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Abstract 

Background Chronic obstructive pulmonary disease (COPD) is one of the world’s leading causes of death and a 
major chronic respiratory disease. Aerobic exercise, the cornerstone of pulmonary rehabilitation, improves prognosis 
of COPD patients; however, few studies have comprehensively examined the changes in RNA transcript levels and 
the crosstalk between various transcripts in this context. This study identified the expression of RNA transcripts in 
COPD patients who engaged in aerobic exercise training for 12 weeks, and further constructions of the possible RNAs 
networks were made.

Methods Peripheral blood samples for all four COPD patients who benefited from 12 weeks of PR were collected 
pre- and post-aerobic exercises and evaluated for the expression of mRNA, miRNA, lncRNA, and circRNA with high-
throughput RNA sequencing followed by GEO date validation. In addition, enrichment analyses were conducted on 
different expressed mRNAs. LncRNA-mRNA and circRNA-mRNA coexpression networks, as well as lncRNA-miRNA-
mRNA and circRNA-miRNA-mRNA competing expression networks (ceRNAs) in COPD were constructed.

Results We identified and analyzed the differentially expressed mRNAs and noncoding RNAs in the peripheral blood 
of COPD patients’ post-exercise. Eighty-six mRNAs, 570 lncRNAs, 8 miRNAs, and 2087 circRNAs were differentially 
expressed. Direct function enrichment analysis and Gene Set Variation Analysis showed that differentially expressed 
RNAs(DE-RNAs) correlated with several critical biological processes such as chemotaxis, DNA replication, anti-infection 
humoral response, oxidative phosphorylation, and immunometabolism, which might affect the progression of 
COPD. Some DE-RNAs were validated by Geo databases and RT-PCR, and the results were highly correlated with RNA 
sequencing. We constructed ceRNA networks of DE-RNAs in COPD.

Conclusions The systematic understanding of the impact of aerobic exercise on COPD was achieved using transcrip-
tomic profiling. This research offers a number of potential candidates for clarifying the regulatory mechanisms that 
exercise has on COPD, which could ultimately help in understanding the pathophysiology of COPD.
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Introduction
Chronic obstructive pulmonary disease (COPD) is one 
of the top three causes of death worldwide [1]. COPD 
is characterized by persistent respiratory symptoms and 
airflow limitations that are due to airway or alveolar 
abnormalities [1]. High morbidity and mortality rates 
have affected more than 700 billion people, including 
nearly 100 million people in China [2]. As the global pop-
ulation ages, morbidity and mortality rates are expected 
to increase. In the past few decades, pharmacological 
therapies for COPD have improved; examples include 
antibiotics, triple inhaled therapy, and alpaha-1 antit-
rypsin augmentation therapy. However, prognosis for 
COPD patients remains challenging due to high levels 
of heterogeneity of disease [3]. Further complementary 
therapies are essential to improve the clinical outcomes 
of COPD patients.

Exercise is used to maintain and restore homeosta-
sis at organismal, tissue, cellular, and molecular levels. 
It has the potential to prevent or inhibit a wide range 
of illnesses, including COPD [4]. Exercise immunol-
ogy research has revealed that both acute and ongoing 
exercise have a significant impact on the immune sys-
tem, especially immune metabolism [5]. Regular exer-
cise mediates an anti-inflammatory and antioxidant state 
[6, 7] and the benefits to COPD patients are consider-
able [8]. Aerobic exercise is a cornerstone of pulmonary 
rehabilitation(PR) to improve health-related quality of 
life and exercise capacity, as well as reduce dyspnea, hos-
pitalization, exacerbation, and mortality [9–11]. Some 
studies suggest that exercises can reduce chronic inflam-
mation, improve the diaphragm and cognitive function, 
and reverse airway remodeling [12–15]. However, despite 
exercise’s profound benefits for treating COPD, knowl-
edge of how exercise improves health and the molecular 
mechanism of immunometabolism response to exercise 
remains limited [16, 17]. Furthermore, physiological 
responses to exercise vary between individuals because 
of the heterogeneous phenotype of COPD, exercise 
modalities, and levels of intensity [18]. Additional stud-
ies on the molecular mechanisms of exercise intervention 
in COPD, coupled with advances in the characterization 
of the human genome, may improve personalized exer-
cise interventions and offer new insight into treatment 
strategies.

Previous studies have shown molecular insights into 
the advantages of exercise for people with COPD. For 
example, nuclear receptor subfamily 4 group A mem-
ber 3 (NR4A3) induced metabolic responses in skel-
etal muscle post-exercises [19], and chemerin improved 
the diaphragm function by regulating inflammation 
and metabolism of  COPD5. Other metabolic diseases 
and secondary ageing [20] were also precluded and 

ameliorated by exercise, and wide-scale use of.multi-
omics approaches helped illuminate genomic regula-
tion in response to exercise. Most public data referenced 
skeletal muscle transcriptomics and relevant phospho-
rylation cascades that activated metabolic enzymes such 
as AKT and AMPK [21], as well as alterations in DNA 
structures [22]. Further, although there are few predictive 
tools to access the exercise response for patients, Meta-
MEx (https:// metam ex. eu/) provides the most extensive 
dataset of skeletal muscle transcription and an online 
interface to readily interrogate the database [19]. Nev-
ertheless, muscle samples were difficult to obtain from 
patients. Plasma samples are more convenient and more 
readily accepted by patients; however, no study has sys-
tematically evaluated the alteration of RNA expression in 
peripheral blood leucocyte in response to personalized 
exercise for COPD treatment. Therefore, we aimed to 
conduct a systems-level analysis of the therapeutic mech-
anism of personalized precise exercise training (PPET).

