function is often still preserved in 
early ILD. A median delay of up to 2,1 years from start 
of symptoms until diagnosis has been reported and has 
been associated with worse outcomes [3, 5, 6]. Therefore, 
a non-invasive, less costly, accessible and reliable test to 
improve the diagnostic process is highly needed [7].

An electronic nose (eNose) device is a sensor-based 
technique that detects and profiles volatile organic com-
pounds of exhaled breath non-invasively, without identi-
fication of the individual compounds. Both physiological 
and pathophysiological processes in the human body 
influence the volatile organic compounds; thus, exhaled 
breath provides valuable information about a person’s 
health.

Previous studies found that eNose technology can be 
used to accurately identify respiratory diseases, includ-
ing ILD, lung cancer, asthma and chronic obstructive 
pulmonary disease (COPD) [8, 9]. In ILD, breath pro-
files of patients could be differentiated from healthy con-
trols [10–14] and individual ILDs from COPD [11, 12]. 
Exploratory studies in pneumoconiosis show the poten-
tial of using an eNose for screening purposes in ILD [15, 
16].

The aim of the current study is to investigate whether 
exhaled breath analysis using an eNose has potential as 
application for early detection of ILD amongst patients 
with respiratory symptoms. We assessed the accuracy of 
differentiating breath profiles of patients with ILD from 
patients with asthma, COPD, and lung cancer.

Methods
Study design
In this cross-sectional multicenter study patients were 
included at the outpatient clinic of the department of 
respiratory medicine of two hospitals in Rotterdam, the 
Netherlands: Erasmus University Medical Center (recog-
nized expert center for ILD and lung cancer) and Fran-
ciscus Gasthuis & Vlietland (recognized expert center for 
asthma and COPD).

Patients with a diagnosis of ILD, asthma, COPD or lung 
cancer, regardless of stage or treatment were included 
in both hospitals between January 2019 and Decem-
ber 2022. ILD diagnosis was established by a multidis-
ciplinary team according to the most recent guidelines 
[17–19]. At time of diagnosis, patients were diagnosed 
and classified for asthma following the applicable Global 
Initiative for Asthma guidelines [20], and for COPD fol-
lowing the Global initiative for chronic obstructive lung 
disease (GOLD) guidelines [21]. All patients with lung 
cancer had a pathology proven diagnosis. Patients with 
another lung disease, lung carcinoma in situ, current pul-
monary infection or recent alcohol intake (< 8 h) were 
excluded.

Data collection
The eNose used for exhaled breath analysis was the 
SpiroNose (Breathomix, Leiden, The Netherlands). This 
eNose contains seven different metaloxide semicon-
ductor sensors in various arrays on both the inside and 
outside of the device [22, 23]. Each included patient per-
formed one measurement that consisted of two breath 
maneuvers. One maneuver comprises five tidal breaths, 
an inhalation to total lung capacity, followed by a 5 s 
breath hold and a slow maximum expiration. Data were 
collected in an online platform that has a secured certi-
fied database (BreathBase). More details about the breath 
maneuver and breath data collection were described pre-
viously [23].

Participants completed a short questionnaire, including 
demographics, smoking history, and recent medication, 
food or drink intake. Other patient characteristics, medi-
cal history, medication use, and most recent available 
diagnostic test results (e.g., spirometry, chest imaging, 
pathologic assessment, blood samples) were collected 
from medical files.

Data analysis
Pre‑processing
Sensor data was extracted from the BreathBase platform 
and pre-processed before analysis. Pre-processing includes 
selection of the best breath maneuver, data correction for 
ambient air, data scaling to the most stable sensor, and 
reduction of inter-array differences [22, 23]. For each sen-
sor, the peak value and the ratio between peak value and 
breath hold are used for statistical analyses. The peak value 
of the most stable sensor is excluded, resulting in 13 values 
per measurement (i.e. the breath profile) labeled with the 
collected patient characteristics. Measurements of insuffi-
cient quality caused for example by wrong breathing tech-
nique or unstable ambient air are removed.
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Dataset and analysis groups
To answer the main aim of the study, breath profiles of 
patients with ILD were compared to the whole group 
of patients with another respiratory diagnosis (asthma, 
COPD or lung cancer). The four diagnosis groups were 
also compared separately. Moreover, patients with lung 
diseases that often have similar patient characteristics 
and risk factors (idiopathic pulmonary fibrosis (IPF), 
COPD, lung cancer) were compared.

