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Abstract 

Background Although currently most widely used in mechanical ventilation and cardiopulmonary resuscitation, 
features of the carbon dioxide  (CO2) waveform produced through capnometry have been shown to correlate with 
V/Q mismatch, dead space volume, type of breathing pattern, and small airway obstruction. This study applied feature 
engineering and machine learning techniques to capnography data collected by the N-Tidal™ device across four clini-
cal studies to build a classifier that could distinguish  CO2 recordings (capnograms) of patients with COPD from those 
without COPD.

Methods Capnography data from four longitudinal observational studies (CBRS, GBRS, CBRS2 and ABRS) was ana-
lysed from 295 patients, generating a total of 88,186 capnograms.  CO2 sensor data was processed using TidalSense’s 
regulated cloud platform, performing real-time geometric analysis on  CO2 waveforms to generate 82 physiologic 
features per capnogram. These features were used to train machine learning classifiers to discriminate COPD from 
‘non-COPD’ (a group that included healthy participants and those with other cardiorespiratory conditions); model per-
formance was validated on independent test sets.

Results The best machine learning model (XGBoost) performance provided a class-balanced AUROC of 0.985 ± 0.013, 
positive predictive value (PPV) of 0.914 ± 0.039 and sensitivity of 0.915 ± 0.066 for a diagnosis of COPD. The wave-
form features that are most important for driving classification are related to the alpha angle and expiratory plateau 
regions. These features correlated with spirometry readings, supporting their proposed properties as markers of 
COPD.

Conclusion The N-Tidal™ device can be used to accurately diagnose COPD in near-real-time, lending support to 
future use in a clinical setting.

Trial registration: Please see NCT03615365, NCT02814253, NCT04504838 and NCT03356288.
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Background
Chronic Obstructive Pulmonary Disease (COPD) is a 
progressive respiratory disease most associated with a 
smoking history. It is the third most common cause of 
mortality worldwide [1], causing 3.28 million deaths in 
2019 and affecting 212 million people globally [2].

Although no cure currently exists, early diagnosis and 
treatment are important to improve lung function and 
quality of life and reduce exacerbations [3]. The clinical 
standard for COPD diagnosis is spirometry, which relies 
upon a patient’s ability to exhale forcefully. However, 
a major disadvantage of spirometry is that it is effort-
dependent and thus unreliable and non-specific [4]. In 
addition, it is effective at detecting latter stages of dis-
ease but has lacked reliability in screening for early and 
asymptomatic cases [5]. This limitation poses challenges 
in diagnosing a slowly progressing disease such as COPD 
with a long asymptomatic pre-prodromal phase [6]. It has 
been estimated that in the UK, only between 9.4 and 22% 
of those with COPD have been diagnosed [7], in part due 
to spirometry’s poor precision of only 63% [8].

Capnography is a widely used technique in critical care 
and anaesthetics. It has been suggested that features of 
a high-resolution capnogram could be used to identify 
physiologic patterns associated with respiratory diseases 
such as COPD [9]. TidalSense’s N-Tidal™ device (MHRA 
reference: 5182) has made it possible to measure  CO2 
concentration reliably and accurately via tidal breathing 
through a mouthpiece, with a greater time resolution 
than previously possible [10], making the technique an 
appealing alternative to spirometry.

The objective of this paper was to apply machine learn-
ing (ML) techniques to capnography data collected using 
the N-Tidal™ device across four clinical studies. The 
aim was to build a classifier that could distinguish cap-
nograms of patients with COPD from those without 
COPD using only one breath recording, while maintain-
ing explainability of outputs, with a clear reference to res-
piratory physiology. This data was analysed to assess the 
capability of N-Tidal™ to function as a point-of-care diag-
nostic tool for COPD.

Methods
Participants
It was vital to ensure any diagnostic classifier could dis-
tinguish COPD from other conditions that could cause 
a similar symptom burden at presentation, since many 
patients undergoing physiological testing for COPD 
may have an alternative diagnosis. Therefore, the cap-
nograms used in this analysis were collected from four 
different observational cohort studies, known as GBRS, 
ABRS, CBRS and CBRS2, that together provided a data-
set with appropriate heterogeneous medical conditions. 