High-throughput molecular biological techniques, 
including a transcriptomics approach, have been used to 
explore complex biological processes and the role of exer-
cise in systems biology. We used whole-transcriptome 
sequencing to explore responses to PPET [23], which 
were more accepted by patients with exertional dyspnea. 
Subsequently, a differential expression analysis of mRNA, 
miRNA, lncRNA, and circRNA (DE-mRNAs, DE-miR-
NAs, DE-lncRNAs and DE-circRNAs) was performed 
between pre-and post-exercise groups followed by func-
tional enrichment and interaction prediction analysis. In 
addition, the results were validated using GEO data. This 
study may shed light on a novel exercise program that 
is suitable for a number of COPD patients and may also 
identify potential biomarkers with various prognostic 
and therapeutic implications.

Methods
Patients and exercise training protocol
Four COPD patients who benefited from 12 weeks of PR 
were recruited from clinical cohort research (registra-
tion number: ChiCTR2100053232) in Pudong New Area 
Gongli Hospital. COPD was diagnosed according to the 
Global Initiative for Chronic Obstructive Lung Disease 
(GOLD) criteria. The GOLD pulmonary function crite-
rion for COPD diagnosis was post-bronchodilator forced 
expiratory volume in 1  s (FEV1)/ forced vital capacity 
(FVC) ratio < 0.7. All subjects had no significant cardiac 
dysfunction, active infection (e.g., hepatitis, tuberculo-
sis), or exercise contraindications such as neurological 
or psychiatric disorders. The study was approved by the 
ethics committee of Shanghai Pudong New Area Gongli 
Hospital and all participants were provided with written 
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informed consent for use of their blood samples for sci-
entific purposes.

Patients were trained on Cycle Ergometer (Qianjing 
20,003, China) for three days with different adaptive 
loads, based on the results of the cardiopulmonary exer-
cise test (CPET) and continuous functional tests. Exer-
cise intensity was individualized moderate intensity, and 
objectively and quantitatively formulated with CPET 
(Δ50% load ± 10 Watt) [24], with Δ50% load = (load at 
anaerobic threshold – increasing load per minute × 0.75 
/ 2 + (peak load – increasing load per minute × 0.75) / 2. 
After the adaptive process, exercise began on the fourth 
day and lasted for 12  weeks. Exercise frequency was 
determined according to the individualized response: 
1 ~ 4 times / day, 5 ~ 7 days / week. Patients warmed up 
at a load of zero watts for five minutes and then at a per-
sonalized load sustained for 30 min of effective exercise 
(if revolutions per minute (RPM) < 60, patients could rest 
then continue the exercise).

Sample preparation
Three milliliters of fresh whole blood were harvested 
from pre- and post-exercise COPD patients. Peripheral 
blood leucocytes were isolated from 3 ml of fresh whole 
blood within two hours of collection, by Pancoll gradient 
centrifugation of one collected Vacutainer EDTA-tube, 
then frozen in liquid nitrogen and stored at – 80  °C for 
further studies.

RNA isolation and library preparation
Total RNA was extracted using the TRIzol reagent 
according to the manufacturer’s protocol. RNA purity 
and quantification were evaluated using the NanoDrop 
2000 spectrophotometer (Thermo Fisher Scientific, 
Waltham, MA, USA). RNA integrity was assessed using 
the Agilent 2100 Bioanalyzer (Agilent Technologies, 
Santa Clara, CA, USA). The libraries were constructed 
using TruSeq Stranded Total RNA with Ribo-Zero Gold 
(illumina, Cat.No. RS-122-2301) according to the manu-
facturer’s instructions.

RNA sequencing and differentially expressed RNAs analysis
The libraries were sequenced on an Illumina HiSeq X Ten 
platform, and 150  bp paired-end reads were generated. 
Approximately 95 million raw reads for each sample were 
generated. Raw data (raw reads) of fastq format were first 
processed using the Trimmomatic software [25]. In this 
step, clean data (clean reads) were obtained by removing 
reads containing adapter and ploy-N or low quality reads 
from raw data. Approximately 93 million clean reads for 
each sample were retained for subsequent analyses.

Sequencing reads were mapped to the human genome 
(GRCh38) using HISAT2 [26]. For mRNAs, FPKM [27] 

of each gene was calculated using Cufflinks [28], and the 
read counts of each gene were obtained by HTSeq-count 
[29]. Differential expression analysis was performed 
using the DESeq (2012) R package [30]. P-value < 0.05 
was set as the threshold for significant differential expres-
sion. For lncRNAs, the transcriptome from each dataset 
was assembled independently using the Cufflinks 2.0 pro-
gram [28]. All transcriptomes were pooled and merged 
to generate a final transcriptome using Cuffmerge (Cuf-
flinks 2.0). All transcripts that overlapped with known 
mRNAs, other non-coding RNA, and non-lncRNA were 
discarded. Next, the transcripts longer than 200 bp and 
the number of exons > 2 were selected, and the CPC (v 
0.9-r2) [31], PLEK (v 1.2) [32], CNCI (v 1.0) [33], Pfam 
(v 30) [34] were used to predict transcripts with coding 
potential. The novel predicted lncRNAs were obtained 
through these processes. The characteristics (including 
length, type, number of exons) of lncRNA were analyzed 
after screening. Then, the novel predicted lncRNAs and 
known lncRNAs (from NCBI and Ensemble database) 
were used for expression calculations and differential 
screening. circRNAs were identified using CIRI (v2.0.3) 
[35] and the expression of circRNAs were calculated 
using RPM (spliced reads per millon mapping) [9]. Dif-
ferential expression analysis was completed using the 
DESeq (2012) R package. All sequencing processes and 
analyses were performed by OE Biotech Co., Ltd. (Shang-
hai, China).

