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Abstract 

As the public health burden of air pollution continues to increase, new strategies to mitigate harmful health effects 
are needed. Dietary antioxidants have previously been explored to protect against air pollution-induced lung injury 
producing inconclusive results. Inhaled (pulmonary or nasal) administration of antioxidants presents a more promis-
ing approach as it could directly increase antioxidant levels in the airway surface liquid (ASL), providing protection 
against oxidative damage from air pollution. Several antioxidants have been shown to exhibit antioxidant, anti-inflam-
matory, and anti-microbial properties in in vitro and in vivo models of air pollution exposure; however, little work 
has been done to translate these basic research findings into practice. This narrative review summarizes these findings 
and data from human studies using inhaled antioxidants in response to air pollution, which have produced positive 
results, indicating further investigation is warranted. In addition to human studies, cell and murine studies should 
be conducted using more relevant models of exposure such as air–liquid interface (ALI) cultures of primary cells 
and non-aqueous apical delivery of antioxidants and pollutants. Inhalation of antioxidants shows promise as a protec-
tive intervention to prevent air pollution-induced lung injury and exacerbation of existing lung disease.
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Graphical Abstract

Introduction
Long-term exposure to air pollution is associated with 
increased risk of cardiopulmonary and neurological 
diseases, cancer, and overall mortality [1]. While long-
term exposure increases the risk of lung diseases such 
as chronic obstructive pulmonary disease (COPD) and 
asthma, especially in adolescents, short-term expo-
sure can cause airway inflammation, hyperreactivity, 
decreased pulmonary function, susceptibility to micro-
bial infection, and exacerbation of existing lung diseases. 
In 2019 the World Health Organization (WHO) found 
that 99% of the world population live in places where 
WHO air quality guidelines are not met, and caused 
an estimated 4.2 million premature deaths worldwide 
resulted from ambient air pollution, with low-and mid-
dle-income countries accounting for 89% of the estimated 
deaths [2]. Given the ever-increasing burden of air pollu-
tion, new strategies to mitigate its adverse health effects 
are needed. Further investigation into dietary and phar-
macologic interventions to mitigate air pollution-induced 
adverse health effects may provide strategies for public 
health officials to overcome these challenges. One prom-
ising strategy is to increase the concentration of anti-
oxidants (e.g., vitamin E, glutathione, etc.) in the lung, 
particularly at the surface of the respiratory epithelium, 

to counteract air pollution-induced oxidative stress. This 
narrative review will discuss the biochemical basis of this 
strategy, current research, and mixed results of studies 
using oral and dietary delivery of antioxidants. As future 
direction, we present evidence showing that treatment 
using several antioxidants through respiratory delivery, 
both intranasal and intrapulmonary, may offer improved 
success over oral and dietary delivery.

Composition of air pollutants and mechanisms of lung 
injury
Air pollution consists of gaseous components (ozone, 
volatile organic compounds, carbon monoxide, nitrogen 
oxides) and particulate matter (PM). PM is classified by 
particle size, ranging from ultrafine  (PM0.1), fine  (PM2.5), 
to coarse  (PM10-2.5).  PM0.1, particles with an aerodynamic 
equivalent diameter (AED) ≤ 0.1  µm, have high surface 
area, travel deep into the small airways, and can reach 
systemic circulation, making them especially harmful to 
inhale. In general, smaller particles (< 10  µm) can reach 
the lower airways and larger particles (> 10um) mostly 
deposit in the upper airways [3]. PM can be composed 
of metals, carbon, sulfates, nitrates, polycyclic aromatic 
hydrocarbons (PAHs), biological compounds, and can 
also form secondary PM through the nucleation and 
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coagulation of gaseous pollutants onto primary PM [4]. 
Sources of primary PM include natural processes such 
as volcanic eruptions, wildfires, erosion, and through 
anthropogenic processes such as cigarette smoke, traf-
fic, mining, construction, farming, power plants, and any 
process involving combustion of fuel [4].

