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Abstract
Background While some lung adenocarcinoma (LUAD) patients benefit long-term from treatment with immune 
checkpoint inhibitors, the sad reality is that a considerable proportion of patients do not. The classification of the 
LUAD tumor microenvironment (TME) can be used to conceptually comprehend primary resistance mechanisms. In 
addition, the most recent research demonstrates that the release of damage-associated molecular pattern (DAMP) in 
TME by immunogenic cell death (ICD) may contribute to the adaptive immune response. Currently, however, there is 
no such comprehensive research on this topic in LUAD patients. Therefore, we set out to investigate how to reverse 
the poor infiltration characteristics of immune cells and boost antitumor immunity by identifying DAMP model.

Methods In this study, ICD-related DAMP genes were selected to investigate their effects on the prognosis of 
LUAD. To create a risk signature using the TCGA-LUAD cohort, the univariate COX regression and the least absolute 
shrinkage and selection operator regression were carried out, and the results were verified in a GEO dataset. 
Subsequently, the multivariate COX regression was applied to establish a prognostic nomogram. And the ESTIMATE 
and ssGSEA algorithms were utilized to analyze immune activity and the TIDE algorithm was for responsiveness to 
immunotherapy. Moreover, clinical tissue samples were used to verify the differential expression of 9 DAMP genes in 
the signature.

Results We identified two distinct DAMP molecular subtypes, and there are remarkable differences in survival 
probability between the two subtypes, and patients with higher levels of DAMP-related genes are “hot tumors” with 
increased immune activity. In addition, 9 DAMP genes were selected as prognostic signature genes, and clinical 
outcomes and immunotherapy response were better for participants in the low-risk group. Importantly, according 
to the area under the curve (AUC) value in evaluating the efficacy of immunotherapy, this signature is superior to 
existing predictors, such as PD-L1 and TIDE.
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Background
Lung cancer continues to be a challenge since it is pre-
dicted to cause 1.8 million deaths globally [1]. Nearly 85% 
of lung cancer cases are caused by non-small cell lung 
cancer (NSCLC), with lung adenocarcinoma (LUAD) 
being the most common histological subtype [2–4]. 
Patients with LUAD have recently seen significant clini-
cal benefits from molecular-targeted therapy [5]. Sadly, 
most patients who receive targeted treatments like EGFR 
tyrosine kinase inhibitors become resistant, and their 
prognosis remains poor [6]. Immune checkpoint inhibi-
tors (ICIs), the most potent immunotherapeutics for 
LUAD, have the potential to significantly extend patients’ 
overall survival (OS) and progression-free survival (PFS), 
making them the ideal first-line treatment for advanced 
LUAD. However, only a small percentage of LUAD 
patients can benefit from ICI therapy, and the overall 
response ratio of ICIs continues to be underwhelming 
[7, 8]. PD-L1 expression, tumor-infiltrating lymphocytes 
(TILs), and dendritic cells (DCs) are all associated with 
LUAD response to ICIs [9, 10].

Immunogenic cell death (ICD), a distinctive type of 
regulated cell death, can elicit immunological responses 
specific to exogenous or endogenous antigens released 
by dying cells, particularly cancer cells [11]. Accumu-
lating preclinical models and clinical trials have con-
firmed ICD as an essential predictor of potent antitumor 
immunity [10, 12], and it could be induced to sensitize 
LUAD patients to ICI treatment [13, 14], indicating that 
ICD-related biomarkers may serve as immunotherapy 
prognostic indicators. Integrating multiple immunologi-
cal signaling pathways, such as danger signals, effector 
T-cell infiltration/activity, and numerous other pathways, 
into a unified paradigm is another remarkable feature 
of ICD for biomarker discovery [15–17]. The primary 
immunogenic feature of ICD is the production of the 
damage-associated molecular patterns (DAMP) [18]. 
Endogenous DAMP biomolecules are released, secreted, 
or exposed on the cell surface by dying, damaged, or 
stressed cells to mediate robust immunomodulatory 
effects [15]. Due to these DAMP, DCs might be activated 
and migrated, which in turn prime T cells for systemic 
antitumor immunity, and create long-term immuno-
logic memory [19]. These studies highlight the critical 
function of ICD-associated DAMP in antigen presenta-
tion, the tumor microenvironment, and the activation of 
adaptive immunity. Consequently, to effectively facilitate 