Gene Ontology (GO) term and KEGG pathway analysis
The gene list of DE-mRNAs were uploaded to the Data-
base for Annotation, Visualization, and Integrated Dis-
covery (DAVID, https:// david. ncifc rf. gov/), which is a 
comprehensive set of functional annotation tools for 
researchers to understand biological meaning behind 
large sets of genes The official gene symbol was selected 
as an identifier, and homo sapiens was selected as the 
species. Finally, Gene Ontology (GO) analysis and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis enrichment results were obtained [36, 37]. With 
the enriched gene count ≥ 2 and p < 0.05 significance 
threshold, GO terms and pathways were considered sig-
nificant. The top five results in ascending order were dis-
played in this study.

Gene set variation analysis (GSVA)
The gene list for each biological function was obtained 
from the AmiGO2 portal (http:// amigo. geneo ntolo gy. 
org). The biological functional enrichment score of each 
patient was calculated by Gene Set Variation Analy-
sis (GSVA) analysis, using GSVA package (R environ-
ment) under default parameters [38]. Diverging bars of 
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the enrichment results was drawn with the package (R 
environment).

PPI network and module analysis
The interaction between DE-mRNA encoded proteins 
was analyzed by STRING (version 10.0, https:// string- 
db. org/ cgi/ input. pl) database. We input all DE-mRNA 
sets, and the species was set as human. The PPI network 
was built by Cytoscape software (version 3.9.1; https:// 
cytos cape. org/). The Cytoscape’s plug-in MCODE [39] 
was used to examine the PPI network’s most important 
clustering modules (version2.0.0). We set the PPI score 
parameter to 0.7 to obtain the interaction pairs that were 
most closely related. The threshold for the significant 
clustering module gene was score ≥ 2. GO enrichment 
analysis was conducted for the top 10 clustering mod-
ule genes. The GO terms with enriched gene count ≥ 2 
and the significance threshold p < 0.05 were considered 
significant.

Co‑expression mRNAs of DE‑cirRNA and DE‑LncRNA
The Pearson’s correlation coefficients of each DE-mRNA 
and DE-lncRNA and each DE-mRNA and DE-circRNA 
were calculated. The cor function in R software was 
used to calculate these correlation coefficients. A screen 
of |R|> 0.9 and p < 0.05 was used for co-expression 
relationships.

ceRNA network construction
Competing endogenous RNAs(ceRNAs) are the lncR-
NAs, circRNAs, and mRNAs that competitively bind 
miRNAs and act as miRNA sponges. The lncRNA, 
mRNAs, and circRNA regulatory relationships with 
DE-miRNA were predicted using the StarBase (http:// 
starb ase. sysu. edu. cn/). The lncRNA, circRNAs and 
mRNA that were substantially differently expressed and 
regulated by the same miRNA were screened, using 
DE-lncRNAs, miRNAs, and mRNAs as well as regula-
tory relationships of DE-miRNA that were predicted 
using the StarBase. The lncRNA-miRNA-mRNA and 
circRNA-miRNA-mRNA networks were constructed 
with Cystoscope software v3.8.0 (San Diego, CA, USA) 
to investigate the role and interactions between ncRNAs 
and mRNAs after rehabilitation treatment.

Data validation
GEO data were used for RNA data validation (GSE76705 
for mRNAs validation, GSE24709 and GSE 61741are for 
miRNAs validation). MiRNAs and mRNAs expression 
matrices and annotation information were downloaded 
from GEO database separately. The matrices were sub-
mitted to a differential expression analysis in COPDs 
against normal controls using the limma R package [40]. 

A criteria for substantial DE-mRNA and DE-miRNA was 
defined as p-value 0.05. Expression levels of each genes 
were performed using GraphPad 8.

RT‑PCR for DE‑RNAs
cDNA was synthesized using a TransScript All-in-One 
First-Strand cDNA Synthesis SuperMix (Transgen Bio-
tech, Beijing, China), was performed. PCR was performed 
using a Bio-Rad PCR instrument (Bio-Rad, Hercules, CA, 
U.S.A.) with 2 × Taq PCR Master Mix (Solarbio, Beijing, 
China) following the manufacturer’s instructions. The 
fold changes were calculated by means of relative quanti-
fication (2 − △△Ct method). PCR primers are described 
as below: mirRNA 144: forward 5′-UUC AAU CAA CUU 
UAC UGU AA-3′and reverse 5′-UCA UGU AGU AUA UGA 
CAU -3′; CCL23: forward 5′-CAT CTC CTA CAC CCC 
ACG AAG-3′and reverse 5′-GGG TTG GCA CAG AAA 
CGT C-3′; CPA3: forward 5′-GGG TTT GAT TGC TAC 
CAC TCTT-3′and reverse 5′-GCC AAG TCC TTT ATG 
ATG TCTGC-3′; PLCB4: forward 5′- TTG ACA GAT ACG 
AGG AGG AATCC-3′and reverse 5′GAG GGA GCA TTC 
TAG CAC CTG-3′; IGF2R: forward 5′- GCT TTG ACA 
GCG AGA ATC CC-3′and reverse 5′-TCC TAC AGC AAG 
TGG TCA GC-3′.

Statistical analysis
R 4.1.3 was used for bioinformatics analysis. Data pro-
cessing and analysis were performed using GraphPad 
8 (GraphPad Software, Inc., La Jolla, CA, USA, www. 
graphpad.com).We used paired Student t-test for clini-
cal characters to analyze the differences between groups 
with double tail test. P < 0.05 was considered statistically 
significant.

Results
Individualized aerobic exercise training improved 
cardiopulmonary function of COPD patients
Patients performed a gradually increasing work rate 
CPET to maximal tolerance on an electromagnetically 
braked cycle ergometer in the upright position. Individu-
alized training load was decided according to the CPET 
results. Aerobic exercise training lasted for 12 weeks, and 
peripheral blood samples were harvested pre- and post-
12-week exercise training. Clinical characters of included 
patients are presented in (Table 1). The peak  VO2, peak 
 VO2/kg,  VO2 at AT, peak workload, and six meter walk 
time (6MWT) were evaluated to assess the exercise 
capacity. The oxygen pulse, resting and peak HR, and 
nocturnal oxygen saturation were used to assess the car-
diac function. CAT scores and pulmonary function tests 
were used for assessing respiratory symptoms.