Air pollution composition is heterogenous and varies 
across regions and with atmospheric aging; however, one 
of the unifying characteristics of inhaled PM and gases 
is their potential to cause oxidative stress in the airway 
epithelium [5]. Oxidative stress occurs when oxidation–
reduction homeostasis is perturbed by an accumulation 
of reactive oxygen species (ROS) and reactive nitrogen 
species (RNS) [6]. ROS and RNS are endogenously pro-
duced by inflammatory cells, during cellular respiration, 
and by enzymes, but are carefully controlled by antioxi-
dant systems. Introduction of oxidants, free radicals, or 
redox catalysts through inhalation of air pollutants can 
overwhelm these systems, resulting in damage to DNA, 
membranes, and proteins via oxidation and eventually 
cytotoxicity [6]. Transition metals found in particulate 
matter are also capable of generating further oxidants 
through Fenton-like reactions [7].

Interactions of air pollutants with the respiratory mucosa
The respiratory system is a primary route of exposure to 
airborne environmental insults; as such, the respiratory 
mucosa has several mechanisms to protect against injury 
from inhaled toxicants. The initial line of protection is the 
airway surface liquid (ASL) layer, which acts as a physical 
barrier, helps expel pathogens through mucociliary clear-
ance, and contains biochemical defenses [8]. ASL has two 
distinct physical layers, the superficial mucus layer, and 
the lower periciliary layer. The mucus layer traps inhaled 
pathogens with secreted mucins (MUC5AC, MUC5B) 
while the periciliary layer facilitates ciliary move-
ment with the help of tethered mucins (MUC1, MUC4, 
MUC16) [9]. ASL also contains cytokines, antimicrobial 
peptides, antiviral interferons, leukocytes, and several 
types of antioxidants [10, 11].

High concentrations of antioxidants including anti-
oxidant enzymes (dismutase, catalase, peroxidase, oxy-
genase) and small-molecule compounds (vitamin C, 
vitamin E, glutathione, uric acid, β-carotene) which act 
as free radical scavengers are present in the ASL [12]. 
Inhaled pollutants have been found to deplete ASL anti-
oxidants and inhibit antioxidant enzymes, allowing for 
production of secondary oxidants through reaction 
with proteins, lipids, and carbohydrates in the ASL [13]. 
Because of this, it has been hypothesized that supple-
mentation of ASL antioxidants through diet or inhalation 
could bolster antioxidant defenses and mitigate air-pollu-
tion induced oxidative stress.

Search strategy
The literature search was performed using Pubmed/
MEDLINE and Google Scholar with no time frame 
restriction using the following antioxidant search terms: 
antioxidant, vitamin C, ascorbic acid, vitamin E, tocoph-
erol, vitamin D, calciferol, glutathione, GSH, N-acetyl 
cysteine, NAC; respiratory system search terms: lung, 
airway, nasal, inhalation, bronchial; and pollutant search 
terms: pollutant, diesel exhaust particle, DEP, house dust 
mite, HDM, wood smoke, smoke, ozone, gas, particu-
late matter, PM. These terms were used in the following 
combinations: [antioxidant term] AND [respiratory sys-
tem term] AND [pollutant term], and if few results were 
found including air pollutant search terms, [antioxidant 
term] AND [respiratory system term].

Scope of review
Given the topic of this review and the scarcity of litera-
ture on inhaled delivery of antioxidants, we chose to pre-
sent this information as a narrative review. Introductory 
sections on air pollution and the respiratory mucosa are 
intended to provide succinct overviews of air pollution-
induced pathological responses and justify the need for 
further investigation into inhaled supplementation of 
antioxidants. The discussion of human studies on oral 
supplementation was kept brief and largely summarized 
findings from previous reviews of the topic as the focus is 
on inhaled delivery. For antioxidants with few studies on 
protective effects against pollutants (vitamins C and E), 
studies of their effects on respiratory diseases, immune 
responses, and airway biology were included if links to 
air pollution exposure could be made.

Vitamin D
Vitamin D, or cholecalciferol, is a nutrient involved in 
calcium regulation and phosphate homeostasis, playing 
a role in immune and musculoskeletal health. Vitamin D 
is obtained through diet and cutaneous synthesis from 
ultraviolet B radiation, followed by metabolism to its 
active form, 1,25-dihydroxyvitamin D, or calcitriol. Both 
cholecalciferol and calcitriol will be referred to as vitamin 
D in this review as primary airway cells are able to metab-
olize cholecalciferol into the active form [14]. Studies in 
cell lines often use calcitriol, as cell lines such as A549 
cells express low levels of 1α-hydroxylase (CYP27B1), 
the enzyme responsible for vitamin D activation, and are 
unable to convert cholecalciferol to its active form [14].

