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HMGB1-induced activation of ER stress 
contributes to pulmonary artery hypertension 
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Abstract 

Background HMGB1 and ER stress have been considered to participate in the progression of pulmonary artery 
hypertension (PAH). However, the molecular mechanism underlying HMGB1 and ER stress in PAH remains unclear. 
This study aims to explore whether HMGB1 induces pulmonary artery smooth muscle cells (PASMCs) functions and 
pulmonary artery remodeling through ER stress activation.

Methods Primary cultured PASMCs and monocrotaline (MCT)-induced PAH rats were applied in this study. Cell prolif-
eration and migration were determined by CCK-8, EdU and transwell assay. Western blotting was conducted to detect 
the protein levels of protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor-4 
(ATF4), seven in absentia homolog 2 (SIAH2) and homeodomain interacting protein kinase 2 (HIPK2). Hemodynamic 
measurements, immunohistochemistry staining, hematoxylin and eosin staining were used to evaluate the develop-
ment of PAH. The ultrastructure of ER was observed by transmission electron microscopy.

Results In primary cultured PASMCs, HMGB1 reduced HIPK2 expression through upregulation of ER stress-related 
proteins (PERK and ATF4) and subsequently increased SIAH2 expression, which ultimately led to PASMC proliferation 
and migration. In MCT-induced PAH rats, interfering with HMGB1 by glycyrrhizin, suppression of ER stress by 4-phe-
nylbutyric acid or targeting SIAH2 by vitamin K3 attenuated the development of PAH. Additionally, tetramethylpyra-
zine (TMP), as a component of traditional Chinese herbal medicine, reversed hemodynamic deterioration and vascular 
remodeling by targeting PERK/ATF4/SIAH2/HIPK2 axis.

Conclusions The present study provides a novel insight to understand the pathogenesis of PAH and suggests that 
targeting HMGB1/PERK/ATF4/SIAH2/HIPK2 cascade might have potential therapeutic value for the prevention and 
treatment of PAH.
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Background
Pulmonary artery hypertension (PAH) is a devastat-
ing disease with high mortality and morbidity, hemody-
namically characterized by the mean pulmonary arterial 
pressure (mPAP) > 20  mmHg [1]. Inappropriate vaso-
constriction, abnormal pulmonary vascular remodeling 
and thrombosis in situ are identified as major pathogen-
esis in PAH [2]. During the development of PAH, the 
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irreversible pulmonary vascular remodeling results from 
changes of cells in arterial vessel walls, especially pul-
monary artery smooth muscle cell (PASMC) excessive 
proliferation and migration [3]. Current pharmacologi-
cal therapies for PAH mostly focus on vasomotor path-
ways, which is inadequate to reach the therapeutic goal 
for many patients. Novel pathogenic mechanisms and 
targets of vascular remodeling may provide important 
insights into PAH treatment.

High-mobility group box  1 (HMGB1), a chromatin-
associated protein, stabilizes nucleosomes, thus regulat-
ing transcription [4]. Under certain stress conditions, 
HMGB1 is released from macrophages, monocytes, 
endothelial cells or various tumor cells. Once released, 
HMGB1 initiates inflammation and regulates autophagy 
by binding to toll-like receptor 4 (TLR4) and receptor for 
advanced glycation end products (RAGE) [5, 6]. Previous 
studies indicate that HMGB1 and its downstream signal-
ing are involved in PAH pathogenesis [7, 8]. The extra-
cellular or circulating HMGB1 in patients is elevated 
and used as a biomarker to identify PAH in patients with 
congenital heart disease [9, 10]. Hypoxia-induced mito-
genic factor (HIMF)/HMGB1 signaling axis acts as a piv-
otal mediator for the proliferation of smooth muscle cells 
[11]. HMGB1 neutralization or inhibition of TLR4 and 
RAGE activity represent effective therapeutic strategies 
for the prevention of PAH [12–14]. However, the specific 
mechanism by which HMGB1 acts on the progression of 
PAH is still unclear and needs to be investigated.

Endoplasmic reticulum (ER), as a cellular organelle 
in eukaryotes, participates in the synthesis, folding, 
modification and transportation of proteins, involved 
in the regulation of systemic metabolic, inflammatory, 
and endocrine processes [15]. Diverse stimuli includ-
ing hypoxia, nutrient deprivation, aberrant  Ca2+ regu-
lation and oxidative stress perturb ER homeostasis, 
leading to accumulation of misfolded and unfolded pro-
teins, and ultimately ER stress [16]. Following ER stress, 
three sensors of ER homeostasis, inositol-requiring 
kinase 1 (IRE1), protein kinase RNA-like endoplasmic 
reticulum kinase (PERK) and activating transcription 
factor-6(ATF6), are activated to re-establish normal ER 
function, termed the unfolded protein response (UPR) 
[17]. Study shows that the PERK-eIF2 signaling cascade 
is enhanced in the hypoxic bone morphogenetic pro-
tein receptor type 2 (BMPR2) heterozygous PASMCs 
and inhibition of PERK exerts potential antiprolifera-
tive effects on PASMCs [18]. All three UPR pathways are 
activated in the PAH animal models [18–20]. Further-
more, intervention of ER stress by 4-phenylbutyric acid 
(4-PBA) is beneficial for right ventricular function and 
prevents the occurrence of PAH [21]. Despite advance-
ment in research on the role of ER stress during PAH, 

the molecular mechanisms of PERK in PAH are largely 
undefined.