Regarding exercise tolerance, there was a signifi-
cant increase in the Peak VO2 or Peak VO2/kg, after 
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exercise training (102  ml/min, 95% CI: 57.12–146.90, 
t = 7.23, P = 0.005; 1.78 ml/min/kg, 95% CI: 0.61–2.94, 
t = 4.85, P = 0.017; respectively), with an improved 
tread of VO2 at AT or VO2/Kg at AT (89.50  ml/min, 
95% CI: − 7.43–186.40, t = 2.94, P = 0.07; 1.35 ml/min/
kg, 95% CI: − 0.18–2.87, t = 2.82, P = 0.07). After exer-
cise training, the 6MWT had significantly improved 
(23.25  m, 95% CI: 13.32–33.18, t = 7.454, P = 0.005). 
However, the peak workloads during exercise did not 
change significantly (1.5-Watt, 95% CI: -7.17–10.17, 
t = 0.56, P = 0.62). After 12 weeks of exercise training, 
cardiac functions such as the oxygen pulse, resting and 
peak HR were unaffected. (1.55, 95% CI: 0.40–2.70, 
P = 0.008; −  1.75  bpm, 95% CI: -11.15–7.66, t = 0.59, 
P = 0.59; 2.75  bpm, 95% CI:-8.149–13.64, t = 0.80, 
P = 0.48). As a result of exercise training, the noc-
turnal oxygen saturation demonstrated an increase 
trend (5.75%, 95% CI: −  0.92–12.42, t = 2.74, P = 0.07) 
(Fig. 1).

Significant improvements in CAT scores were 
observed in all patients (−  9, 95% CI: −  15.23–2.77, 
t = 4.60, P = 0.019), but pulmonary functions includ-
ing FEV1 and FVC did not change, while two observ-
ers’ FEV1 and FVC improved. As expected, the 
results suggested that individualized aerobic training 
increased exercise tolerance and improved respiratory 
symptoms.

Differential expression analysis
We used high-throughput RNA sequencing technology 
to examine the transcriptome of COPD patients’ periph-
eral blood leukocytes pre-and post-exercise training in 
search of relevant biomarkers and important mecha-
nisms. According to the screening criteria  (log2 Fold-
Change ≥ 1.0 and p-values < 0.05), 86 DE-mRNAs were 
obtained, forty-seven were up-regulated and 39 were 
down-regulated. Six of the eight DE-miRNAs were up-
regulated, and two were down-regulated. 570 DE-lncR-
NAs in total were found, of which 271 were up-regulated 
and 299 were down-regulated. 2064 DE-circRNAs in 
total were discovered, of which 676 showed up-regu-
lation and 1388 showed down-regulation. The violin 
graphic of DE-mRNA, DE-miRNA, DE-lncRNA, and 
DE-circRNA is illustrated in Fig.  2. Our study offered a 
thorough explanation of how routine exercise affects the 
entire transcriptome in COPD patients.

Functional enrichment analysis of DE‑mRNAs
We performed Gene Ontology and KEGG analysis on 
the 86 DE-mRNAs (screening standards:  log2 Fold-
Change ≥ 1 and p-values < 0.05). Related biological 
processes (BP), cellular components (CC), molecular 
functions (MF), and signaling pathways are revealed 
in Fig.  3. Up-regulation genes are enriched with 14 
terms from the GO-BP, five terms from CC, 15 terms 

Table 1 Clinical information of patients

BMI body mass index, FEV1 forced expiratory volume in one second, RV residual volume, TLC total lung capacity, DLCO carbon monoxide diffusion capacity, CAT  COPD 
assessment test. ”/”, patients failed to complete the measurements of pulmonary function test

sample‑1 sample‑2 sample‑3 sample‑4

Demographic data

 Age, years 65.00 67.00 64.00 60.00

 BMI, Kg/m2 16.22 28.28 27.13 14.69

 Gender Male Male Male Male

Smoking history

 Current smoker N N N N

 Ex-smoker Y N Y Y

 Smoking, (pack-years) 7.5 0.00 15 20

Lung function

 FEV1, %pred 64.8 36.7 31.9 /

 FEV1/FVC, % 65.33 55.14 41.3 /

 RV, %pred 78.5 123 112 /

 TLC, %pred 79.7% 82.1 75.3 /

 RV/TLC, % 37.6 59.85 52.45 /

 DLCO, %pred 65 65.5 49 /

CAT score

32 22 24 35

Complication

Osteoporosis Asthma
Hypertension

Hypertension Type II RF
Hyperuricemia
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from MF (Fig. 3A–C); while down-regulation genes are 
enriched with 30 terms from GO-BP, nine terms from 
CC, and nine terms from MF (Fig. 3D–F). From the BP 
analysis results, we found that the up-regulated genes 
were mainly involved in brown fat cell differentiation, 
regulation of striated muscle contraction, negative 
regulation of smooth muscle contraction, G-protein 
coupled receptor signaling pathways, and detection of 
chemical stimuli involved in sensory perception of bit-
ter taste. Additionally, the down-regulated genes were 
significantly associated with chemotaxis, DNA repli-
cation, antibacterial humoral response, antimicrobial 
humoral response, and T-cell chemotaxis. CC analysis 
showed that DE-mRNA target genes were enriched in 
plasma membrane, zurophil granule lumen, extra-
cellular space, hemoglobin complex, mitochondrial 
matrix, and striated muscle myosin thick filament. MF 

analysis demonstrated that DE-mRNAs target genes 
were significantly enriched in aliphatic-amine oxidase 
activity, oxygen oxidoreductase activity, peptidase 
activity, oxygen transporter activity, heme binding, 
serine-type endopeptidase activity, and cytokine bind-
ing. Figure  3G, H illustrates up-regulated mRNAs 
enriched KEGG pathways: hsa04742: Taste trans-
duction; hsa05410: Hypertrophic cardiomyopathy; 
hsa05414: Dilated cardiomyopathy; hsa00360: Pheny-
lalanine metabolism. Down-regulations were enriched 
in hsa04613: Neutrophil extracellular trap formation; 
hsa05202: Transcriptional misregulation; hsa05150: 
Staphylococcus aureus infection; and hsa04621: NOD-
like receptor signaling pathway. These results suggested 
a linkage between exercise and inflammation response 
and material and energy metabolism.