A summary of these studies with their objectives can be 
found in Additional file  1. They included patients with 
COPD, asthma, heart failure, pneumonia, breathing pat-
tern disorder, motor neuron disease, sleep apnoea, bron-
chiectasis, pulmonary fibrosis, tracheobronchomalacia, 
as well as healthy participants.

In patients with COPD, diagnoses were made accord-
ing to NICE guidelines with most patients being 
Global Initiative for Chronic Obstructive Lung Disease 
(GOLD)  stages three or four (representing severe and 
very severe disease respectively). Diagnostic criteria used 
for other conditions, including asthma, are in Additional 
file  1 alongside each protocol’s inclusion and exclusion 
criteria. In addition to the four studies noted above, cap-
nography data was collected from 34 volunteers without 
any respiratory disease between December 2015 and 
January 2022. Though not part of a formal study, these 
volunteers provided written informed consent and were 
screened by a medical doctor to ensure they did not 
have any confounding cardiorespiratory disease or other 
co-morbidities. All subjects across the four studies gave 
informed consent, and their data was handled according 
to all applicable data protection legislations, including 
the EU/UK General Data Protection Regulation.

Ethical approval was obtained from the South Cen-
tral  -  Berkshire -  Research Ethics Committee (REC) for 
GBRS and ABRS, the Yorkshire and the Humber REC for 
CBRS and the West Midlands Solihull REC for CBRS2.

Procedures
In all studies, capnography data was serially collected 
using the N-Tidal™ device twice daily for varying lengths 
of time according to each study’s protocol. The N-Tidal™ 
device is a CE-marked medical device regulated in the 
UK and EU, and has been designed to take accurate, 
reliable recordings of respired partial  pressure of  CO2 
 (pCO2) directly from the mouth. The N-Tidal™ device 
is unique in its ability to accurately measure  pCO2 from 
high  CO2 to background levels, with a fast response time, 
meaning that quick changes in the geometry of the  pCO2 
waveform are captured.

Patients performed normal tidal breathing through 
the N-Tidal™ device for 75 s through a mouthpiece in an 
effort-independent process. This duration was selected as 
it ensured adequate data collection (assuming that some 
breaths were likely to be noisy and may require elimina-
tion prior to analysis), while also ensuring that data col-
lection was relatively short for patients.  CO2 was sampled 
at 10 kHz and reported at 50 Hz providing a level of reso-
lution not possible with alternative capnometers [10]. 
Reporting at 50 Hz was done to improve signal-to-noise 
ratio, and to ensure  CO2 data could be quickly transmitted 
over mobile networks while still ensuring high temporal 
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resolution. A single episode of use (breath recording) pro-
duced a single capnogram, with each respiratory cycle 
(inspiration and expiration) forming a single waveform.

In addition to capnometry data, the following data was 
also collected for all four studies: basic demographics, 
spirometry (taken on the same day as N-Tidal™ data), 
and medical history. Other clinical and questionnaire 
data varied across studies (see objectives and inclusion/
exclusion criteria in Additional file 1).

Feature engineering
For each capnogram collected using a N-Tidal™ device, 
raw pCO2 data was first denoised (see Additional file  1 
for waveform correlations before and after denoising), 
then individual breaths were separated and breath phases 
segmented before being stored in a secure cloud data-
base (Fig. 1). Individual anomalous breaths within a cap-
nogram that could not be processed were identified and 
excluded from analysis using automated software built 
into the N-Tidal™ cloud platform. Reasons for exclu-
sion included: breathing through the nose, water vapour 
condensation-compromised sensor readings, incomplete 
breaths, noisy breaths caused by swallowing or coughing 
into the device, or cardiogenic oscillations. Each of these 
artefacts creates specific patterns of discontinuity in the 
 CO2 waveform which alters the geometry of the wave-
form (e.g. swallowing, coughing artefacts and cardiogenic 

oscillations), or substantially impacts the signal-to-noise 
ratio (e.g. nose breathing or condensation-compromise 
artefacts). In both cases, these breaths were automatically 
flagged for exclusion by the N-Tidal™ cloud platform and 
were not included in further analysis.