The mammalian seven-in-absentia homolog 2 (SIAH2) 
belongs to the RING finger ubiquitin ligase, which is part 
of a regulatory cascade in the ubiquitin–proteasome sys-
tem [22]. SIAH2 mediates efficient ubiquitination and 
degradation of substrates and exerts distinct functions 
in cellular processes including cell growth, differen-
tiation, angiogenesis and the unfolded protein response 
[23–25]. Under severe ER stress condition, SIAH2 is an 
integral component of the ER stress response. ATF4 or 
IRE1/sXBP1 may constitute the initial signal for SIAH2 
transcription, which in turn augments ATF4 availability 
[23]. In breast cancer cells, SIAH2 partially controls the 
overall hypoxia response through its effects on the sta-
bility of HIF1α, as by ubiquitylation and degradation of 
homeodomain-interacting protein kinase 2 (HIPK2) [26]. 
In PAH animal model, SIAH2 promotes pulmonary vas-
cular remodeling through inactivation of YAP [27]. In 
this study, we assume that HMGB1 triggers ER stress, 
concomitant with upregulation of SIAH2 and downregu-
lation of HIPK2, leading to PASMC proliferation/migra-
tion and pulmonary vascular remodeling.

Materials and methods
Cell culture
Primary PASMCs were isolated and cultured from pul-
monary arteries of male Sprague–Dawley rats (120–
180  g) as previously described [28]. In brief, the main 
pulmonary arteries were obtained from anesthetized 
rats. After removing the adventitia and intima carefully, 
the isolated arteries were shred into small tissue blocks 
(0.5–1 mm3) and transferred into a culture flask. Then, 
cells were incubated with high glucose Dulbecco’s modi-
fied Eagle’s medium (DMEM, Gibco Laboratories, Invit-
rogen, USA) supplemented with 10% fetal bovine serum 
(FBS, Gemini Bio, Woodland, CA, USA) and 1% peni-
cillin–streptomycin in a humidified incubator at 37  °C 
aerated with 5% CO2. When cells reached 80% conflu-
ency, cells were digested using 0.25% trypsin (Invitrogen, 
Carlsbad, CA, USA). For maintaining the PASMC phe-
notype, early-passage cells (passage 3 to 6) were used for 
all experiments and cell purity was determined by immu-
nostaining for α-smooth muscle actin (α-SMA,1:200) 
(BM0002, Boster, CA, USA). Cells were starved overnight 
using a serum-free medium before each experiment. 
HMGB1 (0-300  ng/ml) (1690-HMB050, R&D systems, 
Minneapolis, USA) was used to stimulate PASMCs.

Small interfering RNA (siRNA) transfection
Cells were seeded into 6-well plates for 24 h at approxi-
mately 30–40% confluence. Then, cells were transfected 
with a mixture of Lipofectamine™ 3000 and siRNA. 
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The subsequent experimentations were conducted after 
transfection for 48 h. The sequences of siRNA duplexes 
specific for rat PERK, ATF4, SIAH2 and negative control 
were:

PERK siRNA, sense 5′-GCA GGU CCU UAG UAA UCA 
UTT-3′, anti-sense 5′-AUG AUU ACU AAG GAC CUG CTT-
3′; ATF4 siRNA, sense 5′-GUC UCU UAG AUG ACU AUC 
UTT-3′, anti-sense 5′-AGA UAG UCA UCU AAG AGA CTT′; 
SIAH2 siRNA: sense 5′-GCA GUU CUG UUU CCC UGU 
ATT-3′, anti-sense 5′-UAC AGG GAA ACA GAA CUG CTT′; 
negative control (NC) siRNA, sense 5′-UUC UCC GAA CGU 
GUC ACG UTT-3′, anti-sense 5′ -ACG UGA CAC GUU CGG 
AGA AT-3′. All siRNA was purchased from GenePharma 
(Shanghai, China).