Fig. 1 Changes in clinical parameters of patients pre- and post-exercise. 6 min walking distance (C), oxygen consumption at peak exercise (E), peak 
VO2/pulse (F); CAT score of common symptoms: CAT score (K) and nocturnal oxygen saturation (L) are significantly changed; FVC (A & B), oxygen 
uptake anaerobic threshold (G), working load at peak exercise (D), cardiac function by CPET: oxygen pulse (J), resting and peak heart rate (H & I) are 
not changed significantly. FEV1 forced expiratory volume during the first second, FVC forced vital capacity, VO2 oxygen consumption, HR heart rate, 
SPO2 oxygen saturation, @AT at anaerobic threshold, “pre-” & “post” means pre- or post-12 weeks exercises in hospital
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Protein–protein interaction (PPI) network and module 
extraction
There are 43 nodes and 66 interaction pairs in the 
De-mRNA-based PPI network. We were success-
ful in separating three sub-network modules from the 
PPI network using the MCODE Cytoscape plug-in. 
The major genes identified by nodes with a high topo-
logical score were all down-regulated (Fig.  4), includ-
ing Cyclin-Dependent Kinase 1 (CDK1), TTK Protein 
Kinase (TTK), Holliday Junction Recognition Pro-
tein (HJURP), DLG Associated Protein 5 (DLGAP5), 
PCNA Clamp Associated Factor (KIAA0101, PCLAF), 
GINS Complex Subunit 2 (GINS2), Thymidylate syn-
thase (TYMS), Denticleless E3 Ubiquitin Protein Ligase 
Homolog (DTL), Kinesin Family Member C1 (KIFC1), 
and Elastase Neutrophil Expressed (ELANE). Module 
I (score = 8) contained eight nodes and 28 edges, Mod-
ule II (score = 4.5) contained five nodes and 28 edges, 
Module III (score = 3.3) contained four nodes and five 
edges. For the GO enrichment analysis, three modules 
of genes were used. The genes in Module I were signifi-
cantly involved in GO:0007059 ~ chromosome segrega-
tion, GO:0034501 ~ protein localization to kinetochore, 

GO:0010971 ~ positive regulation of G2/M transition 
of mitotic cell cycle, and GO:0006260 ~ DNA repli-
cation. Genes from Module II were heavily engaged 
in GO: 0019731 ~ antibacterial humoral response, 
GO:0050829 ~ defense response to Gram-negative bac-
terium, and GO:0002227 ~ innate immune response in 
mucosa. Module III were involved in GO:0060968 ~ reg-
ulation of gene silencing, GO:0040029 ~ regulation of 
gene expression, GO:0032200 ~ telomere organization, 
GO:0006335 ~ DNA replication-dependent nucleosome 
assembly, and GO:0006334 ~ nucleosome assembly. 
Results of the top five terms of GO-BP in each module 
were selected for display in Fig. 4.

Gene set variation analysis (GSVA) of expressed mRNAs
GSVA was used to determine the enrichment score of 
each patient. Of 86 differently scored GO gene sets, 54 
gene sets (94.56%) were down-regulated and 32 gene sets 
were up-regulated in the post-exercise group compared 
to the pre-exercise COPD group, at criteria of FC > 1.5, 
p-value < 0.05 (top 40 terms were shown in Fig. 5A). BP 
analysis indicated that these gene sets were enriched in 
growth involved in heart morphogenesis, material and 

Fig. 2 Volcanomap of differential expressed molecules. Comparison of differential expressed differtially expressed mRNAs (A), differentially 
expressed miRNAs (B), differentially expressed lncRNAs (C), and differentially expressed circRNAs (D) in pre- and post-exercise COPD groups. 
Total numbers of DE-molecules were shown in (E). Red dots represent upregulation, green represent downregulattion and gray represent 
non-differential. Differentiallly expressed molecules were identified as P < 0.05 and log2 [fold change] > 1
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energy metabolism, and cell adhesion. The CC analysis 
further verified that the gene sets were enriched in struc-
tural and functional components of material and energy 
metabolism, especially the mitochondrial-related energy 
metabolism. Moreover, the MF analysis indicated that 
the gene sets were enriched in CCR6 chemokine recep-
tor biding, Guanylate cyclase regulator activity, alpha-
N-acetylgalactosaminide alpha-2, 6-sialyltransferase 
activity, BMP receptor activity, and TGF-βreceptor activ-
ity. 570 genes were enriched using these terms, among 
which SCN1B, STPG4, DTL, TTK, FPR3, CDK1, HJURP, 
and GINS2 were also included in 86 De-mRNAs.