A thorough power calculation was not possible, as data 
from previous similar studies were not available. We 
aimed to include enough patients in each diagnosis group 
to be able to split the groups in a training and test set in 
order to independently validate the results. Looking at 
eNose studies, a dataset size of ≥ 30 patients is generally 
sufficient to split [8]. To avoid imbalance between groups 
and reduction of statistical power of the model, larger 
groups were reduced by random patient selection using 
the function ‘sample’ in R [24].

To assess the influence of smoking on the accu-
racy of findings, comparison of breath profiles from 
patients with ILD versus all other diseases was repeated 
in patients who ever smoked. Moreover, the possible 
influence of medical center was assessed by comparing 
breath data of patients with asthma and COPD who were 
included in Erasmus Medical Center versus Franciscus 
Gasthuis & Vlietland. Lastly, breath data of all patients 
were compared based on their sex (males versus females) 
or smoking history (ever versus never, current versus for-
mer smokers) to test for the influence of these potential 
confounders.

Descriptive statistics were used to analyze baseline 
data, including χ2, Student’s t, and Mann Whitney tests to 
compare groups. We displayed normally distributed data 
as mean values (± standard deviation) and non-normally 
distributed data as median values (interquartile range). R 
version 4.2.1 for Windows with mixOmics version 6.20.0 
package was used for analysis.

Data classification
The supervised classification technique partial least 
squares discriminant analysis (PLS-DA) was used to 
reduce dimensionality of breath profiles, and to classify 
and compare groups. Dimensionality reduction resulted 
in multiple principal components (PCs), which are 
weighted combinations of input variables (i.e. sensor val-
ues). If data was split in a training and test set, the first 
two PCs were used to assess the discriminative ability 
of eNose technology. If a dataset was not split, one PC 

was used to avoid model overfitting. Receiver operating 
characteristics analysis was applied to calculate the cor-
responding area under the curve (AUC) with 95% con-
fidence interval (CI), sensitivity, specificity,  accuracy, 
negative predictive value (NPV), and positive predictive 
value (PPV).

The presence of outliers in the values of PC1 and 2 were 
assessed. Outliers were defined as measurements outside 
upper and lower limits of a box-and-whisker plot. Lim-
its were calculated as quartile 1 and 3 ± 1.5 * interquartile 
range. The main analysis was repeated without outliers to 
assess influence of outliers on the main results.

Probability score prediction of individual patients
To show the eNose performance in clinical practice based 
on our trained PLS-DA model, one hundred patients 
with ILD were randomly selected from the part of our 
dataset that was left out from previous analyses and not 
used for training or testing the model (i.e. unseen data). 
For each patient an individual probability score was cal-
culated (range 0–1) using the ‘predict’ function in R. This 
function predicts how well the new patient data fit the 
average ILD breath profile that resulted from the trained 
PLS-DA model (i.e. PC1 and PC2). The higher the indi-
vidual probability score, the better the breath profile of 
the patient fits the ILD breath profile. A density plot (i.e. 
relative likelihood against probability score*100%) was 
created to display the distribution of probability scores 
for all one hundred unseen dataset of patients with ILD.

Results
Baseline characteristics
322 patients were included in this study; 161 patients 
with ILD were selected (from a total cohort of n = 349) to 
compare to 161 patients with other respiratory diseases 
(65 with asthma, 50 with COPD, and 46 with lung can-
cer). For comparing ILD with individual diagnoses, a sub-
set of 55 randomly selected patients with ILD was used. 
Baseline characteristics of the overall cohort and individ-
ual diagnosis groups are shown in Table 1. An overview 
of the selected patient cohorts for the main analyses is 
shown in a flowchart (Fig. 1).