Cell proliferation assay
Cell proliferation was determined using cell counting 
kit-8 (CCK-8) and EdU incorporation assay. Approxi-
mately 5 ×  103 cells per well were plated into a 96-well 
culture plate. Three biological replicates of cells were 
incubated with CCK-8 solution (FD3788, Fudebio-tech, 
Hangzhou, China) for 2  h. Then, the optical density at 
450 nm was measured using a microplate reader. For the 
EdU incorporation assay, cells were labeled with EdU 
(C0071S, Beyotime, Shanghai, China) for 4  h at 37  °C. 
The positive cells were observed under inverted fluores-
cence microscopy and calculated using Image J software 
(NIH, Bethesda, MD, USA).

Cell migration assay
After different treatments, cells (5 ×  104 cells/well) in the 
serum-free medium were collected and seeded into the 
upper chamber of 24-well transwell chambers (Corn-
ing Inc, USA). The lower chamber was filled with 500 µl 
DMEM containing 10% FBS with or without HMGB1. 
Then, cells traversed the membrane were fixed with 4% 
(w/v) paraformaldehyde for 20  min and stained with 
0.1% crystal violet for 10 min at room temperature. The 
number of migrated cells was counted under an inverted 
microscope.

Animal experiment
Male Sprague Dawley rats were purchased from Xi’an 
Jiaotong University Experimental Animal Center. All 
procedures involved in the experiment were approved 
by the Institutional Animal Ethics Committee of Xi’an 
Jiaotong University and under the Guide for the Care 
and Use of Laboratory Animals of Xi’an Jiaotong Univer-
sity Animal Experiment Center. Rats were kept in a tem-
perature-controlled room (20 ± 2  °C) with a 12  h light/
dark cycle and maintained on a standard diet. In this 
study, all rats weigh approximately 200–220 g. PAH rats 
were induced by a single intraperitoneal(ip) injection of 

60 mg/kg MCT (Must Bio-Technology, Chengdu, China) 
on day 1, while control animals (n = 8) were adminis-
tered 0.9% NaCl solution. Then MCT-injected rats were 
randomly divided into six groups (n = 8 per group) as 
follows: MCT group; MCT + DMSO group: received 
DMSO vehicle; MCT + Glycyrrhizin (GLY) group: 
received GLY (100 mg/kg, 53,956–04-0, Santa Cruz, CA, 
USA) by daily ip injection; MCT + 4-phenylbutyric acid 
(4-PBA) group: received 4-PBA (500 mg/kg, HY-A0281, 
MedChemExpress, Monmouth Junction, America) by 
daily gavage; MCT + Vitamin K3(VK3) group: received 
VK3 (3.5  mg/kg, HY-B0332, MedChemExpress, Mon-
mouth Junction, America) by ip injection twice a week; 
MCT + Tetramethylpyrazine(TMP) group: received 
TMP(100  mg/kg, Lizhu Pharmaceutical Limited Com-
pany, Zhuhai, China) by daily gavage.

Hemodynamic measurements
For measurement of hemodynamic parameters, rats 
were anesthetized using 2% pentobarbital sodium 
(0.3 ml/100 g). A catheter was inserted into the right pul-
monary artery through the right external jugular vein 
and then the right ventricle by closed-chest technique. 
Right ventricular systolic pressure (RVSP) and mPAP 
were assessed carefully. After that, we dissected the right 
ventricle (RV) and left ventricle (LV) plus interventricu-
lar septum (S). The right ventricular hypertrophy was 
assessed by the RV/LV + S ratio.

Histology, immunohistochemistry staining 
and double‑labeling immunofluorescence staining
Lung and heart specimens were fixed in 4% formalin, 
embedded in paraffin and sectioned longitudinally at a 
thickness of 5 µm. Slides were stained with hematoxylin–
eosin (HE) and Elastic van Gieson (EVG) using previous 
protocols [29]. The percentage of medial wall thickness 
was measured n distal pulmonary arteries (20–70  μm 
diameters, n = 30 per rat). Images were captured using 
a light microscope (CellSens Imaging Software, Olym-
pus, Tokyo, Japan). For immunohistochemistry staining, 
paraffin-embedded lung sections were incubated with 
α-SMA (#14395-1-AP, Proteintech, Wuhan, China) over-
night at 4  °C. Semi-quantitative analysis for staining of 
α-SMA was conducted to categorize the degree of pulmo-
nary arterial muscularization. The co-staining of α-SMA 
and ATF4 was conducted to determine the expression of 
ATF4 in the PASMCs. Lung sections were incubated with 
α-SMA (1:50 dilution) and ATF4 (1:100 dilution) at 4 °C 
overnight. Then, sections were incubated with the fluo-
rescent secondary antibody (1:250) and DAPI. Afterward, 
sections were observed and photographed by an inverted 
fluorescence microscope (Leika Microsystems, Wetzlar, 
Germany).
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Transmission electron microscopy
The left lower lobe of the lung was removed from rats 
and fixed in 2.5% (w/v) glutaraldehyde. Pulmonary 
arteries were isolated from lungs and postfixed with 1% 
(w/v) OsO4, dehydrated by alcohol and then embed-
ded in araldite. Ultrathin sections were sliced from 
the specimens and mounted on copper grids. Then, 
sections were stained with 2% uranyl acetate and lead 
citrate. A transmission electron microscope (TEM) 
(H-7650, Hitachi, Japan) was used to observe and eval-
uate the ultrastructure of ER.