According to KEGG pathway enrichment analysis, we 
found 12 pathways were suppressed compared to pre-
exercise COPD patients at criteria P < 0.05 (Fig. 5B). The 
most enriched terms in COPD following exercise were: 
limonene and pinene degradation, folate biosynthesis, 
oxidative phosphorylation, valine leucine and isoleucine 

biosynthesis, fatty acid metabolism, biosynthesis of 
unsaturated fatty acids, glycosphingolipid biosynthesis 
globo series, citrate cycle TCA cycle, pyruvate metabo-
lism, and lysosome. 492 genes were enriched in these 
pathways, among which IGF2R, NDUFAB1, NDUFS8, 
PLCB4, and SCD were also included in DE-mRNAs of 
our study at criteria FC > 1.5. Of note, PLCB4 was DE-
mRNA at criteria FC > 2. Aerobic exercise regulated 
metabolic pathways in COPD patients, particularly the 
energy metabolism pathways. In summary, our study 
offered a thorough explanation of the effect of exercise on 
the transcriptome in COPD patients, who were charac-
terized by a lack of energy supply.

Enrichment analysis of target genes associated 
with miRNA, lncRNA, and circRNA
A growing body of data suggests that complementary 
hybrids between lncRNAs and co-expressed mRNAs 

Fig. 3 Enrichment analysis of DE-mRNAs. A–F Top 5 molecular unctions (MF), biological process (BP) terms and cellular components (CC) enriched 
by unregulated and down regulated genes (DE-mRNAs) separately. G, H The enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
by DE-mRNAs
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Fig. 4 Three modules extracted from protein–protein interaction (PPI) network. A total of 3 modules were identified in the PPI network using the 
MCODE tool in Cytoscape software (A–C). Blue circles represent down regulated genes. Top 5 GO-BP (D) and CC (E) terms enriched by genes in 
those three modules

Fig. 5 Gene function enrichment scores and pathway analysis. A the heatmap showed the enrichment scores of different gene sets of each COPD 
patient pre-and post-exercise. B Diverging bars showed enrichment analysis of KEGG pathways on these gene sets



Page 10 of 18Liu et al. Respiratory Research          (2023) 24:156 

can interact with one another from both adjacent and 
distant places. CircRNAs also participate in a variety 
of biological processes through a number of methods, 
due to their distinct shapes and characteristics. Figure 6 
depicts the intersections of DE-lncRNA-target mRNAs, 
DE-circRNA-host genes, and DEmiRNA-target mRNAs. 
Four trustworthy core mRNAs that were identified by 
Venn diagram: Cytochrome B5 Domain Containing 1 
(CYB5D1), Kinocilin (KNCN), Phospholipase C Beta 4 
(PLCB4), and Speedy/RINGO Cell Cycle Regulator Fam-
ily Member A (SPDYA). Based on the mRNAs involved 
in the DE-miRNA-DE-mRNA regulatory relationship, 

DE-lncRNA-DE-mRNA and DE-circRNA-DEmRNA co-
expression relationship, GO and KEGG enrichment anal-
ysis was performed again, and the results are displayed 
in a bubble diagram (Fig. 6I). The results showed that the 
genes most enriched in the inflammatory response fol-
lowing exercise training. Future research may use these 
co-expression networks to identify possible functional 
connections between ncRNAs and mRNAs.

CeRNA network construction
By combining expression profiling of differentially 
expressed circRNAs, miRNAs, and mRNAs, a ceRNA 

Fig. 6 Enrichment analysis of target genes of DE-lncRNAs and DE-circRNAs. Host genes of DE-circRNA enriched in BP (A), CC (B), MF (C) terms and 
KEGG pathways (D); Target genes of DE-lncRNA enriched in BP (E), CC (F), MF (G) terms and KEGG pathways (H); intersection mRNAs (I) that were 
identified by Venn diagram using prediction platforms and DE-mRNAs in our study
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network was built to thoroughly study the impact of 
ceRNA regulation on gene levels in COPD following 
exercise training. As shown in Fig.  7A, there are 1238 
interaction relationships of circRNA-miRNA-mRNA: 
161 up-circRNAs and 336 downcircRNAs;

18 upregulated mRNA and seven downregu-
lated mRNAs; and one upregulated miRNA and 
two downregulated miRNAs. Figure  7B showed 31 

lncRNA-miRNA-mRNA interactions, including one 
upregulated miRNA and two downregulated miRNAs, 
18 upregulated mRNAs, and seven downregulated lncR-
NAs. Further, we integrated these two networks and con-
centrated on screening circRNAs, lncRNAs, and mRNAs 
that were regulated by the same miRNAs.Finally, 312 
interaction pairs were discovered (Fig.  7C), including 
176 circRNAs (26 upregulated and 150 downregulated), 

Fig. 7 The competing expression networks. A shows the ceRNA network of lncRNA-miRNA-mRNA, B shows circRNA-miRNA-mRNA ceRNA network, 
C shows the circRNA-lncRNA-miRNA-mRNA ceRNA network. Orange-red color represents upregulated genes, green color indicates downregulated 
genes. Circle shape indicates circRNAs, quadrilateral indicates lncRNAs, triangle indicates miRNAs
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25 mRNAs (18 upregulated and seven downregulated), 
three miRNAs (hsa-miR-1277-5p and hsa-miR-144-3p, 
downregulated; hsa-let-7c-5p, upregulated), and six 
downregulated lncRNAs,

Verification of the expression changes of key genes
According to our results, DE-mRNAs were linked to 
mitochondrial metabolism and inflammatory responses, 
both of which are compromised in COPD. Additional 
research on the crucial molecules involved in PR could 
provide more insight into the mechanisms underlying 
the metabolic remodeling of COPD prompted by aero-
bic exercise. Therefore, we used GEO statabase to vali-
date the differently expression genes, where the screening 
threshold was set at p < 0.05. A total of 8545 different 
expression mRNAs were obtained in GSE76705, which 
comprised 144 COPD samples and 85 controls. Finally, in 
contrast to the DE-mRNA produced by our analysis, 30 
DE-mRNAs were found (see Venn map [41] in Figure S1), 
including genes with greater levels of enrichment in the 
PPI modules and higher GSVA scores: ELANE, SCN1B. 
Additionally, we noticed that two down-regulated and 
17 up-regulated (such as: ELANE, DEFA4, MPO, CPA3, 
AZU1, CCL23 in GSE76075) genes’ expression levels 
reversed in COPD patients after aerobic activity in our 
study. However, aerobic exercise did not reverse levels of 
one down-regulated and 10 up-regulated genes in COPD 
patients. In fact, they were even higher or lower (such 
as: SCN1B, TIAF1). Notably, DTL, CDK1 and PLCB4 
were not changed in GSE 146560 COPD samples when 
compared to normal controls, but the expression levels 
changed after exercise. However, these three genes were 
not detected in GSE76075; further studies are needed to 
address this.