Several studies have explored co- or pre-treatment with 
vitamin D in response to various pollutants. In cigarette 
smoke (CS)-exposed 16HBE cells, vitamin D exhibited 
anti-inflammatory effects, but not in primary hBECs 
[15]. 16HBEs treated with lipopolysaccharide (LPS) 
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had attenuated ROS and DNA damage when co-treated 
with vitamin D, a result confirmed in a murine model. 
Serré et  al. found that in LPS-exposed mice with nor-
mal vitamin D levels, nebulized treatment with vitamin 
D reduced inflammatory cells in bronchoalveolar lavage 
fluid (BALF) and significantly protected against epithe-
lial barrier damage [16]. This study also found that vita-
min D inhalation did not change serum vitamin D levels, 
indicating that inhalation could provide local therapeutic 
effects and minimal system effects. This is one of the few 
studies to investigate aerosolization of vitamin D to pro-
tect against exposure-induced inflammation.

The protective effects of vitamin D are most appar-
ent in PM exposure. Transcriptome analysis of primary 
hBECs exposed to urban PM saw reduced expression of 
IL6, a gene encoding a pro-inflammatory cytokine, and 
increased expression of G6PD, an antioxidant pathway 
gene, with vitamin D treatment [17]. The same study 
also observed reduced lipid oxidation, increased anti-
oxidant response, and reduced levels of IL-6. An earlier 
study from the same group found that urban PM caused 
an increase in pro-inflammatory T helper 17 (TH17) 
cell response driven by IL-23 in a myeloid dendritic cell-
memory  CD4+ T cell co-culture system. Co-exposure 
with vitamin D was able to attenuate this effect through 
a reduction in IL-17a+ and IFN-γ+ cells [18]. Tao et  al. 
investigated lung injury in an in vivo (intramuscular dos-
ing of mice) and in vitro (BEAS-2B) model through expo-
sure to silicon dioxide-containing PM [19]. Both models 
showed induction of autophagy via Nrf2 after vitamin 
D treatment. Similar results were produced in another 
study using undifferentiated hBECs exposed to PM, 
showing reduced inflammation through the p38/NF-κB/
NLRP3 pathway [20]. Reduced inflammation was also 
demonstrated by Bolcas et  al. using a murine model of 
co-exposure to diesel exhaust particles (DEP) and HDM 
[21]. In this model, treatment with vitamin D attenuated 
accumulation of TH17 and TH2 cells and development of 
airway hyperresponsiveness. Vitamin D has been found 
to have therapeutic effects in models of epithelial bar-
rier dysfunction, characteristic of COPD, caused by ciga-
rette smoke and toluene diisocyanate [22, 23]. Vitamin D 
also suppressed development of pulmonary emphysema, 
epithelial-mesenchymal transition (EMT), and fibrogen-
esis, all of which are associated with the development 
of COPD and are exacerbated by toxicant exposure [24, 
25]. Altogether, these data indicate vitamin D has possi-
ble utility in preventing air pollution-induced oxidative 
stress, immune responses, and microbial infection.

Of the antioxidants discussed in the review, vitamin D 
is the most well-studied in the airways due to its antibac-
terial and antiviral properties. Vitamin D has been found 
to significantly increase gene expression and protein 

levels of cathelicidin, an antimicrobial peptide, in airway 
cell lines, immune cells, and primary airway epithelial 
cells (bronchial and tracheobronchial) [26–32]. Vitamin 
D provided protection from infection to rhinovirus, res-
piratory syncytial virus (RSV), influenza, and mycobac-
terium tuberculosis through suppression of inflammation 
and altered expression of viral and bacterial receptors. 
However, there are conflicting results on the effect of 
vitamin D on viral replication, a more functional marker 
of antiviral properties, between undifferentiated vs. fully 
differentiated human bronchial epithelial cells (hBECs) 
through media dosing [33].

