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Abstract
Background The identification of critically ill COVID-19 patients at risk of fatal outcomes remains a challenge. Here, 
we first validated candidate microRNAs (miRNAs) as biomarkers for clinical decision-making in critically ill patients. 
Second, we constructed a blood miRNA classifier for the early prediction of adverse outcomes in the ICU.

Methods This was a multicenter, observational and retrospective/prospective study including 503 critically ill 
patients admitted to the ICU from 19 hospitals. qPCR assays were performed in plasma samples collected within the 
first 48 h upon admission. A 16-miRNA panel was designed based on recently published data from our group.

Results Nine miRNAs were validated as biomarkers of all-cause in-ICU mortality in the independent cohort of 
critically ill patients (FDR < 0.05). Cox regression analysis revealed that low expression levels of eight miRNAs were 
associated with a higher risk of death (HR from 1.56 to 2.61). LASSO regression for variable selection was used to 
construct a miRNA classifier. A 4-blood miRNA signature composed of miR-16-5p, miR-192-5p, miR-323a-3p and 
miR-451a predicts the risk of all-cause in-ICU mortality (HR 2.5). Kaplan‒Meier analysis confirmed these findings. 
The miRNA signature provides a significant increase in the prognostic capacity of conventional scores, APACHE-II 
(C-index 0.71, DeLong test p-value 0.055) and SOFA (C-index 0.67, DeLong test p-value 0.001), and a risk model based 
on clinical predictors (C-index 0.74, DeLong test-p-value 0.035). For 28-day and 90-day mortality, the classifier also 
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Background
The COVID-19 pandemic has exerted dramatic pressure 
on the health care system globally, especially in intensive 
care units (ICUs). COVID-19 is characterized by substan-
tial heterogeneity in progression rates [1], posing a con-
siderable challenge to triage critically ill patients, inform 
early intervention and guide both ICU capacity and 
resource allocation. In this scenario, reliable biomark-
ers would be invaluable to improve risk stratification and 
allow for more effective clinical decision-making. These 
biomarkers may also be legitimate targets for therapeutic 
intervention to prevent ICU complications and adverse 
outcomes.

MicroRNAs (miRNAs) are small noncoding RNAs 
involved in posttranscriptional gene regulation that have 
emerged as innovative biomarkers for a number of con-
ditions [2–4], including viral respiratory infections [5] 
and the management of critical patients [6]. Circulating 
miRNAs are cost-effective biomarkers that can be quan-
tified through a minimally invasive blood draw using 
techniques already employed in clinical laboratories [7]. 
Furthermore, recent clinical trials have demonstrated 
that miRNA-based therapies seem to be well tolerated 
and show promising effects [8].

Here, we used samples from a large multicenter cohort 
of critically ill patients with COVID-19, i.e., the CIBERE-
SUCICOVID study (NCT04457505), to construct a 
blood miRNA classifier that could be used to predict all-
cause in-ICU mortality. We focused our attention on a 
16-miRNA panel previously associated by our group with 
the severity of the disease and its adverse clinical out-
comes in a miRNA biomarker discovery study [9]. To the 
best of our knowledge, our study is the largest on miR-
NAs as biomarkers for the clinical management of criti-
cally ill COVID-19 patients.

Patients and methods
Study design and data collection
This is a substudy of the CIBERESUCICOVID study reg-
istered at www.clinicaltrials.gov with the identification 
NCT04457505. CIBERESUCICOVID is a multicenter, 
observational, prospective/retrospective cohort study 
that enrolled critically ill COVID-19 patients admitted to 
the ICUs of 55 Spanish hospitals [10]. CIBERESUCICO-
VID started in May 2020 by collecting the retrospective 

data of patients admitted to participating ICUs (from 
February 2020) and continued prospectively until Feb-
ruary 2021. After enrollment, comprehensive demo-
graphic, clinical, pharmacological and laboratory data 
were exhaustively collected at hospital and ICU admis-
sion, as previously described in Torres et al. [10]. The 
pharmacologic treatments administered and interven-
tions performed during hospital admission until either 
discharge from hospital or death were also collected. 
Definitions have also been previously published [11]. 
Deidentified patient data were abstracted manually from 
the electronic medical records and stored in a Research 
Electronic Data Capture (REDCap) database hosted in 
the Centro de Investigación Biomédica en Red (CIBER, 
Madrid, Spain). Data from patients’ medical records were 
incorporated into the database by trained local research-
ers. The study coordinators ensured the integrity and 
timely completion of data collection. Prior to statistical 
analyses, incoherent or missing data were checked by 
independent experienced data collectors trained in criti-
cal care.