GSE24709 and GSE 61741 datasets were used for mirR-
NAs data validation, 4/8 (50%) DE-miRNAs in our study 
were expressed, including hsa-miR-144, has-miR-1268, 
hsa-let-7c-5p, and hsa-miR-1277(the levels of these genes 
in GSE 24709 were shown in Fig. 8). However, only hsa-
miR-144 was differentially expressed in these two GEO 
data compared to normal controls. The difference in 
results may be due to sample or threshold differences. 
However it worth to be researched in the future study.

High potential therapeutic targets that were DE-RNAs 
representatives were chosen for RT-PCR investigation in 
order to confirm the results from RNA-seq. As shown 
in Fig. 9, 5 major regulatory DE-RNAs were selected for 
qRT-PCR verification, including PLCB4, CCL23, CPA3, 
Mir-144, and its target gene IGF2R. The housekeep-
ing gene GAPDH was used as the endogenous control. 
Patient characteristics are shown in Additional file  1: 
Table  S1. These DE-RNAs exhibited the same tendency 
between the RNA-seq analysis and qRT-PCR results, 

which suggested that our transcriptome analysis was 
accurate and dependable.

Conclusion
COPD is a heterogeneous disease, although pharmaco-
logical therapies for COPD have improved, they produce 
insufficient results. Exercise training is a vital tool in the 
fight against the global epidemic of aging and metabolic 
 disease3, including COPD. Numerous studies have shown 
the effects of exercise on the immune system. Regu-
lar exercise performed at moderate intensity leads to an 
anti-inflammatory, anti-infection, and controlled immu-
nological metabolic state [42, 43]. However, the exact 
mechanism that underlies its effects on COPD remains 
unclear. Since the basis of exercise limitation in COPD 
patients is breathlessness [16], we used personalized, pre-
cise exercise training to inhibit these respiratory symp-
toms to achieve the daily exercise volume. Our study 
found individualized aerobic exercise training improved 
peak VO2, CAT score, and 6MWT (see Fig. 1), compared 
to healthy cohorts in a meta-analysis study [44]. Accord-
ing to the findings, personalized, precise exercise training 
is appropriate for COPD and has promising future pros-
pects. But the mechanism by which exercise increases 
exercise tolerance and improves respiratory symptoms 
remains unknown.

We employed a whole-transcriptome sequencing tech-
nique to investigate the potential role of RNAs in COPD 
following exercise training and provided a compre-
hensive look at COPD patients’ pre- and post-exercise 
caused RNA-level modifications. 570 lncRNAs, 2064 
circRNAs, eight miRNAs, and 86 mRNAs were found to 
have significantly altered expression in COPD patients 
pre- and post-exercise using  log2FC ≥ 1 and p-value < 0.05 
as the criteria (Fig. 2). Direct function enrichment analy-
sis revealed that DE-genes were involved in brown fat cell 
differentiation, muscle contraction, G-protein coupled 
receptor signaling pathway, and detection of chemical 
stimulus, T cell chemotaxis, DNA replication, and anti-
bacterial and antimicrobial humoral response. PPI net-
work analysis of these DE-genes identified several hub 
gene: CDK1, TTK, HJURP, DLGAP5, PLCAF, GINS2, 
TYMS, DTL, KIFC1, and ELANE. Enrichment analysis 
of those genes related to the biologic process of DNA 
replication, chromosome segregation, telomere organiza-
tion, and anti- inflammation. We also performed GSVA 
analysis with non-zero expressed mRNAs in each patient. 
Eleven hub genes (DTL, TTK, FPR3, CDK1, HJURP, 
GINS2, IGF2R, NDUFAB1, NDUFS8, PLCB4, and SCD) 
and some vital pathways linked to regular exercise train-
ing were discovered: chemokine receptor biding, tri-
carboxylic acid (TCA) cycle, fatty acid metabolism, and 
oxidative phosphorylation, which were known to be 
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associated with the pathophysiology of COPD [3, 45, 45]. 
In addition, enrichment analysis of co-expression genes 
linked to miRNA, lncRNA, and circRNA also identified 
the function of anti-infection and T-cell chemotaxis. 
According to the ceRNA complex network, we found 
hsa-miR-144-3p, hsa-miR-1277-5p, and hsa-miR-7c-5p 
were significantly enriched in. Moreover, majority of the 

DE-mRNAs and a small number of miRNAs were effec-
tively confirmed using GEO data. Different threshold 
choices or sample variances may be the cause of the dis-
crepancy between our sequencing results and GEO data.