immunotherapies for LUAD patients, it is crucial to 
examine DAMP gene expression patterns, and also to 
comprehend the link between various DAMP-related 
molecules and the tumor microenvironment (TME) to 
figure out how to improve immune infiltration and boost 
antitumor immunity. However, currently, there is no such 
comprehensive research on this topic in LUAD patients.

In this research, we developed molecular subtypes of 
DAMP. Moreover, we constructed and verified a novel 
ICD-associated DAMP risk model and prognosis evalu-
ation in LUAD patients, and to identify immunotherapy 
responsiveness. In addition, the connection between this 
signature and the immune-related landscape of the TME 
in LUAD patients was thoroughly examined. Based on 
these findings, we may conclude that the prognosis and 
advantages of immunotherapy for LUAD patients could 
be precisely predicted with the help of this risk signature.

Methods
Data and clinical specimen collection
33 different cancer types’ genomic, transcriptomic, and 
clinical data were obtained from The Cancer Genome 
Atlas (TCGA, downloaded from the UCSC Xena reposi-
tory). For each tumor and its control sample, the RNA-
seq data were normalized as log2(FPKM + 1). The 
training cohort comprise data from 526 TCGA-LUAD 
patients, 513 of whom had follow-up information, and 
353 patients had accessible clinicopathological charac-
teristics. Affymetrix microarray information for LUAD 
cohorts GSE31210 (n = 246) [20] was used as an exter-
nal validation set, which was collected from the Gene 
Expression Omnibus (GEO) database. The expressions 
of the corresponding proteins were examined in paired 
LUAD tumor and adjacent non-tumor tissues using 
the Clinical Proteomic Tumor Analysis Consortium 
(CPTAC) database. The survival information of 12 types 
of cancer was acquired from PRECOG tools [21]. And 
the flowchart was created with BioRender.com.

35 pairs of lung cancer and adjacent non-tumor tis-
sues were collected, and all patients underwent surgical 
resection at the Cancer Hospital of Chinese Academy 
of Medical Sciences and Peking Union Medical College. 
All samples were collected immediately after surgery and 
stored at − 80 °C. The ethics committee of Peking Union 
Medical College Cancer Hospital in Beijing, China, 
approved this study in accordance with the Declaration 
of Helsinki of 1975. Grant number: NCC2021C-527.

Conclusions Our study suggests ICD plays an important part in modeling the TME of LUAD patients. And this 
signature could be utilized as a reliable predictor to estimate clinical outcomes and predict immunotherapy efficacy 
among LUAD patients.

Keywords Lung adenocarcinoma, Immunogenic cell death, Damage-associated molecular patterns, Signature, 
Prognosis, Immunotherapy
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Consensus clustering analysis of DAMP
Based on DAMP-related gene expression, the “Consen-
susClusterPlus” R package was used to conduct cluster-
ing analysis. The ideal cluster numbers between k = 2 
and k = 9 were then evaluated and repeated 1,000 times 
to ensure stable results. A cluster map was also created 
using the R tool “pheatmap.“

Identification of differentially expressed genes (DEGs) and 
biological processes and enriched signaling pathway
The DAMP-related subtypes’ DEGs were evaluated using 
the “Limma” R package (log2foldchange > 1, false discov-
ery rate (FDR) < 0.05). The “clusterProfiler” R package 
was used to conduct functional annotation studies of the 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG). The involved key pathways were 
identified through gene set enrichment analysis (GSEA). 
For pathways with FDR values of less than 0.25 and nor-
malized P values of less than 0.05, statistical significance 
was found. The enriched pathways (NESs) were selected 
using the ranks of the normalized enrichment scores.