The study protocol was approved by the respective eth-
ics committee of each participating hospital. The study 
was designed and conducted in compliance with the Dec-
laration of Helsinki and national and international law on 
data protection. Participants, or their legal representa-
tives, provided informed consent, when possible, for the 
use of the samples and data. In the remaining cases, an 
informed consent waiver was authorized by the ethics 
committee.

Primary and secondary outcomes
The primary outcome was all-cause in-ICU mortality. 
Secondary outcomes included all-cause 28-day mortality 
and all-cause 90-day mortality from ICU admission and 
length of hospital stay, ICU stay and invasive mechanical 
ventilation (IMV).

Study sample
Patients admitted to the ICU at the participating hospi-
tals were enrolled in the current substudy if they fulfilled 
the following inclusion criteria: age over 18, laboratory-
confirmed SARS-CoV-2 infection according to a stan-
dardized test, admission to the ICU and blood sample 
collected during the first 48  h available. Patients were 

improved the prognostic value of APACHE-II, SOFA and the clinical model. The association between the classifier and 
mortality persisted even after multivariable adjustment. The functional analysis reported biological pathways involved 
in SARS-CoV infection and inflammatory, fibrotic and transcriptional pathways.

Conclusions A blood miRNA classifier improves the early prediction of fatal outcomes in critically ill COVID-19 
patients.
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excluded if they had unconfirmed SARS-CoV-2 infec-
tion, lacked data at baseline or hospital discharge or 
were admitted to an ICU for other causes. A list of par-
ticipating hospitals is provided in Supplemental Figure S1 
(Additional File 2).

Sample size calculation
The sample size calculation was based on comparisons of 
miRNA levels between study groups (survivors vs. non-
survivors) using a two-sample t test. Relevant biological 
differences were considered as a fold change of 1.2 (or 
0.83 in downregulated miRNAs). According to our pre-
vious data [9], we assumed a coefficient of variation of 
0.5. The significance level was fixed at 0.05. A minimum 
sample size of 143 per group was necessary to achieve 
90% statistical power. Expecting a mortality rate of 33%, 
a total sample size of 429 samples was necessary for the 
validation study. The sample size used was higher to 
ensure the necessary number of patients. Ultimately, 503 
patients from the CIBERESUCICOVID consortium with 
blood samples available were included.

Experimental methods
Details regarding miRNA quantification and prediction 
of miRNA target regulation are provided in the Supple-
mental Methods (Additional File 1).

Statistical analysis
The characteristics of the study population were summa-
rized by descriptive statistics. Data are presented as the 
medians [P25; P75] for continuous variables and as fre-
quencies (percentage) for categorical variables. Continu-
ous variables were compared using the Mann‒Whitney U 
test. Categorical variables were compared using the Fish-
er’s exact test. Linear models with Empirical Bayes sta-
tistic were used to evaluate differences in miRNA levels 
between survivors and nonsurvivors [12]. miRNAs with 
a significant difference [false discovery rate (FDR) < 0.05] 
between study groups and a fold change (FC) higher 
than 1.2 (or lower than 0.83 for downregulated levels) 
were considered differentially detected. Adjusted mod-
els were evaluated, including potential confounding 
factors that could affect the association of the miRNA 
and the outcome. The Pearson correlation coefficient 
was used to assess the correlation between continu-
ous variables. Correlations between validated miRNAs 
and laboratory parameters were performed in the whole 
population. Correlations between the miRNAs included 
in the 4-blood miRNA classifier and length of hospital 
stay, ICU stay or IMV were performed in survivors of 
ICU stay. A blood miRNA classifier for all-cause in-ICU 
mortality was constructed using a relaxed least abso-
lute shrinkage and selection operator (LASSO) model. 
This approach was used to reduce the collinearity of the 