Western blotting
The lung tissues of rats were cut into pieces and 
homogenized using cold RIPA buffer (Beyotime, Shang-
hai, China). Total protein was obtained from the lysed 
tissue homogenate centrifuged at 10,000  rpm at 4  °C 
for 20  min. Total cellular proteins were also extracted 
using the RIPA lysis buffer. All protein concentra-
tions were quantified with the bicinchoninic acid kit 
(Beyotime Shanghai, China). Then, proteins from each 
sample were separated by 10% SDS-PAGE and electro-
blotted onto polyvinylidene fluoride membranes (Mil-
lipore, Billerica, MA). The membranes were blocked 
using 5% non-fat milk for 60  min at room and incu-
bated with primary antibodies overnight at 4  °C while 
shaking. Rabbit monoclonal antibodies against PERK 
(#3192) and ATF4 (#11815) were purchased from Cell 
Signaling Technology (Beverly, MA, USA). Rabbit poly-
clonal antibody against SIAH2 (#YT4297) and mouse 
monoclonal antibody against β-actin (#YM3028) were 
from Immunoway (Plano, TX, USA). Rabbit mono-
clonal antibody against HIPK2 (#ab108543) was from 
Abcam (Boston, MA, USA). To detect the primary anti-
body, the membranes were incubated with a horserad-
ish peroxidase-conjugated anti-rabbit or anti-mouse 
IgG antibody diluted 1:5000 to 1:10,000 for 1 h at room 
temperature. Chemiluminescence was performed using 
the ChemiDoc XRS system and analyzed with ImageJ 
software.

Statistical analysis
Results were presented as mean ± standard devia-
tion (SD). All experiments were conducted for at least 
three independent replications. The data were applied 
to Shapiro–Wilk normality test and F test for normal-
ity and equal variance tests, respectively. The student’s 
t-test determined statistical differences between two 
groups. For comparisons within multiple groups, one-
way ANOVA followed by Tukey’s multiple comparisons 
post-hoc test was used. Statistical analyses were per-
formed using GraphPad Prism version 8.0 (GraphPad 

Software, La Jolla, CA, USA). The significant difference 
was assumed at P-value < 0.05.

Results
HMGB1 induces ER stress‑associated proteins (PERK 
and ATF4) and SIAH2 upregulation, HIPK2 downregulation 
and PASMC proliferation and migration
In PAH, the initial damage of pulmonary vascular cells 
induces HMGB1 release and increases the level of circu-
lated HMGB1, which is involved in the severe phenotype 
of PAH [30]. To evaluate the contribution of HMGB1 in 
PASMC proliferation and migration, cells were treated 
with HMGB1 ranging from 0 to 300  ng/ml for 24  h or 
at 100  ng/ml for different time (0, 12, 24, 48 and 72  h). 
As shown in Fig. 1a and b, HMGB1 stimulated PASMC 
proliferation dose- and time-dependently. 100  ng/ml 
HMGB1 caused the most obvious increase in cell via-
bility, which was used in subsequent cell experiments. 
Results of the EdU assay also showed that the number of 
positive cells in HMGB1group was increased by 1.98-fold 
at 24  h compared with control (Fig.  1c). Cell migration 
was detected by transwell assay and the results indicated 
that the number of migrating cells was increased by 1.83-
fold in PASMCs treated with 100 ng/ml HMGB1 for 24 h 
(Fig.  1d). These results indicate that HMGB1 induces 
PASMC proliferation and migration. To investigate the 
mechanisms underlying HMGB1-induced PASMC pro-
liferation and migration, we detected ER stress-asso-
ciated proteins (PERK and ATF4), SIAH2 and HIPK2 
expression. As shown in Fig. 1e, PERK, ATF4 and SIAH2 
expression were increased, and HIPK2 was decreased in 
PASMCs stimulated with HMGB1 for 24 h. Thus, we per-
formed subsequent experiments based on these findings.

PERK/ATF4 mediates HMGB1‑induced SIAH2 upregulation 
and HIPK2 downregulation
It has been reported that PERK/ATF4 induces transcrip-
tion and expression of the ubiquitin ligases SIAH1/2 in 
cancer cell lines[23].To identify the link among PERK, 
ATF4, SIAH2 and HIPK2, knockdown of genes by siRNA 
was carried out. Transfection efficiency of PERK, ATF4 
and SIAH2-siRNA were shown in Fig. 2a, c and e, respec-
tively. Figure 2b and d demonstrate that HMGB1-induced 
upregulation of ATF4 was declined in cells prior trans-
fected with PERK-siRNA. Silencing of PERK or ATF4 
reduced HMGB1-induced upregulation of SIAH2 and 
increased HMGB1-caused HIPK2 downregulation. These 
results suggest that PERK/ATF4 pathway acts upstream 
of SIAH2 and HIPK2 in PASMCs.