Construction of the DAMP-related signature
The DAMP-related genes that were statistically signifi-
cant in the univariate Cox regression analysis were then 
subjected to the LASSO regression analysis in order to 
precisely determine the coefficient values of each estab-
lished association. By combining normalization and 
variable selection, the widely used regression technique 
known as LASSO improves the statistical model’s inter-
pretability and predictive power. The DAMP-related 
risk model was then constructed using the LASSO–Cox 
regression coefficients for each gene. Using the following 
formula, we developed the risk signature:

Risk score =
n∑

i=1

Coefficient (i) × Expression of gene (i)

The expression of the gene (i) is the expression value of 
the gene (i) for each patient, and the coefficient of the 
gene (i) is the gene’s regression coefficient. Using the 
survival R package’s “predict” function, the risk value for 
each LUAD patient was computed, and patients were 
distributed into low-risk and high-risk groups by the 
median risk value.

Prognostic potential and accuracy of the DAMP-related 
signature
The TCGA dataset was used to evaluate the prognostic 
value of the DAMP-related signature, and an indepen-
dent GEO dataset (GSE31210) was used to verify it. The 
survival R package was used to examine the KM curves 
and estimate differences in OS, PFS, or DFS between the 
low-risk and high-risk groups. The consequences of the 

univariate Cox investigation were addressed by a back-
woods plot. The Sangerbox tool was used to create a San-
key diagram [22]. Using the R package “survivalROC,“ a 
time-dependent receiver operating characteristic (ROC) 
curve analysis was also developed to ascertain the risk 
signature’s sensitivity and specificity. The ROC effect was 
calculated using the value of the area under the curve 
(AUC).

RNA isolation and RT-qPCR
Total RNA was extracted from Formalin-fixed paraffin-
embedded samples from the LUAD and matching tissues 
using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). 
The quantitative real-time polymerase reaction assay was 
carried out using Taq Pro Universal SYBR qPCR Mas-
ter Mix (Vazyme Biotech Co., Ltd) on a Roche LightCy-
cler 480 real-time PCR system (Roche Diagnostics). The 
PrimeScript 1st Strand cDNA Synthesis Kit (Takara Bio, 
Shiga, Japan) was then used to reverse transcribe comple-
mentary DNA. The target gene mRNA levels were nor-
malized to beta-actin mRNA levels for each well using 
the 2 − ΔΔCt method.

Construction and validation of the nomogram model
A prediction nomogram was produced using the “RMS” 
program utilizing the clinical parameters and risk score. 
The sum of the values of each variable in each sample and 
each component in the nomogram formula was used to 
get the overall value. Calibration curves were employed 
to ascertain the nomogram prediction and clinical 
observation consistency at one, three, and five years for 
OS, PFS, or DFS. Furthermore, ROC curves for one-, 
three-, and five-year survival were used to assess the 
nomograms. The nomogram’s predictive power was also 
assessed using the concordance index (C-index).

Assessment of immune cell infiltration
To examine the relationship between infiltrating immune 
cells and risk signature, we determined the immune infil-
tration status of the TCGA database samples using meth-
ods that are well-acknowledged. Using the R package 
“estimate,“ the StromalScore, ImmuneScore, and Estima-
teScore of each LUAD sample were calculated in terms of 
the stromal and immune cells’ respective gene expression 
patterns [23]. The single-sample GSEA (ssGSEA) method 
was used to quantify 28 different kinds of invading 
immune cells in light of the transcriptome data [24] and 
associated gene sets. The levels of infiltrating immune 
cells in LUAD between the low-risk and high-risk groups 
were compared using the Wilcoxon rank-sum test.