multivariable model due the high correlation between 
the plasma levels of miRNAs. Fivefold cross-validation 
was carried out to determine the lambda parameter of 
the LASSO model. Lambda and gamma parameters were 
selected as the values associated with one standard error 
greater than the minimum mean square error (MSE). 
The miRNA levels were standardized prior to fitting the 
LASSO model. For levels of selected miRNAs, a cutoff 
point was established for fitted mortality risk using a 
maximally selected log-rank statistic [13]. For the blood 
miRNA classifier, in order to improve the clinical inter-
pretation, patients were classified in high- or low-risk 
based on their probability of mortality, estimated by the 
final model, using the same method. The hazard ratio 
(HR) was estimated using Cox regression models includ-
ing the dichotomized levels of individual miRNAs and 
the blood miRNA classifier (high- and low-risk groups) 
[13]. Kaplan‒Meier curves were used to illustrate differ-
ences among groups in the time-to-event outcome, and 
the log-rank test was performed to assess statistical sig-
nificance. The clinical model for fatal outcomes included 
demographic characteristics, baseline comorbidities, 
laboratory tests, organ support and oxygenation vari-
ables: age (years), sex (female vs. male), hypertension (yes 
vs. no), chronic respiratory disease (yes vs. no), chronic 
kidney disease (yes vs. no), diabetes (yes vs. no) and at 
ICU admission: PaO2/FiO2 ratio, pH, lymphocyte count 
(x109/L), platelet count (x109/L), D-dimer (ng/mL), urea 
(mg/dL) and serum creatinine (mg/dL). The variables 
were included based on clinical relevance and bibliogra-
phy [11]. Logistic regression models were used to analyze 
the association between the miRNA classifier and 28-day 
and 90-day mortality. The C-index and area under the 
ROC curve (AUC) were calculated for survival and logis-
tic models, respectively. The incremental gain in model 
discrimination was evaluated using DeLong’s test. The 
p-value threshold defining statistical significance was set 
at < 0.05. All statistical analyses were performed using R 
software, version 4.0.2.

Results
Study sample characteristics
The main baseline characteristics of the study cohort are 
summarized in Table  1. The substudy included patients 
admitted from March 2020 to February 2021. The median 
age was 65.0 [56.0;73.0] years, and 31.6% were females. Of 
the total subcohort, 29.3% died during the ICU stay. The 
28-day and 90-day mortality rates were 21.4% and 28.9%, 
respectively. Nonsurvivors were older and had a higher 
prevalence of comorbidities, including hypertension, 
diabetes mellitus and chronic kidney disease. At ICU 
admission, this group had significantly higher APACHE-
II and SOFA scores. At the same time, nonsurvivors had 
a lower PaO2/FiO2 and a higher PaCO2 than survivors. 
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Table 1 Characteristics of study sample
ALL Survivor Nonsurvivor p-value Avail-

able 
data

N = 491  N = 347  N = 144
Sociodemographic characteristics
Age (years), median [P25; P75] 65.0 [56.0;73.0] 62.0 [53.0;70.0] 71.5 [62.8;76.0] < 0.001 491

Female, n (%) 155 (31.6%) 107 (30.9%) 48 (33.3%) 0.678 490

Body mass index (kg/cm2), median [P25; P75] 29.0 [26.1;32.7] 29.0 [26.1;33.5] 28.8 [26.0;31.1] 0.156 410

Smoking history, n (%) 0.676 472

Former 145 (30.7%) 100 (30.0%) 45 (32.4%)

Nonsmoker 289 (61.2%) 204 (61.3%) 85 (61.2%)

Current 38 (8.05%) 29 (8.71%) 9 (6.47%)