Main results
Breath profiles of patients with ILD differed from all 
other respiratory diseases with an AUC of 0.97 (95% CI 
0.95–0.99) in the training and 0.99 (95% CI 0.97–1.00) 
in the test set (Fig. 2A). Comparison of ILD with asthma 
(AUC 1.00, 95% CI 1.00–1.00), with COPD (AUC 0.96, 
95% CI 0.90–1.00) and with lung cancer (AUC 0.98, 95% 
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CI 0.94–1.00) showed similar results in the test sets. 
Additionally, breath profiles of patients with COPD and 
lung cancer (AUC 0.97, 95% CI 0.90–1.00) and COPD 
and asthma (AUC 0.90, 95% CI 0.79–1.00) could be dis-
tinguished with high accuracies. A scatter plot in Fig. 2B 
visualizes how breath profiles of all individual disease 
groups relate to each other.

Figure  2C shows the distribution of breath profiles 
of patients with IPF, COPD, and lung cancer. Compar-
ing IPF with COPD resulted in an AUC of 0.93 (95% 
CI 0.86–1.00), and IPF with lung cancer in an AUC of 
0.93 (95% CI 0.82–1.00) in the test sets. Correspond-
ing specificity, sensitivity, accuracy, NPV and PPV of all 
group comparisons can be found in Table 2.

There were 25 outliers in the dataset. The outliers had 
no significant effect on the main results (see Additional 
file 1: Fig. S1 and Table S1).

Predicted probability scores of individual patients
To illustrate how eNose might perform in future clini-
cal practice, the probability of having an ILD was pre-
dicted based on eNose breath data of one hundred 
patients previously diagnosed with ILD. For example, a 
predicted probability of 88% means that the breath pro-
file of this individual patient fits for 88% with the ILD 
breath profile. This might help physicians in clinical 
decision making. Figure 3 shows the distribution of all 
individual probability scores in a density plot.

Table 1 Baseline characteristics

Values are displayed as number (%), mean ± SD, or median [interquartile range]. Subgroup ‘other ILD’ includes interstitial pneumonia with auto-immune features, 
desquamative interstitial pneumonia, vasculitis, unclassifiable ILD, asbestosis, respiratory bronchiolitis-ILD, drug induced ILD, sarcoidosis, granulomatous-lymphocytic 
ILD. If available, lung function values post-bronchodilator are displayed

COP = cryptogenic organizing pneumonia; COPD = chronic obstructive pulmonary disease; CPFE: combined pulmonary fibrosis and emphysema; CT: chemotherapy; 
CTD: connective tissue disease; DLCOc: diffusing capacity for carbon monoxide corrected for hemoglobin level; FEV1: forced expiratory volume in the first second; 
FVC: forced vital capacity; GOLD: Global Initiative for Chronic Obstructive Lung Disease; HP: hypersensitivity pneumonitis; ICS: inhaled corticosteroid; ILD: interstitial 
lung disease; iNSIP: idiopathic non-specific interstitial pneumonia; IPF: idiopathic pulmonary fibrosis; IT: immunotherapy; (N)SCLC: (non-)small cell lung cancer; py: 
pack years; %pred: percent of predicted value, calculated based on sex, age and height

 ~ never smokers (n = 99) excluded. * n = 7 missing values. ** n = 39 missing values. # n = 12 missing values. ^In case of prednisone: dosage ≥ 10 mg

Overall ILD Asthma COPD Lung cancer p-value

Subjects (n) 322 161 65 50 46

Females (n) 154 (47.8) 60 (37.3) 45 (69.2) 23 (46.0) 26 (56.5)  < 0.01

Age (years) 68 [58, 75] 71 [62, 76] 56 [42, 67] 66 [61, 74] 69 [63, 75]  < 0.01

Smoking amount ~ (py) 32.6 (31.5)* 25.8 (23.3) 16.3 (15.9) 49.6 (38.7) 41.9 (38.4)  < 0.01