In addition to the study from Serré et  al., two other 
studies have investigated inhaled vitamin D. The studies 
did not involve pollutant exposure and instead looked at 
the ability of vitamin D to enhance neonatal lung matura-
tion and to promote anti-tumor immune activity, where 
it was also found that despite exhibiting therapeutic 
effects in the lung, treatment did not affect serum levels 
of vitamin D or calcium, indicating inhaled vitamin D 
most likely does not pass through the epithelial mem-
brane or cause hypercalcemia [16, 34, 35]. Mathyssen 
et al. expanded on this by examining the transcriptional 
profile of vitamin D associated enzymes in lung tissue 
[36]. They found that CYP24A1, the inactivating enzyme 
of vitamin D, was highly expressed in lung endothelial 
cells, preventing circulating vitamin D from reaching the 
lungs. Conversely, this could also explain why inhaled 
vitamin D does not reach circulation. In the same study it 
was shown that the vitamin D receptor was expressed in 
apical epithelial cells, making it an ideal target for inhaled 
delivery.

It is important to note that the status of vitamin D as an 
antioxidant is controversial and could not be confirmed 
in a recent systematic review [37]. It is possible that the 
protective effects of vitamin D are not produced through 
scavenging of free radicals or induction of antioxidant 
enzymes and are instead due to interactions with the 
vitamin D receptor. However, the studies presented here 
indicate that vitamin D has antioxidant properties in the 
lung.

Glutathione
Glutathione (GSH) is a thiol tripeptide found at high con-
centrations in most cells and is the primary non-enzy-
matic antioxidant found in ASL [38]. The ratio of GSH, 
the reduced form of glutathione, to GSSG, the oxidized 
form, is a biomarker of cellular redox status, with the 
ratio dropping after exposure to oxidant stress [12, 39]. 
Notably, GSH is also the only antioxidant with a higher 
concentration in ASL than in plasma and is altered in 
several lung disease including cystic fibrosis (CF), idio-
pathic pulmonary fibrosis (IPF), and COPD [40]. Because 
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of this, GSH inhalation has been evaluated as a treatment 
for these conditions.

A literature review looking specifically at inhaled GSH 
determined that it has potential as a treatment for cystic 
fibrosis (CF), chronic otitis media with effusion (OME), 
HIV seropositive individuals, IPF, and chronic rhinitis 
[40]. Randomized placebo-controlled trials found GSH 
improved oxygenation and clinical parameters in CF, 
although the effect may not be due to correction of oxi-
dant/antioxidant balance. However, improvements in 
oxidant/antioxidant balance were observed in a nonran-
domized IPF trial. Based on current evidence, inhaled 
GSH cannot be recommended for emphysema/COPD or 
asthma, the latter of which exhibited notable side effects 
(e.g., breathlessness, bronchoconstriction, cough), most 
likely due to co-occurrence of asthma and sulfite sensi-
tivity. The author also recommended further research be 
conducted on other conditions linked to impaired anti-
oxidant systems such as Farmer’s lung, multiple chemi-
cal sensitivity disorder, and exercise-induced oxidative 
stress. Although not mentioned, air pollution-induced 
lung injury, which occurs due to depletion of ASL antiox-
idants, could also potentially be inhibited by glutathione 
inhalation.

Several studies have explored the effects of polymor-
phisms in the genes encoding glutathione S-transferase 
(GST), an enzyme responsible for conjugation of GSH 
to xenobiotics, on air pollution exposure [41]. GSTM1 
and GSTP1 polymorphisms have been associated with 
increased respiratory issues in response to ambient 
ozone and combined ragweed pollen/DEP exposure. The 
GSTM1 null-phenotype was also shown to regulate DEP-
induced inflammation in  vitro [42]. Jaspers et  al. found 
that GSH-ethylester was able to reverse DEP-induced 
susceptibility to influenza infection in well-differentiated 
respiratory epithelial cells [43].

Given that GSH concentrations initially decrease and 
then recover in ASL after air pollution exposure, it can be 
concluded that GSH is vital for first line defense against 
inhaled oxidants [13]. Despite this, GSH treatment has 
been sparingly investigated for mitigating the effects of 
air pollution exposure. Glutamine, a glutathione precur-
sor, supplementation has been explored as a therapeutic 
for several lung diseases, most notably acute respiratory 
distress syndrome (ARDS); and despite promising results 
through parenteral administration, few studies have 
explored inhaled supplementation [44].