Comorbidities
Hypertension, n (%) 275 (56.0%) 179 (51.6%) 96 (66.7%) 0.003 491

Diabetes Mellitus, n (%) 137 (27.9%) 83 (23.9%) 54 (37.5%) 0.003 491

Obesity, n (%) 184 (37.5%) 146 (42.1%) 38 (26.4%) 0.002 491

Chronic cardiovascular disease, n (%) 66 (13.5%) 43 (12.4%) 23 (16.0%) 0.367 490

Chronic pulmonary disease, n (%) 59 (12.0%) 37 (10.7%) 22 (15.3%) 0.201 491

Chronic kidney disease, n (%) 40 (8.16%) 23 (6.63%) 17 (11.9%) 0.080 490

Disease chronology
Time since first symptoms to ICU admission (days), median [P25; P75] 9.00 [7.00;12.0] 9.00 [7.00;12.0] 8.00 [6.00;11.2] 0.167 491

Time since hospital admission to ICU admission (days), median [P25; P75] 2.00 [0.00;4.00] 2.00 [0.00;3.00] 2.00 [0.00;4.25] 0.449 491

Hospital stay (days), median [P25; P75] 25.0 [15.0;41.5] 27.0 [16.0;45.5] 22.0 [14.8;32.2] 0.029 491

ICU stay (days), median [P25; P75] 14.0 [7.00;27.5] 12.0 [6.00;27.0] 19.0 [11.8;28.0] < 0.001 491

Blood gases and laboratory parameters at ICU admission
Oxygen saturation (%), median [P25; P75] 94.0 [90.0;97.0] 94.8 [91.5;97.0] 92.3 [87.0;96.0] < 0.001 483

PaCO2 (mmHg), median [P25; P75] 38.7 [33.2;45.0] 37.0 [33.0;45.0] 41.0 [34.3;50.6] 0.002 464

pH, median [P25; P75] 7.41 [7.35;7.45] 7.43 [7.37;7.46] 7.38 [7.28;7.44] < 0.001 465

PaO2/FiO2, median [P25; P75] 107 [76.0;148] 109 [81.8;153] 100 [65.6;136] 0.008 449

Glucose (mg/dL), median [P25; P75] 159 [129;207] 154 [126;197] 174 [135;255] 0.001 486

Creatinine (mg/dL), median [P25; P75] 0.84 [0.70;1.15] 0.82 [0.69;1.04] 0.90 [0.70;1.40] 0.035 487

 C-reactive protein (mg/L), median [P25; P75] 121 [57.0;216] 114 [56.8;199] 150 [59.4;234] 0.147 472

D-dimer (ng/mL), median [P25; P75] 1023 [562;1898] 836 [484;1536] 1578 
[976;3822]

< 0.001 451

Leukocyte count (x109/L), median [P25; P75] 9.90 [7.20;13.8] 9.49 [6.95;13.0] 11.7 [8.06;15.8] < 0.001 487

Neutrophil count (x109/L), median [P25; P75] 8.90 [6.17;12.5] 8.30 [5.80;11.4] 10.6 [7.30;14.8] < 0.001 468

Lymphocyte count (x109/L), median [P25; P75] 0.63 [0.41;0.88] 0.68 [0.50;0.90] 0.54 [0.35;0.80] < 0.001 477

Monocyte count (x109/L), median [P25; P75] 0.40 [0.23;0.56] 0.40 [0.25;0.56] 0.34 [0.20;0.58] 0.179 465

Platelet count (x109/L), median [P25; P75] 236 [185;307] 237 [190;304] 230 [165;317] 0.131 485

AST (U/L), median [P25; P75] 42.6 [29.0;68.0] 42.0 [29.0;68.0] 42.8 [29.0;68.3] 0.840 419

ALT (U/L), median [P25; P75] 41.0 [25.0;67.0] 42.5 [27.0;67.8] 35.5 [21.2;63.0] 0.019 448

Urea (mg/dL), median [P25; P75] 52.0 [38.0;73.0] 49.0 [35.0;68.0] 62.2 [46.2;94.0] < 0.001 445

Severity scores at ICU admission
APACHE-II score, median [P25; P75] 12.0 [9.00;17.0] 11.0 [8.00;15.0] 15.0 [12.0;21.2] < 0.001 356