We further explored the effect of loss of SIAH2 on 
HIPK2 expression. As shown in Fig.  2f, SIAH2 knock-
down reversed HMGB1-induced HIPK2 downregulation, 
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Fig. 1 HMGB1 promotes PASMC proliferation/migration, and induces ER stress activation, SIAH2 upregulation and HIPK2 downregulation. a 
Cells were incubated with HMGB1 for 24 h at concentrations ranging from 0 to 300 ng/ml. Cell viability was evaluated using the Cell Counting 
Kit-8(CCK-8) assay (n = 6 per group). b Cells were stimulated with 100 ng/ml HMGB1 for different times (0, 12, 24, 48, 72 h). Cell viability was 
evaluated using the Cell Counting Kit-8(CCK-8) assay (n = 6 per group). PASMCs were exposed to 100 ng/ml HMGB1 for 24 h. Cell proliferation was 
measured by EdU incorporation assay (scale bar = 250 μm) (c); Cell migration was measured by transwell assay (scale bar = 50 μm) (d); PERK, ATF4, 
SIAH2 and HIPK2 expression were measured using western blotting (e). For original blot images, see Additional file 1. *P < 0.05

Fig. 2 ER stress mediates HMGB1-induced SIAH2 upregulation and HIPK2 downregulation. The silencing effects of PERK (a), ATF4 (c) and SIAH2 
(e) were evaluated by western blotting after specific siRNA or nontargeting siRNA transfection in cells for 48 h, respectively. b, d, f Specific siRNA or 
nontargeting siRNA was transfected into cells for 24 h, then cells were exposed to 100 ng/ml HMGB1for 24 h. ATF4, SIAH2 and HIPK2 protein levels 
were measured using western blotting. For original blot images, see Additional file 1. *P < 0.05
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suggesting that SIAH2 is one of the important negative 
regulators of HIPK2 expression in PASMCs.

ER stress and SIAH2 mediate HMGB1‑induced proliferation 
and migration in PASMCs
We further investigate whether ER stress and SIAH2 par-
ticipated in cellular functions of PASMCs. To elucidate 
the influence of this pathway on cell proliferation, cells 
were transfected with NC-siRNA, PERK-siRNA, ATF4-
siRNA or SIAH2-siRNA for 24 h before stimulation with 
HMGB1 for 24 h. As shown in Fig. 3a, HMGB1-induced 
cell proliferation was significantly inhibited by knock-
down of PERK, ATF4 or SIAH2, measured by the EdU 
assay. Next, we evaluated the capability of cell migra-
tion in PASMCs under these conditions using the tran-
swell assay. Figure 3b indicates that HMGB1 stimulation 
resulted in an obvious increase in the number of migrat-
ing cells, which was suppressed by silencing PERK, ATF4 
or SIAH2. Collectively, these functional studies suggest 
that ER stress and SIAH2 mediate PASMC proliferation 
and migration triggered by HMGB1.

TMP suppresses HMGB1‑induced proliferation 
and migration of PASMCs via PERK/ATF4/SIAH2/HIPK2 axis
Tetramethylpyrazine (TMP) is a compound isolated 
from the traditional Chinese herb ligusticum, which has 
diverse functions including anti-oxidation, anti-plate-
let aggregation and anti-inflammation [31]. It has been 

reported that TMP has potent effects for the treatment 
of pulmonary hypertension by scavenging intracellular 
ROS[32; 33].To clarify the effect of TMP in PASMCs, 
cells were incubated with TMP for 24 h in the presence 
of HMGB1. As shown in Fig.  4a, TMP administration 
inhibited HMGB1-induced PERK, ATF4 and SIAH2 
upregulations, and HIPK2 downregulation. Furthermore, 
we found that HMGB1-induced elevations of PASMC 
proliferation and migration were also suppressed by 
TMP treatment (Fig.  4b, c). Collectively, these findings 
demonstrate that TMP negatively regulates PERK/ATF4/
SIAH2 axis to prevent excessive PASMC proliferation 
and migration.