N‑acetylcysteine
N-acetylcysteine (NAC), another precursor to glu-
tathione, is a prescription drug used to treat aceta-
minophen overdoses and as a mucolytic for 
muco-obstructive lung diseases [45]. NAC has direct 

antioxidant activity but also increases intracellular levels 
of cysteine which facilitates GSH synthesis [45]. NAC’s 
mucolytic properties stem from its the ability to break 
down disulfide bonds crosslinking mucus glycoproteins, 
reducing mucus viscosity and elasticity. This makes it an 
attractive option for inhaled treatment as it could poten-
tially restore antioxidant capacity and alleviate mucus 
hypersecretion. Due to the number of benefits over glu-
tathione, NAC has been investigated in several lung dis-
eases and to protect against air pollution exposure.

Although taken orally for COPD, inhaled NAC has 
been approved for use in CF and has been shown to be 
effective as an adjunct therapy for IPF [46, 47]. In a con-
trolled exposure of human subjects to DEP, oral NAC 
pre-treatment reduced airway responsiveness in hyper-
responsive individuals [48]. However, as previously 
mentioned with vitamin C, NAC and vitamin C oral pre-
treatment was found to augment DEP-induced vasocon-
striction [49]. This indicates oral antioxidants may lead 
to unwanted systemic side effects in combination with 
air pollution exposure. No human studies were found 
using inhaled NAC to protect against air pollution; how-
ever, several in vitro cell culture and in vivo animal model 
studies have investigated the direct treatment of airway 
cells with NAC.

A recent study from Oh et  al. explored using NAC-
loaded microparticles to adsorb and remove particu-
late matter containing nitrates. The microparticles were 
found to effectively adsorb nitrate and were able to be 
cleared following intratracheal instillation in mice. The 
results from this study are promising and warrant further 
testing using more functional markers of protection (e.g., 
BALF inflammatory cells, oxidative stress, lung function). 
Therapeutic effects have also been reported in the con-
text of ozone and nitrogen dioxide exposure. Intravenous 
NAC pretreatment was found to prevent ozone-induced 
mucociliary dysfunction in sheep, and post-exposure 
intraperitoneal NAC treatment reversed airway hyper-
responsiveness in mice [50, 51]. NAC was also able to 
abrogate cytokine release caused by combined rhinovirus 
infection and oxidant gas exposure [52].

Despite seemingly positive results in the previously 
mentioned studies, a review from 2007 on the induction 
of antioxidant enzymes to protect against the adverse 
effects of DEPs briefly mentioned the idea of using 
inhaled NAC to protect against inhaled oxidants; how-
ever, they reported that preliminary studies from their 
laboratory using inhaled NAC did not see any protec-
tive effects against DEPs in an in vivo human nasal model 
[53]. Given no other information or data was provided, 
further investigation into this concept is warranted. 
Another study using well-differentiated primary hBECs 
from a COPD cohort at an air–liquid interface (ALI) 
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found that basolateral treatment with NAC following 
DEP exposure did not provide any significant therapeu-
tic effects, but did show trends in reducing IL-8 secre-
tion and antioxidant gene expression [54]. Other studies 
of DEP and PM, mostly in in  vivo murine models and 
submerged cell cultures, reported anti-inflammatory and 
antioxidant effects of NAC pre- and post-exposure treat-
ment [55–59]. Similar effects were also seen in response 
to benzo[a]pyrene-induced acute lung injury [60].

Interestingly, in an in  vitro experiment comparing 
several antioxidants, including vitamin C, vitamin E, 
and NAC, all three reduced protein and lipid peroxida-
tion, but NAC was the only one that improved the ratio 
of reduced to oxidized glutathione [61]. Considering 
NAC directly contributes to production of glutathione, 
this result is not surprising. A more unbiased measure 
of protective effects could provide more insightful data 
such as a copper-based total antioxidant capacity or cel-
lular ROS assay. The same study also found that NAC 
protected ovalbumin-sensitized mice against DEP expo-
sure, although vitamin C and E were not examined in this 
experiment.

Melatonin
Melatonin is an endogenous hormone primarily synthe-
sized in the pineal gland from tryptophan [62]. Mela-
tonin biosynthesis is synchronized with the cycle of light 
and dark with serum melatonin concentrations follow-
ing a circadian rhythm, playing a direct role in the body’s 
sleep cycle and thermoregulation [63]. Due to its antioxi-
dant and anti-inflammatory properties, it has been inves-
tigated as a therapeutic for asthma, COPD, and allergic 
airway inflammation [63, 64].