SOFA Score, median [P25; P75] 5.00 [4.00;7.25] 5.00 [4.00;7.00] 7.00 [4.00;8.75] < 0.001 380

Interventions during ICU stay
Antibiotics, n (%) 461 (94.1%) 321 (92.5%) 140 (97.9%) 0.037 490

Hydroxychloroquine, n (%) 32 (6.54%) 26 (7.49%) 6 (4.23%) 0.261 489

Tocilizumab, n (%) 125 (25.6%) 92 (26.5%) 33 (23.2%) 0.523 489

Corticoids, n (%) 483 (98.8%) 341 (98.6%) 142 (99.3%) 0.676 489

High flow oxygen nasal cannula, n (%) 347 (80.5%) 265 (84.9%) 82 (68.9%) < 0.001 431

Noninvasive positive pressure ventilation, n (%) 144 (29.9%) 96 (28.2%) 48 (34.3%) 0.221 481

Invasive mechanical ventilation, n (%) 384 (78.4%) 247 (71.4%) 137 (95.1%) < 0.001 490

Prone positioning, n (%) 277 (56.5%) 161 (46.4%) 116 (81.1%) < 0.001 490
ALT: alanine aminotransferase; AST: aspartate aminotransferase; FiO2: fraction of inspired oxygen; ICU: Intensive care unit; PaCO2: carbon dioxide partial pressure; PaO2: oxygen partial 
pressure
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Laboratory parameters highlighted disparities between 
survivors and nonsurvivors in neutrophil counts, lym-
phocyte counts, creatinine, urea and D-dimer. Patients 
who died during the ICU stay required a higher use of 
IMV and prone positioning.

Differential microRNA profiles among ICU survivors and 
nonsurvivors: validation study
First, we interrogated our candidate miRNAs in an inde-
pendent cohort of critically ill COVID-19 patients (Sup-
plemental Table S1; Additional File 2). Linear models 
with the empirical Bayes statistic were used to identify 
differentially expressed miRNAs between survivors and 
nonsurvivors. From the sixteen candidates, six miRNAs 
(miR-27a-3p, miR-27b-3p, miR-148a-3p, miR-199a-5p, 
miR-214-3p and miR-491-5p) showed contradictory 
results when compared with previous findings (Supple-
mental Figure S2; Additional File 2). Furthermore, the 
previous association between miR-150-5p and COVID-
19 was not observed in the current study (FDR 0.102) 
(Fig.  1A). Therefore, these seven miRNAs were dis-
carded from subsequent analysis. Ultimately, nine miR-
NAs reached a statistically significant signal (FC < 0.83, 
FDR < 0.05) and showed similar results to those in the 
previous study in terms of the size effect and direction 
of the association: miR-16-5p, miR-92a-3p, miR-93-5p, 
miR-98-5p, miR-132-3p miR-192-5p, miR-323a-3p, 
miR-451a and miR-486-5p (Fig.  1A). No great impact 
of confounding factors was observed in the association 
between miRNA levels and all-cause in-ICU mortality 
(Supplemental Table S2; Additional File 2). Poor correla-
tions were observed between validated miRNAs and lab-
oratory parameters (rho < 0.3) (Supplemental Figure S3; 
Additional File 2). The nine validated miRNAs entered 
the next phase.

A blood microRNA classifier for predicting ICU mortality 
risk in critically ill COVID-19 patients
Cox regression analysis revealed that low expression of 
eight miRNAs predicted the highest risk of all-cause in-
ICU mortality (HR from 1.54 to 2.61) (Fig. 1B & Supple-
mental Table S3; Additional File 2). No association was 
observed for miR-92a-3p [HR 1.37, p-value 0.06]. We 
next constructed a blood miRNA classifier of all-cause 
in-ICU mortality using the LASSO algorithm for fea-
ture selection. A 4-blood miRNA signature consisting 
of miR-16-5p, miR-192-5p, miR-323a-3p and miR-451a 
was selected (Fig.  1C). Using the classifier, the group of 
patients at higher risk of in-ICU mortality showed an HR 
(95% CI) of 2.53 (1.81–3.54) compared to the low-risk 
group. The Kaplan–Meier curve revealed clear separation 
of survival between the high- and low-risk subgroups 
(log-rank χ2 30.38, p-value < 0.001) (Fig. 1D). The 4-blood 
miRNA classifier was also significantly associated 