To generate features for the ML classification task, two 
categories of information were captured: geometric char-
acteristics of the waveform associated with each breath 
(referred to as ‘per breath features’); and features of the 
whole capnogram, such as respiratory rate or maximum 
end-tidal  CO2  (ETCO2), referred to as ‘whole capnogram 
features.’

For each capnogram, 77 per-breath features and 5 whole 
capnogram features were derived. As the number of 
breaths per capnogram varied, the median and standard 
deviation were calculated for the per-breath features in 
each capnogram. These features included the following: α, 
β, γ, and δ angles (Fig. 2) [11–13]; gradients and residuals 
derived from fitting curves to phases, such as the expira-
tory plateau [14]; absolute and short-term variability of 
 pCO2 [15]; curvature and other higher-order time-based 
features such as the ratio of the expiratory to inspiratory 
phase [12, 13, 16]; and area under the curve (AUC), which 
is commonly calculated in volumetric capnography [16, 
17]. These features have a basis in the respiratory physiol-
ogy literature, and in many cases have been hypothesized 
to relate to clinical airway obstruction.

Fig. 1 High-level overview of the feature engineering and machine learning pipeline used for data processing, feature engineering and model 
training of fast-response  CO2 data collected through the N-Tidal™ device
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Any breaths where the full feature set could not be cal-
culated were also automatically excluded from analysis, 
and further checks were carried out manually to ensure 
that all condensation-compromised breaths had been 
excluded by the automated methods.

Machine learning
Following pre-processing and feature engineering, each 
feature was normalized and scaled to a mean of zero and 
standard deviation of 1. Significant class  imbalances are 
known to bias machine learning (ML) models towards 
low predictive accuracy on an under-represented target 
[18]. To address this, the first capnogram from each par-
ticipant in the majority class (non-COPD) was retained, 
and the first three capnograms from each participant in 
the minority class (COPD) were retained. This approach 
represented a small fraction of the total breath records 
available, but using a small number of capnograms per 
patient had several advantages. First, it ensured that 
the models would be less likely to overfit on features of 
individual patients, such as confounding co-morbidities, 
enabling them to learn the general capnographic charac-
teristics of COPD across a larger population. Secondly, 
it mimicked the anticipated real-world application of 
the N-Tidal™ device and ML model, namely, to diagnose 
COPD based on a single breath recording.

Next, 20% of the dataset was put aside as an unseen 
test set and the remaining 80% was used for model 
training and testing. During training, a group-stratified 

five-fold cross-validation procedure was applied, which 
involved dividing the dataset into five folds, ensuring 
no patient overlap between test sets and training sets. 
For each iteration, data was sampled from four folds 
for training, with the remaining fold left out for testing. 
For example, one iteration of training used 348 capno-
grams from 231 patients in the training set, and 87 cap-
nograms from 58 patients in the test set. This ensured 
that the data used to test performance of the model 
was not included in the training process. The mean 
performance of all five iterations produced the results 
of the overall model performance. In addition, the per-
formance variability across all five folds gave a meas-
ure of model generalizability. Upon completion of the 
group-stratified five-fold cross-validation procedure, 
the best model was then tested on the unseen test set to 
verify robustness of model performance in a completely 
unseen set, which was designed to be indicative of real-
world performance.The capnogram features were fed 
to three different ML models: logistic regression (LR); 
extreme gradient boosted trees (XGBoost); and a sup-
port vector machine (SVM) with a linear kernel. These 
models were chosen due to their more interpretable 
nature. Deep learning methods were omitted to main-
tain explainability and to minimize model complex-
ity. The five-fold cross-validation, training, and testing 
steps were repeated 100 times to calculate the average 
of the reported metrics. Finally, the capnograms where 
the model was less confident in assigning to a class 
(COPD vs. non-COPD) and those that were misclassi-
fied were investigated.