Smoking status  < 0.01

 Never 96 (30.7) 48 (30.4) 37 (56.9) 0 (0.0) 13 (28.3)

 Former 193 (59.9) 110 (68.3) 23 (35.4) 31 (66.0) 27 (58.7)

 Current 30 (9.3) 2 (1.2) 5 (7.7) 17 (34.0) 6 (13.0)

FVC (%pred) 84.7 (20.6)** 80.7 (20.8) 93.2 (16.7) 84.2 (20.4) 94.2 (22.1)  < 0.01

FEV1 (%pred) 77.3 (22.4)** 81.7 (19.0) 81.6 (21.0) 54.5 (21.3) 85.3 (21.1)  < 0.01

DLCOc (%pred) 51.0 (16.2)#

Diagnosis or Stage (n) IPF 61 (37.9)
HP 27 (16.8)
CTD‑ILD 27 (16.8)
iNSIP 11 (6.8)
CPFE 7 (4.3)
COP 6 (3.7)
Other ILD 22 (13.7)

GOLD I 16 (32.0)
GOLD II 20 (40.0)
GOLD III 7 (14.0)
GOLD IV 7 (14.0)

SCLC 4 (8.7)
NSCLC 42 (91.3)
––––––––––––
Stage I 2 (4.3)
Stage II 0 (0.0)
Stage III 5 (10.9)
Stage IV 39 (84.8)

Eosinophil count  (109/L) 0.2 [0.1, 0.4]**

Use of immunosuppressants (n) 55 (34.2)^ 7 (10.8) 4 (8.0) 9 (19.6)

Use of other disease‑specific medica‑
tion (n)

Antifibrotic 44 (27.3) Biological 14 (21.5)
ICS 59 (90.8)

ICS 30 (50.0) Targeted 30 (65.2)
CT and/or IT 10 (21.7)
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Fig. 1 Flowchart of cohort selection for main analyses. Subgroup analyses are not included in this flowchart. IPF cohort existed of n = 61 patients. 
*Subgroups reduced to size n = 55 by random selection. **If group size ≥ 30, cohorts were split in a training and test set. COPD = chronic obstructive 
pulmonary disease; LC = lung cancer; ILD = interstitial lung disease; IPF = idiopathic pulmonary fibrosis; PLS‑DA = partial least squares discriminant 
analysis

Fig. 2 Comparison of breath profiles between patients with ILD and other respiratory diseases. A Scatterplot of patients with ILD (n = 161) 
versus other respiratory diagnoses (i.e. asthma, COPD, and lung cancer; n = 161). B Scatterplot of patients with ILD (n = 55) versus asthma (n = 65) 
versus COPD (n = 50) versus lung cancer (n = 46). C Scatterplot of patients with IPF (n = 61) versus COPD (n = 50) versus lung cancer (n = 46). Each 
dot represents one patient. Component 1 and 2 are principal components resulting from partial least squares discriminant analysis. COPD: chronic 
obstructive pulmonary disease; ILD: interstitial lung disease; IPF: idiopathic pulmonary fibrosis
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Subgroup results
An additional analysis on the influence of smoking is dis-
played in Table 3. eNose technology performed equally in 
the subgroup of ever smokers compared to the results of 

the full cohort. Moreover, breath profiles were not influ-
enced by sex, or medical center. Current smokers seem 
to have slightly different breath profiles than former 
smokers.