Few human studies have been conducted on the effect 
of melatonin in the lungs. Cavalcante et  al. conducted 
a randomized, double-blind, placebo-controlled study 
of oral melatonin in COPD patients which showed that 
melatonin administration reduced oxidative stress and 
relieved dyspnea (difficulty breathing) [65]. Notably, in a 
previous study using a similar dose and time of adminis-
tration, melatonin improved sleep in moderate to severe 
COPD patients, with no detrimental effects on daytime 
alertness, lung function, and exercise capacity [66].

Although not as extensively studied as the previously 
mentioned antioxidants, melatonin has been shown to 
exhibit protective effects against PM and ozone. Intra-
gastric melatonin alleviated  PM2.5-induced lung injury, 
edema, ferroptosis, and lipid peroxidation through 
expression of Nrf2 [67]. Lee et  al. found intraperitoneal 
melatonin protected against  PM2.5 and acute ischemic 
reperfusion injury through reduction of oxidative 
stress, inflammation, and tracheal immune cell infiltra-
tion in mice [68]. Protective effects were also seen in 

 PM2.5-exposed guinea pigs, along with a reduction of 
chronic cough following melatonin treatment [69]. In a 
murine model of ozone exposure, oral melatonin reduced 
oxidative stress and stabilized the Nrf2 pathway [70].

Melatonin has also shown promise in models of lung 
disease exacerbated by pollutant exposure. Two stud-
ies from Shin et al. have found that melatonin is able to 
attenuate MUC5AC secretion and gene expression in 
H292 cells and a murine model of asthma via intraperito-
neal treatment [71, 72]. MUC5AC is one of the predomi-
nant mucins overexpressed in muco-obstructive lung 
diseases and in response to inhaled pollutants [73, 74]. 
The same group saw similar effects in vitro and in vivo in 
a cigarette smoke extract (CSE) and LPS model of COPD, 
along with suppression of pulmonary fibrosis [75]. This 
murine model was also used in a transcriptomic study 
of oral melatonin which found that melatonin alleviated 
lung damage and inflammation and reduced necroptosis 
[76]. Melatonin has also exhibited antiviral properties in 
various tissue. Huang et  al. showed that oral melatonin 
inhibited lung oxidative stress, proinflammatory cytokine 
production, and inflammatory injury in RSV-infected 
mice [77].

Vitamin C
Vitamin C, or ascorbic acid, is a water-soluble nutrient 
vital for proper immune function that cannot be synthe-
sized endogenously. As one of the antioxidants found in 
ASL, many early studies investigating the effect of diet on 
susceptibility to air pollution included vitamin C. Sev-
eral epidemiologic and exposure chamber studies that 
analyzed ozone pollution in healthy and asthmatic sub-
jects found that oral supplementation of vitamin cock-
tails containing vitamin C, E, and/or β-carotene above 
the daily minimum requirement may provide protection 
against ozone-induced decreases in lung function and 
bronchoconstriction [78]. However, an in  vivo exposure 
chamber study of diesel exhaust found that vitamin C 
and N-acetylcysteine (NAC) supplementation increased 
vasoconstriction caused by exposure, and another study 
of acute exposure to ambient PM and/or ozone found no 
effects on cardiovascular outcomes. Most importantly, 
it has been shown that dietary vitamin C supplementa-
tion does not significantly affect ASL concentrations of 
ascorbic acid [79, 80]. Together, these data do not provide 
strong evidence for the use of dietary vitamin C supple-
mentation to protect against cardiovascular and pulmo-
nary injury induced by air pollution.

Preliminary investigations of vitamin C treatment prior 
to air pollution exposure in vitro have shown more prom-
ising results. Studies from Lee et  al. in house dust mite 
(HDM) stimulated H292 cells, a pulmonary mucoepider-
moid cell line, and Jin et al. in PM2.5 stimulated 16HBE 
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cells found that co-exposure of HDM/PM2.5 with ascor-
bic acid reduced ROS levels and inhibited inflammatory 
responses [81, 82]. Despite little evidence of effectiveness 
through oral supplementation, the few in vitro studies of 
direct vitamin C treatment onto airway cells show pos-
sible antioxidant and antiviral properties.