Inhibition of HMGB1 attenuates vascular remodeling 
in the MCT‑induced PAH model
Based on our studies of cells, we hypothesized that 
HMGB1 might be involved in the PAH model via PERK/
ATF4/SIAH2/HIPK2 axis mediated vascular remodeling. 
To address this issue, the rat model of PAH was induced 
successfully by intraperitoneal injection of MCT (60 mg/
kg), which was manifested as remarkable elevations of 
RASP (Fig. 5a), mPAP (Fig. 5b) and RV/(LV + S) (Fig. 5c). 
We next detected the HMGB1 concentrations in serum 
and found that the serum HMGB1 level was increased in 
the MCT group compared with control, whereas a sig-
nificant decline was observed in the MCT group treated 
with GLY (HMGB1 inhibitor) compared with the MCT 

Fig. 3 HMGB1 stimulates PASMC proliferation and migration through PERK/ATF4/SIAH2/HIPK2 pathway. PASMCs were transferred with PERK siRNA, 
ATF4 siRNA, SIAH2 siRNA or NC siRNA for 24 h, then incubated with 100 ng/ml HMGB1 for 24 h. Cell proliferation was detected by EdU incorporation 
assay (a) and cell migration  was measured by transwell assay (b). *P < 0.05
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Fig. 4 TMP inhibits HMGB1-induced PASMC proliferation and migration via PERK/ATF4/SIAH2/HIPK2 axis. Cells were incubated with HMGB1 
and TMP for 24 h. a PERK, ATF4, SIAH2 and HIPK2 expression were measured using western blotting. b Cell proliferation was determined by EdU 
incorporation assay. c Cell migration was detected using transwell assay. For original blot images, see Additional file 1. *P < 0.05

Fig. 5 Inhibition of HMGB1, ER stress or SIAH2 reverse pulmonary hemodynamic parameters and vascular remodeling. Comparison of RVSP (a), 
mPAP (b), the ratio of RV/(LV + S) (c) in each group. d the HMGB1 serum level in different groups was detected by ELISA. e Representative images of 
hematoxylin and eosin (HE) staining revealed RV hypertrophy; HE staining and Eastic Van Gieson (EVG) staining of distal pulmonary arterioles reflect 
the medial wall thickness of pulmonary; Immunohistochemical staining of α-SMA revealed the muscularization of distal pulmonary arterioles. scale 
bar = 100 μm. f Quantitative analysis of the percentage of the medial wall thickness of pulmonary arteries. g Quantitative analysis of muscularization 
of distal pulmonary arteries. RVSP: right ventricle systolic pressure; mPAP mean pulmonary arterial pressure; RV/(LV + S): ratio of the right ventricle to 
left ventricle plus septum. h Protein levels of PERK, ATF4, SIAH2 and HIPK2 in lung tissues from each group were measured by immunoblotting. For 
original blot images, see Additional file 1. *P < 0.05
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group (Fig.  5d). In addition, treatment with GLY also 
reduced RASP (Fig. 5a), mPAP (Fig. 5b) and RV/(LV + S) 
(Fig.  5c) elevation in PAH model. To evaluate the distal 
pulmonary vascular abnormalities, we conducted histo-
logical studies. As shown in Fig.  5e–g, right ventricular 
hypertrophy, medial wall thickness and muscularization 
of pulmonary arteries were elevated in the MCT-induced 
PAH model. However, GLY administration alleviated all 
these changes. These results suggest that inhibition of 
HMGB1  improves hemodynamic deterioration and vas-
cular remodeling in the MCT-induced PAH rats.

We further investigated the effects of HMGB1 inhibition 
on the PERK/ATF4/SIAH2/HIPK2 cascade. As shown in 
Fig. 5h, PAH rats exhibited up-regulation of PERK, ATF4 
and SIAH2 and down-regulation of HIPK2, while treat-
ment of PAH rats with GLY reversed these changes.

Suppression of ER stress alleviates pulmonary vascular 
remodeling by SIAH2 downregulation and HIPK2 
upregulation
It has been reported ER stress acts as an important cel-
lular response in the pathogenesis of pulmonary artery 
hypertension [34]. To determine whether ER stress medi-
ates pulmonary vascular remodeling in the MCT-induced 
PAH model, the ER stress indicators were measured by 
western blotting. As shown in Fig.  6a, the expression 
of PERK and ATF4 was increased in the MCT group. 
Immunofluorescence staining also revealed an increased 
expression of ATF4 in the distal pulmonary arteries of 
PAH rats (Fig. 6b). We further assessed the ultrastructure 
of PASMC using transmission electron microscopy. The 

swollen ER with remarkable expansion of the intracister-
nal space was observed in the PAH rats (Fig. 6c). These 
data indicate that ER stress is induced in the PAH rats.

We next explored whether inhibition of ER stress has 
a beneficial effect on the progression of PAH in vivo. A 
molecular chaperone, 4-PBA, was used to prevent ER 
stress. As shown in Fig.  6a, elevated protein levels of 
PERK and ATF4 in the PAH rat declined after 4-PBA 
treatment. The swollen ER with disruption of luminal 
structures was ameliorated in 4-PBA treated PAH rats 
(Fig.  6c). 4-PBA treatment also alleviated the hemody-
namic changes in pulmonary arteries and right ventric-
ular structure including RASP (Fig.  5a), mPAP (Fig.  5b) 
and RV/(LV + S) (Fig.  5c). Lung histological analysis 
revealed that right ventricular hypertrophy, pulmonary 
arterioles wallthickness and muscularizedarteries were 
ameliorated after 4-PBA treatment (Fig. 5e–g).