Statistical methods
The Python scikit-learn package was used to produce each 
of the following: sensitivity; specificity; negative predic-
tive value (NPV); positive predictive value (PPV); receiver 
operator characteristic (ROC) curves; micro-averaged 
area under ROC (AUROC); and confusion matrix (for 
a decision boundary of 0.5). The most significant fea-
tures driving model learning were extracted to under-
stand which features of the capnogram waveform were 
most predictive of COPD. To investigate the relationship 
between traditional diagnostic methods and these most 
predictive features, the median of each feature, for each 
patient, was plotted against the patient’s paired spirom-
etry result, and correlations were calculated.

Data availability
The datasets analysed in this publication are not publicly 
available for data protection reasons.

Fig. 2 Illustration of a capnogram waveform and its phases and 
angles. Phase 1 is the inspiratory baseline, Phase 2 is the expiratory 
upstroke (representing the first phase of exhalation), Phase 3 is 
the expiratory plateau (representing the end of exhalation), Phase 
4a is the inspiratory downstroke (representing the first phase of 
inhalation), and Phase 4b is the inspiratory baseline. Note that 
the start of Phase 1 and the end of Phase 4b may technically be 
considered part of the same phase
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Results
Between 6 December 2015 and 31 January 2022, 88,186 
capnograms were collected from 295 patients. On 
average, each patient collected 299 capnograms over 
179 days. Demographic data was collated (Table 1).

Classification performance
In classifying COPD vs non-COPD participants, 
XGBoost showed the best performance on the test set 
(P < 0.05, see Additional file  1) with AUROC, specific-
ity, PPV, accuracy, and NPV at 0.985, 0.914, 0.914, 0.913 
and 0.912 respectively (Table  2). Model performance 
was highly consistent between iterations as shown by 
low standard deviation (Table 2). As performance for all 
models was similarly high, further analysis is only  pre-
sented for the LR model, as it is the most explainable. 
These metrics and those in Fig.  3 (including standard 
deviations across folds) are an average across the 100 
iterations. In other words, five-fold cross validation was 
performed 100 times, and the results were averaged 
across all iterations.

Table 3 shows the performance on the unseen test set. 
SVM was the top performing classifier across all met-
rics with accuracy, sensitivity and specificity at 0.933, 
0.956 and 0.911. Differences in performance between the 
LR and XGBoost model were marginal. LR performed 
slightly better than XGBoost with an accuracy, sensitivity 
and specificity of 0.911, 0.956 and 0.867 respectively.

Table 1 Demographic information from the four studies and the 
separate healthy volunteer cohort

Categorical data is given as a number with its percentage of the total (n (%)). 
Continuous data is given as (median (Q1–Q3)). Smoking history was absent for 
31 participants and pack years was absent for 58 participants

COPD
(N = 80)

Non-COPD
(N = 215)

Overall
(N = 295)

Age 67 (61–73) 52 (39–64) 58 (45–67)

Gender (female) 39 (48.8%) 133 (61.9%) 176 (58.5%)

BMI (kg/m2) 25.2 (22.1–30.0) 28.9 (24.3–34.3) 27.9 (23.4–33.3)

Smoking history

 Current smoker 10 (12.0%) 9 (4.2%) 19 (6.4%)

 Ex-smoker 66 (82.0%) 71 (36.8%) 137 (50.7%)

 Never smoked 0 (0%) 113 (58.5%) 113 (41.9%)

Pack years (all) 40.0 (31.2–58.8) 0.0 (0.0–4.0) 1.0 (0.0–20.0)

Current smoker 47.7 (34.5–57.5) 23.3 (15.0–33.8) 31.0 (16.5–50.0)

Ex-smoker 40.0 (31.5–58.3) 5.0 (2.0–10.0) 12.5 (3.8–38.0)

Table 2 Machine learning model performance on the leave out test set during the cross-validation procedure, averaged across 100 
iterations (shown as mean across iterations ± standard deviation), for each of the three models built: logistic regression (LR), extreme 
gradient boosted trees (XGBoost), and support vector machine (SVM) with a linear kernel