Although there are few studies looking at vitamin C to 
protect against air pollution in vitro, several other stud-
ies exhibit relevant effects without pollutant exposure. 
A study in human nasal epithelial cells (hNECs) exhib-
ited an initial increase in cilia beat frequency following 
vitamin C treatment [83]. This suggests that intranasal 
administration of vitamin C may be capable of improv-
ing mucociliary clearance of inhaled pollutants. Tran-
scriptional analysis of vitamin C-treated BEAS-2B cells, 
a bronchial epithelial cell line, found that pathways asso-
ciated with antiviral activity were upregulated while 
pathways associated with lung injury, inflammation, 
oxidative stress were downregulated [84]. In the same 
model it was found that treatment increased responses 
to polyinosinic:polycytidylic acid (poly I:C), an antivi-
ral ligand, and type I interferons, further supporting 
the antiviral properties of vitamin C in airway cells and 
potentially providing a way to combat air pollution-
induced dysregulation of antiviral immune responses.

Vitamin E
Vitamin E is a fat-soluble antioxidant used by humans 
primarily in the form of α-tocopherol as well as other 
tocopherols such as γ-tocopherol, and is exclusively 
obtained through diet [85]. In the context of the lungs, 
alpha-tocopherol has been most commonly studied as an 
inhibitor of allergic inflammation in allergies and asthma 
[86]. Dietary intervention studies using vitamin E almost 
all included vitamin C as mentioned previously, but in a 
controlled ozone exposure study of oral vitamin E alone, 
no significant changes in lung function were observed; 
however, vitamin E is one of the few antioxidants to have 
been investigated through in vivo aerosol delivery.

Gao et al. conducted a study pre-treating human sub-
jects with an intranasally delivered cocktail of antioxidant 
oils (soy oil, coconut oil, orange oil, aloe vera oil, pep-
permint oil, and vitamin E oil) followed by acute ozone 
exposure [87]. Oil treatment was able to attenuate ozone-
induced nasal inflammatory response and increase base-
line levels of antioxidant gene HO-1 in the nasal mucosa. 
In the same study, the antioxidant oil was applied to a 
lung epithelial cell line, inducing expression of several 
antioxidant genes, activating NRF2, and mitigating pro-
inflammatory endotoxin signaling.

Another study in mice saw similar upregulation of 
Nrf2 and Ho-1, as well as alleviation of ozone-induced 
lung injury and oxidative stress [88]. Vitamin E also 

exhibits protective effects against other pollutants such 
as Benzo[a]pyrene (BaP), acrolein, and aluminum nano-
powder by preventing oxidative stress [89–91]. In addi-
tion to airway epithelial cells, vitamin E supplementation 
has been shown to prevent allergen-induced NRF2 sup-
pression in asthmatic alveolar macrophages and reduced 
ozone-induced cell death in fibroblasts [92, 93]. Several 
murine studies have also found that dietary α-tocopherol 
can improve immune function, preventing lung injury 
and susceptibility to bacterial infection [94–96].

Limitations of current research
The majority of clinical trials and in vivo murine experi-
ments investigating antioxidant treatment to protect 
against air pollution-induced lung injury use either 
dietary supplementation or systemic delivery of antioxi-
dants. Aerosol delivery presents several benefits for this 
purpose. Inhalation avoids hepatic first-pass metabolism 
and the lungs have lower enzymatic activity than other 
organs [97]. This prevents premature drug degradation 
and allows for lower doses to be used for direct deliv-
ery to the lungs. Direct delivery and absorption also aid 
in preventing unwanted system effects. Inhaled delivery 
presents a more convenient and less invasive option than 
intravenous delivery while also allowing for more direct 
treatment than oral delivery.

Current literature is also limited to mostly submerged 
cell lines and murine experiments using non-inhalational 
routes o exposure. Submerged cell cultures lack many 
of the physiological features of the airways such as the 
over 40 different cell types and variations in epithelial 
thickness, among others [98]. Exposure also presents 
a challenge as normally air-borne particles and gases 
are added directly into the cell culture media allowing 
for agglomeration of particles, reaction with the media, 
and difficulty assessing dose. A more physiologically rel-
evant model is the culturing of primary airway cells at 
an air–liquid interface using permeable membrane sup-
ports. Although immortalized cell lines can be cultured 
at an ALI, primary cells are able to differentiate, forming 
a pseudostratified epithelium. Several exposure systems 
now exist that allow for apical deposition of air pollution 
onto ALI cultures and should be used to validate past 
results from submerged systems. ALI cultures, combined 
with in vitro nebulizer systems would allow for the most 
relevant model of inhaled delivery and air pollutant expo-
sure through apical delivery of both pollutants and anti-
oxidant aerosols [99].