To determine whether SIAH2 and HIPK2 mediate the 
effect of ER stress on MCT-induced PAH rats, we exam-
ined the expression of SIAH2 and HIPK2. As shown 
in Fig.  6a, MCT increased the SIAH2 protein level and 
reduced the HIPK2 protein level. However, 4-PBA treat-
ment reversed the changes of SIAH2 and HIPK2 expres-
sion in PAH rats. In addition, Fig. 6d indicates that VK3, 
a SIAH2 inhibitor, decreased SIAH2 up-regulation and 
blocked HIPK2 down-regulation in PAH rats. VK3 admin-
istration also reduced the elevation of RASP, mPAP and 
RV/(LV + S) (Fig. 5a–c) and ameliorated the right ventricu-
lar hypertrophy, pulmonary arterioles wall thickness and 
muscularization of distal pulmonary arteries (Fig.  5e–g) 
compared with the MCT group. Taken together, these 

Fig. 6 Suppression of ER stress activation or SIAH2 induces HIPK2 expression. a protein levels of PERK, ATF4, SIAH2 and HIPK2 in lung tissues from 
each group were measured by immunoblotting. b Immunofluorescence of ATF4 in pulmonary arteries. ATF4 (green), α-SMA (red) and nucleus 
(blue) were stained in lung tissue from different groups. c Representative images of ER morphology by transmission electron microscopy. Scale 
bar = 200 nm. ER, endoplasmic reticulum. d Protein levels of SIAH2 and HIPK2 were determined by immunoblotting. For original blot images, see 
Additional file 1. *P < 0.05
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results demonstrate that inhibition of ER stress alleviates 
pulmonary vascular remodeling and the development of 
PAH through SIAH2/HIPK2 pathway.

TMP inhibits ER stress and prevents the development 
of PAH in rat
TMP treatment significantly improves 6-min walking dis-
tance and right heart function in both the prevention and 
treatment of PAH model [35]. In coronary arteries, TMP 
improves  BKCa-mediated vasodilation by suppression of 
ER stress [36].To explore whether TMP prevents MCT-
induced the development of PAH in rats by targeting 
ER stress, TMP was applied to rats after MCT injection. 
Figure 7 shows that TMP administration reduced MCT-
induced elevation of PERK, ATF4 and SIAH2 protein 
expression and raised HIPK2 expression.

We further assessed the hemodynamic and histologic 
changes. The results showed that TMP reduced RASP, 
mPAP and RV/(LV + S) elevation in PAH rats (Fig. 5a–c). 
Histological examination indicated that right ventricu-
lar hypertrophy, pulmonary arterioles wall thickness and 
pulmonary arteries muscularization induced by MCT 
were relieved after TMP treatment (Fig.  5e–g). Collec-
tively, these data suggest that TMP treatment effectively 
attenuates the progression of PAH in rats.

Discussion
The biological functions of HMGB1 are dependent on its 
diverse cellular localization. When response to persis-
tent tissue injury, HMGB1 is released into the extracel-
lular environment as a key molecule of innate immunity, 
inflammation and tissue remodeling [37]. In IPAH 
patients, extranuclear HMGB1 is observed in plexiform 
vascular lesions. Circulating HMGB1 levels increase and 
correlate with the severity of PAH [38]. Our study inves-
tigated the role of extracellular HMGB1 in PASMCs and 

the pathogenesis of MCT-induced PAH rats. We found 
that HMGB1 promoted PASMC proliferation and migra-
tion. In  vivo, the HMGB1 serum level was elevated, 
whereas inhibition of HMGB1 by GLY reduced the 
HMGB1 concentration in the serum and improved pul-
monary hemodynamics and vascular remodeling.

Accumulated evidence indicates that ER stress par-
ticipates in diverse PAH-triggering and PAH-facilitating 
processes such as inflammation, hypoxia and genetic 
mutation [34, 39]. All branches of the UPR under ER 
stress are activated, accompanied by inflammatory 
responses in chronic hypoxia-induced PAH. In lung sec-
tions from IPAH patients, unfolded protein response 
triggered by ER stress is evident [40]. Moreover, PERK 
mediates the C/EBP-homologous protein (CHOP) 
transcriptional activation and participates in hypoxia-
induced dysfunction of HPAECs [41]. In this study, we 
found that PERK/ATF4 expression was up-regulated by 
HMGB1 and inhibition of PERK/ATF4 suppressed pro-
liferation and migration of PASMCs. 4-PBA, a chemi-
cal chaperone, has been identified as an inhibitor of ER 
stress[42; 43] and has reduced the expression of ER stress 
indicators, including GRP78, ATF6, IRE-1 and PERK [21; 
44]. We showed that ER stress was obvious in the MCT-
induced PAH rat model, indicated by the morphological 
change of ER and elevation of PERK/ATF4 expression. 
Moreover, 4-PBA application inhibited PERK/ATF4 
expression and contributed to the reversal of pulmonary 
artery vascular remodeling.