The highest performance (across all models), for each of the metrics reported is highlighted in bold

Accuracy AUROC Sensitivity Specificity Negative 
predictive value 
(NPV)

Positive 
predictive value 
(PPV)

Classifier build 
time (seconds)

LR 0.894 ± 0.041 0.956 ± 0.032 0.875 ± 0.073 0.914 ± 0.044 0.876 ± 0.067 0.914 ± 0.042 0.027 ± 0.009

XGBoost 0.913 ± 0.035 0.985 ± 0.013 0.915 ± 0.066 0.914 ± 0.045 0.912 ± 0.063 0.914 ± 0.039 0.600 ± 0.082

SVM 0.906 ± 0.036 0.975 ± 0.019 0.900 ± 0.067 0.911 ± 0 0.898 ± 0.064 0.914 ± 0.064 0.012 ± 0.0003

Fig. 3 A Receiver operator characteristic (ROC) curve for the LR model, reported with results of a theoretical ‘random’ classifier with no predictive 
power, and a 95% confidence interval, calculated across all 100 iterations. B Precision-Recall Curve for the LR model, reported with the results of a 
theoretical ‘random classifier’ and the average precision (AP)
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Post-hoc analysis
A post-hoc evaluation of the predictive model was 
conducted to identify which capnogram features best 
distinguished patients with and without COPD. The 
relative feature importances for driving learning in 
the LR model were determined and the region of the 
capnogram waveform from which the  features were 
extracted was used to construct the importance map 
for non-COPD and COPD waveforms in Fig.  4. The 

heatmap value of each region represents an average of 
the weighted feature importance for that region, across 
all features assigned to that region. The weighted fea-
ture importance is calculated as the normalized value 
for that feature multiplied by the feature importance. 
Features associated with phase 2 and phase 3 of the cap-
nogram waveform (the exhalation phase) were found 
to be the most important drivers of learning. Figure 5 
shows the average waveform of four correctly classified 
capnograms: two each for low and high model confi-
dence, where confidences were calculated as the mean 
across 100 iterations. In addition, Fig. 6 shows the aver-
age waveform across a 75  s capnogram for all healthy 
volunteers, asthmatic patients and COPD patients. Dif-
ferences in the shape of the alpha angle region can be 
observed across the three groups, with COPD patients 
showing the most marked divergence in geometry from 
the healthy waveform.

To understand the relationship between the cap-
nography features driving the learning and spirometry 
metrics typically reported in COPD, the   % predicted 
FEV1 for each participant was correlated with the cor-
responding 20 most important features as determined 
by the LR model, using a Spearman’s rank correla-
tion coefficient, ρ (since not all relationships were lin-
ear). This was only calculated for patients with paired 
spirometry (177 patients). Of the 20 features, six 
showed significant correlations |ρ|> 0.5. An example of 
one of the most important feature’s relationship  with % 
predicted FEV1 can be found in  Fig.  7, where a linear 
relationship prompted the calculation of the product 
moment correlation coefficient (r) which was 0.718.

Model bias and model performance across repeat readings
Next, to assess whether there was significant variation in 
classification results between repeat capnography read-
ings taken over time, the classification accuracy and the 
standard deviation of the LR model’s output probabilities 
was calculated for all of the capnograms of each patient 
in the test fold (as opposed to evaluating only one or 
three capnogram(s) per patient). The results were aver-
aged over 100 iterations to ensure consistency of the 

Table 3 Machine learning model performance on the unseen test set for each of the three models built: logistic regression (LR), 
extreme gradient boosted trees (XGBoost), and support vector machine (SVM) with a linear kernel

The highest performance (across all models), for each of the metrics reported is highlighted in bold

Accuracy Sensitivity Specificity Negative predictive value 
(NPV)

Positive 
predictive 
value (PPV)

LR 0.911 0.956 0.867 0.951 0.878

XGBoost 0.900 0.956 0.844 0.950 0.860

SVM 0.933 0.956 0.911 0.953 0.915

Fig. 4 Average weighted feature importance by capnogram 
waveform region, where weighted features were calculated as the 
magnitude of the product of the normalized feature value and the 
feature importance. A shows an example for a non-COPD waveform, 
and B shows an example for a COPD waveform
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result, and the results reported in Table 4 are mean val-
ues calculated over all the patients in each disease cate-
gory for both metrics.