Similarly, with murine models, nose-only and whole-
body inhalation chambers can be used to test antioxi-
dant aerosol pre-treatment followed by air pollution 
exposure in a whole body gas or PM exposure cham-
bers [100, 101]. Mouse models would also provide 
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useful data on immune effects as well as other systemic 
effects of antioxidant inhalation, as evidenced by pre-
vious studies using vitamin D. However, mice have 
several key lung morphological and physiological dif-
ferences compared to humans such as breathing pattern 
(mice are primarily nose-breathers), cell composition 
(mice largely lack submucosal glands except in the tra-
chea), and eosinophil function and distribution [102]. 
The gold standard to evaluate the ability of antioxidant 
inhalation to protect against air pollution would be to 
conduct controlled studies in environmental exposure 
chambers with human subjects. Epidemiological cohort 
studies utilizing ambient air quality data and various 
antioxidant treatment groups could also provide useful 
data regarding chronic, low-dose exposures. The same 
methodology previously used for dietary antioxidant 
studies can be applied to inhaled antioxidants, although 
inter-subject differences in inhalation technique, 
breathing patterns, and variability in nebulizer output 
present unique challenges to aerosol treatment.

Considerations for inhaled antioxidant therapies
Regarding inhaled therapies, it is important to acknowl-
edge that agents may have different effects when they 
are inhaled than when administered through oral or 
dermal routes of exposure. For example, flavoring 
compounds and humectants used in vaping products, 
although generally recognized as safe for oral consump-
tion, can cause adverse effects when inhaled, espe-
cially following heated aerosolization and subsequent 
degradation/oxidation. Most notably is the example 
of inhaled vitamin E acetate, a compound safe for oral 
and dermal routes of exposures, but linked to e-cig-
arette or vaping use-associated lung injury (EVALI) 
as the potential causative component [103]. There are 
also examples of oral medications that when being used 
experimentally via inhalation cause significant toxic-
ity, such as the death of a research participant follow-
ing inhalation of hexamethonium [104]. Additionally, 
given the important role of redox homeostasis and the 
various beneficial roles of ROS/RNS in cellular function 
(signaling, oxidative burst, phagocytosis, mitogenic 
responses), antioxidant therapies are not guaranteed 
to produce positive results in human studies and may 
even result in detrimental effects [105–108]. For exam-
ple, the Carotene and Retinol Efficacy Trial (CARET), 
a study of beta-carotene and retinyl palmitate supple-
mentation, was stopped prematurely due to an increase 
in lung cancer risk and death from lung cancer in par-
ticipants who received the intervention [109]. As such, 
critically evaluating local and system effects of inhaled 
antioxidant therapies is imperative.

Conclusions and future directions
Based on the current body of evidence, antioxidants 
have the potential to provide protection against air pol-
lution. In addition to directly scavenging ROS, several 
of these antioxidants also exhibit anti-inflammatory 
and antimicrobial properties, indicating they could 
alleviate oxidative stress as well as susceptibility to 
viral and bacterial respiratory infections caused by 
exposure to air pollution. Despite mixed results from 
dietary antioxidant studies, a limited number of stud-
ies using intranasal and intrapulmonary delivery show 
that these routes may prove more effective. Addition-
ally, inhaled delivery avoids first pass metabolism, pro-
vides direct treatment, and potentially limits systemic 
off-target effects making it ideal for pulmonary pro-
tection [97]. Future clinical work should be done to 
examine the effects of inhaled antioxidants on air pol-
lution exposure in controlled environmental exposure 
chamber studies and cohort studies using ambient air 
conditions. Additional in vitro work should be done to 
elucidate mechanisms of these antioxidants, especially 
in well-differentiated primary airway cells at an ALI as 
many previous studies were in cell lines and undiffer-
entiated primary cells. Primary airway cells at ALI can 
also use cells from specific donors, such as asthmatics, 
which would provide information on protective effects 
for susceptible populations. In summary, antioxi-
dant inhalation has promise as a possible preventative 
intervention for people with lung diseases like COPD, 
asthma, and cystic fibrosis, in which ASL antioxidant 
composition is altered and therefore warrants further 
investigation.
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