with 28-day mortality [OR (95% CI) 3.50 (2.34–5.29), 
p-value < 0.001] and 90-day mortality [OR (95% CI) 3.65 
(2.44–5.51), p-value < 0.001]. No significant correlations 
were found between the classifier and the length of hos-
pital stay, ICU stay or IMV in critically ill survivors (Sup-
plemental Figure S4; Additional File 2).

Then, we explored whether the 4-blood miRNA clas-
sifier cooperatively discriminates all-cause in-ICU 
mortality in combination with established clinical pre-
dictors or contemporaneous prognostic scores. To this 
end, we combined a model based on clinical predic-
tors and the prognostic scores APACHE-II and SOFA 
with the 4-blood miRNA classifier (Fig. 1E & 1F & 1G). 
The addition of the miRNA signature to available clini-
cal parameters improved risk discrimination: miRNA 
classifier-clinical model pair: C-index 0.74, DeLong 
test p-value 0.035; miRNA classifier-APACHE-II pair: 
C-index 0.71, DeLong test p-value 0.055; and miRNA 
classifier-SOFA pair: C-index 0.67, DeLong test p-value 
0.001. Concerning 28-day and 90-day mortality, the addi-
tion of the miRNA classifier also improved the prognos-
tic capacity of the clinical model, APACHE-II and SOFA 
(Supplemental Figure S5; Additional File 2).

Of note, the ability of the 4-blood miRNA classifier to 
predict mortality risk remained significant after extensive 
adjustment for clinical predictors, APACHE-II or SOFA 
(Fig.  1E  &  1F & 1G). Indeed, we analyzed the relation-
ship between the 4-blood miRNA classifier and estab-
lished clinical features of the disease, including clinically 
available blood biomarkers. Again, poor correlations 
(rho < 0.3) were observed between the miRNA score with 
blood cell counts and biochemical parameters (Supple-
mental Figure S6; Additional File 2).

Functional analysis of the 4-blood microRNA classifier
The components of the classifier were subjected to Reac-
tome, GO and KEGG analyses. The functional analysis 
reported 32 Reactome biological pathways, 36 GO terms 
and 9 KEGG molecular pathways. We identified down-
stream targets and mechanisms associated with viral 
infections, such as pathways implicated in transcriptional 
regulation and SARS-CoV infections, and processes 
implicated in COVID-19 physiopathology, including the 
NF-κB, VEGF and TGF signaling pathways. (Fig. 2).