Despite limited evidence, the key genes listed in DE-
mRNAs from our results may be linked to RNA replica-
tion immune defense, anti-inflammation, mitochondrial 

Fig. 8 GEO database verification of mRNAs and miRNAs. A–D: The miRNA expression levels that are different between COPD and normal controls. 
E–L In GES76075, genes were found to be significantly increased in COPD patients versus normal controls. The significance of the difference was 
evaluated with an unpaired t test
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functions, and ATP and protein degradation processes. 
Genes such as CDK1, TTK, HJURP, GINS2, DTL, 
ELANE, FPR3, PLCB4, and IGF2R may contribute to the 
pathology of of COPD. CDK1, a member of the cyclin-
dependent kinase family which is up-regulated in several 
cancers by regulating cell cycle progression and activat-
ing of JAK/STAT3 signaling[46, 47], participated in the 
pathogenesis of pulmonary arterial hypertension (PAH) 
by influencing mitochondrial dynamics and the cell cycle 
[48]. Further studies are needed to validate them as a tar-
get for cancer therapy. TTK is a critical component of the 
spindle assembly checkpoint [49]. It is a biomarker for 
non-small cell lung cancer prognosis, and its overexpres-
sion accelerates the tumor’s progression [50, 51]. HJURP, 
a centromeric protein (chaperone), has been shown to 
increase in lung tumors and COPD and is essential for 
the insertion and maintenance of the histone H3-like 
variation CENPA at centromeres [52, 53]. GINS2 pro-
moted cell proliferation, migration, invasion, and EMT 
via modulating PI3K/Akt and MEK/ERK signaling path-
ways [54], GINS2 knock-down stimulated inflammation 
and apoptosis in microglia [55]. DTL, a homolog of E3 
ubiquitin ligase that belongs to the DCAF protein fam-
ily, was reported to enhance the motility, proliferation, 

and invasion of cancer cells [56, 57], and also significantly 
decrease total glucose consumption and lactate produc-
tion [58]. ELANE, a factor that contributes to a protease-
antiprotease imbalance and may cause inflammatory lung 
illnesses [59], induces autophagy, which in turn induces 
lung epithelial cell apoptosis and pulmonary emphysema 
through the overexpression of PGF [60]. Further research 
is needed to determine if RNAs with differential expres-
sion are involved in these biological activities.

RNA-seq-based networks have proven to be a valuable 
tool for investigating functional noncoding RNAs and 
their functional mechanisms in many disease models. We 
discovered that has-miR-144-3p plays an important role 
in the ceRNA network. Evidence shows that miR-144-3p, 
which is improperly regulated, suppresses tumor growth 
in a variety of cancer types [61]. In addition, miR-144-3p 
was downregulated in the peripheral blood of COPD 
patients compared to normal controls according to 
GSE24709 and GSE6141. However, our results indicated 
that miR-144-3p was down-regulated post-exercise when 
compared to pre-exercise COPD. Anti-mir-144-loaded 
extracellular vesicles was proven to protect against 
obstructive sleep apnea or chronic intermittent hypoxia-
associated endothelial dysfunction [62].The miR-144 

Fig. 9 Verification of Gene Expressions via RT-PCR. A–E RT-qPCR detection show the expression of CCL23, CPA3, PLCB4, IGF2R and miR-144. Data are 
means ± SD. **P < 0.01, ***P < 0.001 vs. control. ##P < 0.01, ###P < 0.001 vs. COPD
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family was reported to target NF-kB pathways and play 
a pro-inflammatory role in coronary artery disease [63]. 
Thus, we speculated that exercise training may improve 
progression of COPD by regulating the expression of 
miR-144-3p.

Interestingly, up-regulated hsa-let-7c and down-regu-
lated hsa-miR-1277 post-exercise in COPD, which were 
validated as expressed but without difference compared 
to normal controls in GEO data, play an important role in 
the ceRNA network of our study. Evidence suggests that 
overexpression hsa-miR-1277 could ameliorate IL-1β-
induced CHON-001 cell injury and inhibit the progres-
sion of Parkinson’s disease [64, 65], but these studies were 
all in  vitro. Future mechanistic investigations are thus 
necessary to ascertain the impact of exercise on COPD 
and the function of miR-144-3p and other ncRNAs. 
However, because of the paucity of study in this field, a 
significant portion of the DE-lncRNAs and DE-circRNAs 
were not previously identified. In general, the discovery 
of RNAs changes following exercise improves our com-
prehension of the cardiopulmonary-regulation mecha-
nisms of aerobic exercise in COPD, which may enhance 
the effectiveness of this non-pharmacological interven-
tion and result in the discovery of novel alternative thera-
peutic targets for COPD patients.

In summary, while the influence of exercise on mul-
tiple organs is well documented, our knowledge of how 
this occurs at the cellular and molecular level is mostly 
limited to skeletal muscle. According to GO enrich-
ment, KEGG, and GSVA analysis, this comprehen-
sive  study of noncoding RNAs and mRNAs uncovers 
regulatory pathways and key DE-genes involved in the 
effectiveness of aerobic exercise on COPD. Furthermore, 
co-expression networks (lncRNA–miRNA–mRNA and 
circRNA–miRNA–mRNA) were constructed to under-
stand the regulatory roles of these mRNAs and ncRNAs. 
The observed DE-mRNAs and DE-ncRNAs may provide 
the foundation for understanding the genetic basis and 
ceRNA mechanism of exercise in COPD. The results pro-
vide molecular insights related to the effects of exercise 
on COPD and inform future therapeutic selection. Fur-
ther research into the molecular mechanisms underly-
ing the expression changes on differentially expressed 
mRNAs and ncRNAs may reveal more RNA therapeutic 
targets.

The results of this study offer implications for further 
investigation. First, more COPD patients who volunteer 
for 12 weeks of supervised exercise are expected to par-
ticipate in RNA sequencing and bioinformatics analy-
sis based on sample size estimation. This will enhance 
research methodology for highly confident differential 
expression identification. Second, future comprehen-
sive investigations involving in vivo and in vitro trials are 

necessary because the RNA regulatory networks and data 
validation were solely based on bioinformatics predic-
tions and GEO database, and lacking sufficient sample 
sizes for verification. Research on the potential functions 
and evolutionary conservation of RNAs can benefit from 
using COPD model exercises. Moreover, repeatability 
in different COPD phenotypes and RNA alterations in 
the current study are incomplete. Our team is research-
ing these key RNAs’ repeatability and mechanisms 
post-exercise in COPD models, as well as expanding the 
COPD participant pool.
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