An important aspect of model validation was to inves-
tigate demographic bias. For this, patients that were 
misclassified more than 50% of the time across all 100 
iterations were termed ‘misclassified’. These misclassifica-
tion rates were stratified by birth sex and COPD status, 
highlighting that discrepancies were small and misclas-
sification was not overly skewed towards a single char-
acteristic (Table 5). Additionally, the difference between 
the medians of age distributions of the misclassified and 
correctly classified capnograms was not statistically sig-
nificant (Mann–Whitney U = 8000, P = 0.92 two-tailed), 
indicating that age did not bias the chances of misclas-
sification. The same procedure was performed for BMI, 
yielding similar outcomes (Mann–Whitney U = 7700, 
P = 0.57, two-tailed).

Discussion
Robustness of prediction accuracy between models, test 
sets and repeat measurements over time
The aim of this study was to demonstrate that a single 
breath recording from the N-Tidal™ fast-response cap-
nometer, in conjunction with a machine-learning-derived 
diagnostic classifier, could be used to accurately classify 
those patients with and without COPD. It was found that 
the performance of the best machine learning model 
(XGBoost), when tested during cross-validation on the 
test set (P < 0.05, see Additional file  1), provided a class 
balanced AUROC of 0.985 ± 0.013 and positive predic-
tive value (PPV) of 0.914 ± 0.039. The performances of 
the three models (LR, XGBoost and SVM with a linear 
kernel) were very similar. Statistical testing carried out 
between iterations demonstrates high levels of consist-
ency (Table  2) and therefore high model stability. For 
instance, the largest difference in sensitivity between 
models was 0.04 and the largest difference in positive 
predictive value between models was 0.001. When tested 

Fig. 5 Average waveforms (of correctly classified capnograms), with prediction confidence expressed as a % (averaged across 100 iterations). A 
and B are two examples of the non-COPD class with the corresponding confidences and C and D show two examples of the COPD class with the 
corresponding confidences. A and C are examples with low prediction confidence and B and D are examples with high prediction confidence

Fig. 6 Average capnogram waveforms across all healthy, COPD 
and asthmatic patients. As seen from the example waveforms, 
clear differences in capnogram geometry, specifically the alpha 
region, exist between all three waveforms with the COPD waveform 
diverging markedly from the healthy and asthmatic waveforms

Fig. 7 Scatter plot of an example of one of the most important 
capnography features driving learning in the logistic regression 
model, versus % predicted FEV1 from paired spirometry data. 
Each point represents a single paired capnogram. The correlation 
coefficient was 0.718
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on the unseen test set (Table 3), performance was simi-
lar to that on the cross-validation test set with marginal 
observed differences. The similarity in classification per-
formance across all three models, and consistent high 
classification accuracy (Table  2, Additional file  1) pro-
vides confidence in the thesis that COPD can be reliably 
detected from geometric properties of the  CO2 wave-
form. In addition, the fact that similarly high model per-
formance on the unseen test set was observed indicates 
that the models were not overfitting to the training or test 
sets during five-fold cross-validation, as the unseen test 
set used data from completely separate (unseen) patients. 
This provides confidence in model performance when 
deployed in the real world, provided that our training 
population is representative of the population at large.

Furthermore, the prediction accuracy by disease state 
implies that healthy individuals and patients with asthma 
or COPD are the easiest to classify (healthy being the eas-
iest), with 0.968 ± 0.006, 0.923 ± 0.005 and 0.891 ± 0.009 
classification accuracies respectively (Table  4) across 
repeat readings. This experiment evaluates how con-
sistently the model classifies each patient with the same 
diagnosis. The more consistent classification results for 
healthy individuals may reflect a reduced variability in 
 CO2 waveform shape over time, compared to individu-
als with an obstructive airway disease with an element of 
airway variability. Interestingly, nearly all patients with 
asthma, and many patients with COPD, showed vari-
ability in waveform geometry over time, which may be a 
diagnostic indicator in its own right, and may represent a 

challenge with diagnosing patients from a single point in 
time recording.