Discussion
The actual prognosis of ICU mortality in COVID-19 
patients constitutes a challenge because of the lack of 
risk assessment metrics [1]. Determining early predic-
tors of mortality is mandatory to guide ICU capacity 
and resource allocation. To identify novel biomarkers, 
the plasma of critically ill COVID-19 patients obtained 
within the first 48 h of ICU admission was subjected to 
miRNA profiling.
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Fig. 1 Construction of the 4-blood microRNA classifier. (A) Violin plot comparing validated microRNA levels between survivors and nonsurvivors 
to ICU stay. Between-group differences were analyzed using linear models for arrays. P-values describe the significance level for each comparison; (B) 
hazard ratio (HR) and 95% confidence interval (90% CI) for each validated microRNA. Cox regression models include the dichotomized levels of individual 
miRNAs; (C) Blood microRNA classifier constructed using a selection process based on relaxed least absolute shrinkage and selection operator (LASSO) 
model; (D) Kaplan‒Meier estimations for the 4-blood microRNA classifier. (E-G) Combination of the 4-blood microRNA classifier with established clinical 
predictors or contemporaneous prognostic scores. (E) Clinical model (n = 373); (F) APACHE-II (n = 352); (G) SOFA (n = 379). The graph displays the hazard 
ratio (HR) and 95% confidence interval (90% CI) for each variable. Cox regression models included the dichotomized levels of the 4-blood microRNA clas-
sifier. The hazard ratio (95% CI) is displayed as a 1-SD change for continuous predictors
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Fig. 2 Functional enrichment analysis of the 4-blood microRNA signature. The microRNAs that composed the classifier were included in the analy-
ses. Graph representing the p-value versus the number of target genes for each microRNA using the Reactome (A), GO (B) and KEGG (C) databases. 
miRWalk2.0 (accessed date July 26th, 2022) was used to predict the interaction of microRNAs with their targets (TargetScan filter)
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In the current study, we first validated the potential 
use of nine miRNA candidates selected from a previ-
ous discovery study as advanced mortality predictors in 
the ICU. Our differentially expressed miRNAs quanti-
fied in an independent multicenter cohort show a high 
concordance with our own previous data [9]. Then, we 
explored the predictive potential of the validated candi-
dates. Accordingly, we showed that eight miRNAs were 
associated with in-ICU survival. Furthermore, we con-
structed a 4-blood miRNA classifier that provides an 
innovative estimate of early in-ICU mortality predic-
tion. The association between the classifier and mortal-
ity persisted even after multivariable adjustment that 
included clinical history and established biomarkers. In 
this sense, neither individual components of the 4-blood 
miRNA classifier nor the signature were correlated with 
prominent features of SARS-CoV-2 infection and disease 
severity, such as leukocyte counts, including neutrophil 
and lymphocyte counts, D-dimer or creatinine, among 
others, suggesting that the miRNA classifier may provide 
novel and independent information for prognostication. 
No correlation was observed between the classifier and 
length of hospital stay, ICU stay or IMV in critically ill 
survivors. The explanation of this result is unclear. It may 
be associated with differences in the study sample or the 
pathobiological mechanisms implicated in the different 
clinical outcomes. Finally, we demonstrated that the use 
of the 4-blood miRNA classifier in concert with conven-
tional scores of adverse outcomes, i.e., APACHE-II and 
SOFA, and a model based on clinical predictors is more 
accurate than either alone for the prognostication of fatal 
outcomes. Indeed, the combination of the host miRNA 
classifier with the clinical predictors computes prognosis 
for all-cause in-ICU, 28-day and 90-day mortality more 
precisely than any information currently available at ICU 
admission.

In addition, to support the previous association 
reported by our group between miR-16-5p, miR-98-5p, 
miR-132-3p, miR-192-5p and miR-323a-3p and in-ICU 
mortality [9], these results are in line with findings from 
the literature. For instance, Fernández-Pato et al. recently 
demonstrated that plasma miR-98-5p is reduced in severe 
COVID-19 patients [14]. In a study from Wilson et al., 
both miR-323-3p and miR-451a were shown to be down-
regulated in plasma samples from individuals with severe 
disease [15]. Overall, our miRNA signature introduces a 
new horizon for a combinatorial clinical data–transcrip-
tomic biomarker systems for mortality prognostication in 
critically ill COVID-19 populations. This advancement 
is especially relevant since only a few potential blood-
based biomarkers, mainly inflammatory and thrombotic 
mediators [16–18], have been proposed for the prognos-
tication of critically ill COVID-19 patients. Furthermore, 
recent findings suggest the superior specificity of miRNA 

for COVID-19 mortality compared to protein biomark-
ers [19]. Risk stratification based on progression rate can 
optimize triage, inform early intervention, improve the 
allocation of hospital resources and allow patient selec-
tion for clinical trials. Additional work will be necessary 
to determine whether the integration of electronic health 
record data with the host miRNA classifier, which can be 
quantified with relatively low cost through techniques 
already available in clinical laboratories such as qPCR, is 
suitable for use as a prognostic test in the ICU.