Analysis of immunotherapy efficacy
To predict the response to ICIs, the tumor immune dys-
function, and exclusion (TIDE) algorithm was applied. 
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When comparing the effectiveness of anti-PD1 and 
anti-CTLA4 treatment, the TIDE score was found to be 
superior to the well-known immunotherapy biomarkers 
(PD-L1 level, tumor mutation burden (TMB), and inter-
feron) [25]. On the basis of normalized transcriptome 
statistics from the TCGA-LUAD dataset, the TIDE score 
was also obtained from the TIDE portal. The TIDE site 
was also used to gather information on the survival rate, 
AUC value, and immunotherapy response.

Statistical analysis
For data analysis, R software (version 4.2.0) and the 
necessary packages were employed. The “survival” R 
program was used for survival analysis using the Kaplan-
Meier curve. The two-sided log-rank test was used to 
analyze the differences in OS, PFS, and DFS among the 
major risk categories and subtypes. On these DAMP-
related genes, the HR, 95% CI, and P-values were com-
puted using LASSO-Cox regression analysis to produce 
the DAMP-related risk signature. The univariate Cox 
regression model was used to determine the DAMP-
related genes that most strongly correlated with OS. To 
display risk prediction based on univariate Cox regres-
sion analysis, a nomogram was produced using the RMS 
package (version 5.1-4) of the R programming language. 
Multivariable Cox regression was used to investigate 
whether the DAMP-related risk signature and other clini-
cal characteristics were independent prognostic factors. 
The calibration plot, a common chart used to evaluate a 
nomogram’s consistency, was also created using the RMS 

package. The findings were deemed statistically signifi-
cant when the P-values were less than 0.05.

Results
The landscape of ICD-related DAMP molecules in pan-
cancer
The graphic workflow (Fig. 1) depicts the main design of 
the present research. A total of 28 DAMP-related mole-
cules of ICD were summarized from previous studies [11, 
18, 26]: AGER, AIM2, BCL2, CALR, CGAS, CLEC4E, 
CLEC7A, DDX58, FPR1, FPR2, HMGB1, HMGN1, 
HSP90AA1, HSPA4, IFIH1, IL1A, IL33, NLRP3, PANX1, 
PPIA, ROCK1, TLR2, TLR3, TLR4, TLR7, TREM1, 
P2RY6, and P2RY2. We acquired the RNA expression 
levels of DAMP in 33 cancer types from TCGA (Fig. 2A). 
According to a previous report [27], cancers were also 
categorized as “hot cancer” and “cold cancer” to dis-
tinguish between cancers with high- and low-immune 
activity. Interestingly, ICD-related genes showed higher 
mRNA expression in “hot cancers” than in “cold cancers”. 
Then, we analyzed the differential protein and mRNA 
expression alterations of 28 DAMP-related genes in pan-
cancer (Fig. 2B and Additional file 1 Fig. 1A).

Furthermore, we investigated the prognostic potential 
of ICD-related DAMP molecules in various types of can-
cer using PRECOG tools. The findings demonstrated that 
genes associated with ICD may have a notable impact on 
the clinical outcomes of lung adenocarcinoma (Fig. 2C). 
The expression of ICD-related DAMP molecules and 
genetic variation were then found to be correlated. In 
most types of cancer, there was a positive correlation 

Fig. 1 The Workflow of DAMP-related subtypes and the risk signature for patients with LUAD
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between copy number variation (CNV) and mRNA 
expression levels (Fig.  2D). We also looked into the 
DAMP somatic mutation frequency (Fig. 2E). According 
to our findings, the expressions of ICD-related DAMP 
biomolecules varied greatly across cancer types.

Novel subtypes of LUAD patients identified by 
unsupervised learning
Intending to explore the predictive potential of DAMP 
genes in 526 LUAD patients, we identified two DAMP-
related subtypes via unsupervised clustering using the R 

package ‘ConsensusClusterPlus’ with optimal clustering 
stability at K = 2 (Fig. 3A-B).