Interpretability and exploring the waveform features 
driving learning
The motivation for using XGBoost, LR and SVM with 
a linear kernel was to achieve a high level of interpret-
ability, and ease of traceability to the individual features 
that most informed the model’s decision. This is not only 
important in providing clinicians with confidence in what 
waveform features are driving the model’s prediction, but 
also in providing reassurance that what the models are 
learning is in fact intrinsically tied to respiratory physi-
ology which can be explained from a hypothesis-driven 
point of view. As a result, interpretability is now becom-
ing an increasingly common requirement in guidelines 
for the implementation of machine learning in medical 
devices. The identified features (Fig. 4) contributing most 
to the model’s decision were from the α angle region 
and expiratory plateau, where the latter features quanti-
fied the concavity, height, and central timestamp of the 
expiratory plateau. Together, these features character-
ize the rate at which gas from the upper airways (poor 
in  CO2) gives way to mixed alveolar gas from the lower 
airways (richer in  CO2). A larger α angle, and a smaller 
value of these plateau features corresponds to greater 
concavity and greater airway resistance, likely due to an 
obstructed bronchospastic airway. The analysis supports 
the physiological plausibility of these features in under-
pinning the obstructive airway pathology of COPD, as a 
number of the most important features showed strong 
correlation to paired % predicted FEV1  data (Fig.  7). 
The average waveform, across the entire dataset, for 
healthy volunteers, asthma patients and COPD patients 
can be found in Fig. 6. We observed that COPD specifi-
cally, was associated with a more curved ‘shark-fin’ type 
waveform, whereas patients with asthma had a more pre-
served transition between expiratory upstroke and pla-
teau phases. However, there was heterogeneity among 

Table 4 Classification accuracy and standard deviation of model confidence during the cross-validation procedure, by disease group, 
for all capnography data collected by each participant in the test set, averaged over disease group and again over all 100 iterations

Number of patients Average number of 
capnograms per patient

Classification accuracy per 
patient

Std. of probability 
of COPD per patient

Healthy 34 242 0.968 ± 0.006 0.072 ± 0.007

Asthma 141 289 0.923 ± 0.005 0.073 ± 0.002

COPD 75 150 0.891 ± 0.009 0.101 ± 0.004

Heart failure 10 169 0.798 ± 0.025 0.142 ± 0.011

Breathing pattern disorder 10 124 0.981 ± 0.003 0.086 ± 0.006

Pneumonia 16 46 0.839 ± 0.016 0.105 ± 0.007

Motor neuron disease 3 95 0.800 ± 0.047 0.129 ± 0.016

Table 5 Misclassification rates of each sex versus disease group 
for the logistic regression (LR) model

Female Male Total

Non-COPD 7.6% (10/132) 11.0% (9/82) 8.9% (19/214)

COPD 8.3% (3/36) 7.7% (3/39) 8.0% (6/75)

Total 7.7% (13/168) 9.9% (12/121) 8.7% (25/289)
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asthma patients with some patients showing a more 
shark-fin waveform but others (with well-controlled dis-
ease) looking more healthy. The shark-fin type waveform 
is known to arise from differences in time constants of 
gas movement from different alveoli to the sensor, as a 
result of differing compliance and resistance of alveoli. 
The changes in compliance and resistance arise as a result 
of the airway remodelling that occurs in COPD. This 
changes the rate of transition of gas from alveoli to ana-
tomical dead space (i.e. the expiratory upstroke). Tradi-
tionally, based on the anaesthesia literature, the shark-fin 
waveform has been associated with obstructive airway 
diseases in general. However, we were able to resolve 
differences between asthma and COPD, and in particu-
lar, different severities of asthma. This might represent 
a difference in the populations studied, i.e. the study of 
more severe asthmatics with remodelled airways in the 
anaesthesia literature. However, our hypothesis for why 
N-Tidal™ is able to resolve the difference more clearly 
between different obstructive airway diseases is due to 
the high temporal resolution and accuracy of sampling, 
particularly in the fast transition phases (i.e. upstroke 
and downstroke phases). This means that the  CO2 signal 
from the N-Tidal™ sensor is not aliased during fast wave-
form transition phases, meaning that more subtle differ-
ences in curvature (and therefore more subtle differences 
in V/Q mismatch or alveolar compliance and resistance) 
can be resolved. This allows N-Tidal™ to be more sensi-
tive at discriminating between different cardiorespiratory 
conditions.