The development of novel therapies to improve out-
comes in critically ill COVID-19 patients remains a chal-
lenge [20]. Rational therapeutic approaches could be 
inferred from the current results. Disease- and pathway-
specific biomarkers that can predict patients’ evolution in 
the ICU may also constitute therapeutic targets. In this 
context, a second notable finding from our study is that 
the functional analysis of the miRNA classifier compo-
nents has identified relative enrichment of pathways not 
only implicated in inflammatory mechanisms but also 
in VEGF, TGF and transcriptional regulation signaling, 
which are hallmarks of viral infection and disease sever-
ity [14, 21, 22]. Notably, a biological pathway related to 
SARS-CoV infection was enriched in the targets of the 
miRNA signature. The biological function reported in 
independent miRNA-based studies was also captured in 
our analysis. miR-16-5p and miR-98-5p have been pre-
dicted to target the SARS-CoV-2 genome and host fac-
tors that mediate viral infectivity [23, 24]. Interestingly, 
miR-16-5p is downregulated in macrophages exposed 
to SARS-CoV‐2 virion spike 1 glycoprotein (S1) [25]. 
The levels of the miRNA are upregulated in response to 
pro‐resolving mediators, which suggests a role of miR-
16-5p in the resolution of inflammation and the return 
to homeostasis after viral stimuli. The downregula-
tion of miR-451a levels has been described as a possible 
mechanism implicated in cytokine storms in COVID-19 
patients [26]. Therefore, the association of these miRNAs 
as biomarkers for fatal outcomes may not be coinciden-
tal. Potential miRNA-based antiviral therapeutics war-
rant consideration [27].

Strengths and limitations
The strengths of the study are the use of a multicenter 
design including patients from 19 hospitals from differ-
ent geographical locations, the use of a priori sample size 
calculation, the high number of patients analyzed, the 
rigorous control of data quality and the evaluation of the 
miRNA classifier in conjunction with electronic health 
history and contemporaneous tests. The study popula-
tion is a subcohort of critically ill COVID-19 patients col-
lected in the same time frame as the nationwide cohort 
CIBERESUCICOVID [10]; and therefore, it has simi-
lar characteristics being females (29.6%), with a median 
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age of 63 [54–71] and hypertension (49.7%), obesity 
(36.3%) and diabetes mellitus (24.6%) as the most com-
mon comorbidities (Supplemental Table S4; Additional 
File 2). In addition, the subcohort is similar to popula-
tions described in other studies, such as Dongelmans et 
al. [28] and Carbonell et al. [29]. The comparison of the 
biomarker performance with clinical predictors is also 
fundamental to obtaining robust evidence for the poten-
tial clinical applicability of the miRNA classifier. The 
low number of miRNAs constitutes an advantage for its 
potential translation to patient management.

Some limitations must be acknowledged. First, 
although the study population seems to be representative 
of critically ill COVID-19 patients and the study design 
resembles clinical routine, which suggests that our find-
ings may be generalizable, further validation in larger 
and international cohorts is encouraged. Second, pos-
sible confounders cannot be ruled out despite adjust-
ment. Third, since we used a real-world clinical practice 
setting, the sociogeographical context should be con-
sidered. For instance, the impact of therapeutic effort 
limitation on the outcome, SARS-CoV-2 variants and 
modifications in the treatments during the pandemic 
cannot be ruled out. Fourth, the role of the miRNAs in 
the causal pathway of the disease cannot be inferred from 
our study design, although this knowledge is not a pre-
requisite for a biomarker. In addition, the role of circu-
lating miRNAs as endocrine genetic signals remains to 
be fully explored [30]. Fifth, the statistical significance of 
functional analysis should be treated cautiously since the 
analysis was based on selected miRNAs. Further studies 
should explore whether miRNAs participate mechanisti-
cally in the pathophysiology of adverse outcomes. Sixth, 
the current results suggest the need for studies that are 
more comprehensive and less biased than the panel pro-
filing used here.

To conclude, we validated the use of host miRNA pro-
files as a source of predictors of fatal outcomes in criti-
cally ill COVID-19 patients. In addition, we constructed 
a 4-blood miRNA classifier that stratifies patients accord-
ing to their risk of fatal outcome at early stages of ICU 
admission. This classifier can be integrated into clinical 
information currently available to improve prognostica-
tion in the ICU and therefore to prospectively inform 
health care management and clinical decision-making.
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