SIAH2 is a member of the seven in absentia homolog 
family proteins, comprising a C-terminal substrate-binding 
domain, a catalytic RING domain, and two zinc fingers [45]. 
SIAH2 is involved in different fundamental cellular pro-
cesses and activated by various stress conditions and intra-
cellular signaling pathways [46]. It has been reported that ER 
stress induces the transcription of SIAH2 [23]. In the present 

Fig. 7 The underlying mechanism of TMP protective effect against MCT-induced PAH. PERK, ATF4, SIAH2 and HIPK2 protein levels in lung tissue 
were determined from each group using immunoblotting. For original blot images, see Additional file 1. * P < 0.05
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study, we found that HMGB1 promoted SIAH2 expression 
by PERK/ATF4 axis in PASMCs and PAH rats. Furthermore, 
VitaminK3 as a novel inhibitor suppressed SIAH2 expres-
sion, inhibited PASMC proliferation and migration, and ulti-
mately reversed vascular remodeling in PAH.

HIPK2 is a conserved serine/threonine kinase that mod-
ulates several biological responses, including cell prolifera-
tion, apoptosis, and DNA damage response [47, 48]. As a 
signal transduction element, HIPK2 regulates molecular 
pathways that contribute to diabetes, nephropathy, idio-
pathic pulmonary fibrosis, cardiac disease and several can-
cers [49–53]. HIPK2 overexpression plays a crucial role in 
promoting apoptosis in diverse cell types [54, 55]. In hepa-
tocellular carcinoma, HMGBI promotes ubiquitination 
and degeneration of HIPK2, which results in autophagy 
induction and tumor progression [56]. In myocardial 
infarction, exercise reduces HIPK2 protein level, leading to 
the prevention of cardiomyocytes apoptosis and elevation 
of cardiac function [57]. Consistent with these studies, we 
observed that HIPK2 expression was down-regulated in 
HMGB1-treated PASMCs and in MCT-induced PAH rats 
through PERK/ATF4/SIAH2 pathway.

TMP, an amide alkaloid, is the main bioactive active 
component of a traditional Chinese herbal medicine, 
Chuanxiong [58]. TMP exerts potent effects in anti-cancer, 
anti-oxidation, anti-inflammation and antithrombotic [59, 
60]. At present, TMP is widely used in the clinic for the treat-
ment of cardiovascular [61], cerebral ischemia [62], cancer 
[63] and pulmonary hypertension [33]. The curative effects 
of TMP have been shown in PAH patients indicated by the 
increase of average 6-min walk distance and right heart func-
tion. In PAH rats, hypoxia is an important trigger for the 
increase in  [Ca2+]. TMP inhibits the intracellular  Ca2+ sign-
aling in PASMCs and reverses established PH in rats [35]. 
Several studies also show that TMP exerts protective effects 
on various diseases via inhibition of ER stress [64–66]. In 
coronary endothelial cells, TMP prevents Ang-II-induced 
endothelial dysfunction by blocking the phosphorylation of 
PERK and upregulation of ATF4 [65]. In the present study, 
we found that TMP treatment suppressed activation of ER 
stress, decreased SIAH2 expression and increased HIPK2 
expression, ultimately prevented PASMC proliferation/
migration and ameliorated pulmonary vascular remodeling 
in MCT-induced PAH rats. These results are consistent with 
the previous study and indicate that PERK/ATF4/SIAH2/
HIPK2 might be the molecular mechanism of TMP to main-
tain the function of pulmonary artery vascular and to inhibit 
the development of PAH.

Conclusion
In the present study, our study evaluated the crucial 
role of ER stress in the development of PAH. First, we 
observed that HMGB1 induced activation of ER stress, 

upregulation of SIAH2 and downregulation of HIPK2 
in PASMCs and MCT-induced PAH rat model. Fur-
thermore, GLY, 4-PBA and VK3 administration atten-
uated the increases of RVSP, mPAP and  RV/(LV+S), 
right ventricular hypertrophy, and pulmonary vascular 
remodeling by targeting on PERK/ATF4/SIAH2/HIPK2 
pathway in PAH rats. Our results also demonstrated 
that TMP as a traditional Chinese medicine inhibited 
PASMCs proliferation and migration, and blocked the 
progression of PAH through inhibition of ER stress in 
PAH model. Based on the history of safe usage and high 
efficacy of TMP, it might be an ideal and potential drug 
for the treatment of PAH.
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