Exploring misclassification and model bias
The average waveforms of a selection of capnograms 
for which the model had varying predictive confidence 
can be seen in Fig.  5. Capnograms for which the model 
had the highest confidence were at the extremities of a 
square-shaped healthy waveform with smaller α angle 
and smaller expiratory plateau tangent (relative to the 
horizontal), or a shark-fin-shaped COPD waveform with 
larger α angle and larger expiratory plateau tangent (rela-
tive to the horizontal). Reassuringly, we did not find any 
significant association between prediction accuracy and 
demographic features (including age, birth sex, and BMI) 
through non-parametric statistical testing, indicating that 
there is no systematic bias in model performance with 
respect to demographic data collected on the studies.

Several factors may have contributed to the errone-
ous classification of a small group of patients as having 
COPD when they had asthma or other respiratory con-
ditions. First, smokers and ex-smokers with a significant 
pack year history were present in the non-COPD group, 
suggesting there may be some patients with undiagnosed 
COPD. Of the 25 patients misclassified by the LR model, 

12 were either current smokers or ex-smokers, and this 
group had a mean smoking pack year history of 22. Sec-
ondly, the ABRS study highlighted a subgroup of asthma 
patients whose capnometry was ‘COPD-like’; some 
patients in this subgroup were suspected to have airway 
remodelling through many years of severe, poorly-con-
trolled asthma, creating a COPD-like physiologic picture.

Limitations and scope for future work
The work presented in this article has a number of limi-
tations. First, simpler ML models were used in keeping 
with the National Health Service Artificial Intelligence 
recommendations regarding algorithmic explainability 
[19]. It is important to understand the link between the 
features driving the ML model and the pathophysiologi-
cal process under investigation, but this precludes ‘deep 
learning’ methods that may have enhanced model per-
formance. Secondly, COPD patients in the source dataset 
were predominantly GOLD stages 3 or 4 and managed in 
secondary care and, therefore, not representative of the 
general COPD population. Ideally, a diagnostic model 
would be based on a prospective analysis of those with 
a clinical suspicion of COPD divided into those who 
did and did not ultimately have the condition. Thirdly, 
ground-truth labels could only be obtained using cur-
rent diagnostic pathways, known to have their shortcom-
ings and inaccuracies. Therefore, a misclassification of a 
participant by one of the models presented in this article 
could, in some cases, be caused by mislabelling or misdi-
agnosis. Finally, the variability in pathologies in the non-
COPD group was limited to the datasets collected on the 
studies, and may fail to account for the full spectrum of 
heterogeneity that would be encountered in a real-world 
clinical setting. Regardless, the proposed methods man-
aged to distinguish on capnography alone (without sup-
plementary data such as smoking history), between 
COPD and a range of differential diagnoses for patients 
likely to be referred for respiratory physiological testing 
(including healthy volunteers), demonstrating its poten-
tial clinical benefit.

In summary, we demonstrate that the N-Tidal™ fast-
response capnometer and cloud analytics pipeline can 
perform real-time geometric waveform analysis and 
machine-learning-based classification to accurately diag-
nose COPD within minutes of breathing into the device. 
In contrast to commonly used ‘black box’ machine learn-
ing methodologies, a set of highly explainable methods 
were used that can provide traceability for machine diag-
nosis back to individual geometric features of the  pCO2 
waveform and their associated physiological properties 
suggestive of obstructive airways disease.
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