Table 3 Results of breath analysis in subgroups

Results of the cohort that is split in a training and test set are based on 2 principal components; results of the unsplit cohort are based on 1 principal component. 
^Includes asthma and chronic obstructive pulmonary disease patients only, as the number of patients with interstitial lung disease and lung cancer were too small in 
medical center FGV. AUC: area under the curve; CI: confidence interval; COPD: chronic obstructive pulmonary disease; EMC: Erasmus Medical Center; FGV: Franciscus 
Gasthuis & Vlietland; ILD: interstitial lung disease; NPV: negative predictive value; PPV: positive predictive value

Group 1 Group2 n = Dataset AUC 95% CI Specificity Sensitivity Accuracy NPV PPV

ILD (ever smoking) 75 Asthma–COPD–Lung 
cancer (ever smoking)

72 Training 0.99 0.99–1.00 0.99 0.96 0.97 0.96 0.99

37 36 Test 0.94 0.89–0.99 0.86 0.95 0.90 0.94 0.88

Never smoker 96 Ever smoker 223 0.66 0.60–0.73

Current smoker 30 Former smoker 193 0.80 0.73–0.87

Male sex 168 Female sex 154 0.67 0.61–0.73

Hospital EMC 254 Hospital FGV 73 0.64 0.53–0.74

Table 2 Results of breath analysis between patient groups

Results based on 2 principal components. AUC: area under the curve; CI: confidence interval; COPD: chronic obstructive pulmonary disease; ILD: interstitial lung 
disease; IPF: idiopathic pulmonary fibrosis; NPV: negative predictive value; PPV: positive predictive value

Group 1 n = Group 2 n = Dataset AUC 95% CI Specificity Sensitivity Accuracy NPV PPV

ILD 108 Asthma–COPD–
Lung cancer

108 Training 0.97 0.95–0.99 0.93 0.93 0.93 0.93 0.93

53 53 Test 0.99 0.97–1.00 0.89 1.00 0.94 1.00 0.90

ILD 37 Asthma 44 Training 0.99 0.97–1.00 0.91 1.00 0.95 1.00 0.90

18 21 Test 1.00 1.00–1.00 1.00 1.00 1.00 1.00 1.00

ILD 37 COPD 34 Training 0.97 0.97–1.00 1.00 0.86 0.93 0.87 1.00

18 16 Test 0.96 0.90–1.00 0.94 0.89 0.91 0.88 0.91

ILD 37 Lung cancer 31 Training 1.00 1.00–1.00 1.00 1.00 1.00 1.00 1.00

18 15 Test 0.98 0.94–1.00 0.89 1.00 0.94 1.00 0.88

COPD 34 Lung cancer 31 Training 0.88 0.79–0.97 0.88 0.87 0.88 0.88 0.87

16 15 Test 0.97 0.90–1.00 1.00 0.93 0.97 0.94 1.00

COPD 34 Asthma 44 Training 0.92 0.85–0.98 0.95 0.76 0.87 0.84 0.93

16 21 Test 0.90 0.79–1.00 0.86 0.88 0.86 0.90 0.82

IPF 41 COPD 34 Training 0.88 0.80–0.96 0.71 0.98 0.85 0.96 0.80

20 16 Test 0.93 0.86–1.00 0.75 0.95 0.86 0.92 0.83

IPF 41 Lung cancer 31 Training 0.91 0.85–0.98 0.98 0.68 0.85 0.80 0.95

20 15 Test 0.93 0.82–1.00 1.00 0.87 0.94 0.91 1.00
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Discussion
Patients with ILD can be distinguished accurately from 
those with other respiratory diseases using eNose tech-
nology, shown in large training and test cohorts of 
patients with different disease stages and treatments. 
Moreover, the separation of breath profiles of patients 
with ILD compared to asthma, COPD or lung cancer 
individually was highly accurate, independent of age or 
sex. These results show the potential of using an eNose 
for detection of ILD non-invasively. If these findings are 
confirmed in a asymptomatic or early ILD patient cohort, 
screening or early detection might be possible.

Our results align with previously published results on 
the performance of eNose technology in differentiating 
ILD from COPD [11, 12]. Dragonieri et al. compared IPF 
with COPD and found an AUC of 0.85 in a test cohort, 
with active smokers being excluded [11]. The study of 
Krauss et  al. aimed to differentiate individual ILDs, but 
patients with COPD were included as a control group 
[12]. Comparing CTD-ILD versus COPD resulted in an 
AUC of 0.85, and cryptogenic organizing pneumonia 
versus COPD in an AUC of 0.77. Other ILDs were not 
reported. Moreover, only patients with COPD GOLD 
stage III-IV were included, and results were not vali-
dated in a test set. Although direct comparison of results 
is difficult as both studies used another eNose device 
and selected patients with specific ILD diagnoses, all 
published results emphasize the potential of the overall 
concept of eNose technology for ILD. To our knowledge, 
studies that compare ILD with lung cancer or asthma 
have not been published until date.

No studies have been published on early detection of 
ILD using an eNose, except for two studies that focus on 
pneumoconiosis screening in high risk groups [15, 16]. 
Although these were pilot studies, they found high accu-
racies when comparing people with and without pneu-
moconiosis. Recently, studies on lung cancer screening 
have become available. A prospective study in patients 
with COPD showed that patients that developed lung 
cancer had a different breath profile already two years 
before the diagnosis of lung cancer compared to patients 
that did not develop lung cancer [25]. Moreover, De Kort 
et al. published a validation study on the performance of 
eNose technology for lung cancer screening [26]. They 
included patients suspected of lung cancer prior to tis-
sue biopsy. In this robust study, the presence of lung can-
cer could be predicted using an eNose with an AUC of 
0.79 in the validation cohort. This performance increased 
to an AUC 0.86 when known clinical risk factors where 
added in the model. These studies illustrate the promise 
of incorporating eNose results in risk models for early 
detection of respiratory diseases.

Interestingly, in our study we also found an accurate 
separation between patients in different clinically het-
erogenous subgroups with smoking-related diagnoses 
(IPF, COPD and lung cancer). The diagnostic workup 
of patients with unexplained respiratory symptoms and 
differentiation between various diagnoses is complex, 
especially in patients with similar clinical characteris-
tics. Moreover, pulmonary function tests often do not 
show abnormalities in early disease. Thus, we believe that 
eNose technology could be of added value to raise early 
suspicion for ILD and improve referral and adequate 
diagnosis in both primary and secondary care.

Several limitations of our study should be named. 
First, we chose only one classification algorithm for 
data analysis. PLS-DA is an accepted method for classi-
fication of groups, but several methods should be com-
pared in validation studies [27, 28]. Second, our study 
lacks an external validation cohort. We minimized the 
risk for model overfitting by splitting our dataset in a 
separate training and test set, but an external cohort is 
necessary to confirm the model performance. Besides, 
in our study cohort, the prevalence of ILD is much 
higher than would be expected in a real-life cohort of 
patients with unexplained respiratory symptoms. In 
a real-world setting, negative predictive value for ILD 
would therefore likely be higher, and positive predic-
tive values lower. Lastly, the included cohort might not 
be representative for the overall population for which 
a clinical test for early disease detection is most ben-
eficial; i.e. the patients visiting a physician with new 
or unexplained respiratory symptoms. The majority 
of the study cohort consisted of prevalent patients, of 

Fig. 3 Predicted probability scores of individual patients with ILD 
based on breath data. Density plot shows the distribution 
of the predicted individual probability scores of a random sample 
of 100 unseen dataset of patients with ILD. Probability score is based 
on their breath profile and the trained PLS‑DA model. The density 
(i.e. relative likelihood) is displayed on the y‑axis and the individual 
probability scores on the x‑axis
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whom many already used disease-modifying treatment 
and had advanced disease stage. However, eNose tech-
nology achieved high accuracies despite the cohort 
heterogeneity in terms of treatment, stage and dis-
ease severity, indicating the suitability for application 
in real-world populations. Nevertheless, we should 
include patients with suspected and early respiratory 
diseases from primary health care centers and com-
munity sites in future multicenter external validation 
studies.

Conclusion
eNose technology can be used to distinguish patients 
with ILD from patients with other respiratory diseases. 
This technology has high potential as an easily accessi-
ble point-of-care medical test for accurate identification 
of patients with ILD, and could facilitate earlier diagnosis 
and referral of patients suspected of ILD.
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