Cluster 1 included 278 cases and Cluster 2 included 
248 cases. There was a significant variance in the DAMP 
molecules’ expression levels between the two distinct 
clusters (Fig. 3C). In addition, principal component anal-
ysis confirmed that the 28 DAMP molecules’ expression 
levels distinguished the two clusters (Fig. 3D). Then, we 
conducted Kaplan–Meier (KM) survival analysis and 
found patients in Cluster 2 had strikingly worse OS (log-
rank test; P = 0.0027) than patients in Cluster 1 (Fig. 3E). 
In addition, the relationship between DAMP-related 

Fig. 2 Pan-cancer analysis of 28 DAMPs-related genes. (A) Heatmap of RNA expression alterations of the 28 DAMPs-related genes in 33 cancer types. RNA 
expression levels were calculated as log2 (average expression of the tumor). (B) The bubble plots showing the different protein level of 28 DAMPs-related 
genes in 7 types of cancer in CPTAC datasets. The color of the dots represents the protein level of genes that are calculated as the average protein expres-
sion of tumor to normal. Redder dots represent higher expression in cancer tissue. Greener dots represent higher expression in normal tissue. The size 
of the bubbles indicates the –log10 (p-Value). (C) The color of the dots represents the prognostic value of 28 genes in pan-cancer. Purple dots represent 
favorable genes. Yellow dots represent poor genes. The size of the bubbles indicates the – log10 (p-Value). (D) The bubble chart shows the correlation 
between CNV and mRNA expression level. Red indicates positive correlation, blue indicates negative correlation. The deeper color indicates spearman 
correlation coefficient. The bubble size indicates the – log10(p-Value). (E) Mutation frequency of the 28 DAMPs -related genes across 33 cancer types. P 
values were calculated using Spearman correlation test or Wilcoxon rank sum test (*P < 0.05; **P < 0.01; ***P < 0.001)
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subtypes and clinical factors in the TCGA cohort was 
visualized (Fig.  3F). Interestingly, survival status and 
clinical stages revealed remarkable disparities between 
the two subtypes, and the patients with worse survival 
and advanced stages were mainly included in Cluster 2. 
These findings indicate that DAMP-related genes could 
distinguish patients with LUAD based on their distinct 
clinical characteristics and gene expression patterns. 
We observed specific somatic mutation profiles between 
two DAMP subtypes (Fig.  4A). Cluster 2 had a higher 
frequency of TP53, TTN, MUC16, RYR2, CSMD3, and 
LRP1B mutations, though they were the most frequent 
mutations in the two subtypes.

According to growing evidence, ICD may increase 
the elicitation of antitumor immune responses. The 
ESTIMATE algorithm was used to evaluate the TME 
landscape between the two subtypes in this case. Over-
all, immune scores and tumor purity were significantly 
lower in patients in Cluster 1, indicating a higher rate of 
immune cell infiltration (p < 0.0001) in the TME (Fig. 4B). 
Next, we used the ssGSEA algorithm to compare the two 
subtypes’ compositions of different types of immune 
cells. Patients in Cluster 1 had strikingly more activated 
DC cells, CD8 + T cells, NK cells, B cells, CD4 + helper 

cells, and other immune cells (Fig.  4C). We then inves-
tigated how immune checkpoint molecules were 
expressed, and found that Cluster1 had high expression 
of PD-L1, programmed death 1 (PD-1), programmed cell 
death 1 ligand 2 (PD-L2), cytotoxic T-lymphocyte pro-
tein 4 (CTLA4), T cell immunoreceptor with Ig and ITIM 
domains (TIGIT), lymphocyte activation gene 3 protein 
(LAG3), sialic acid-binding Ig-like lectin 15 (SIGLEC15), 
and T-cell immunoglobulin mucin receptor 3 (TIM-3) 
(Fig. 4D). In addition, Cluster 1’s TIDE score was lower 
(p < 0.001) (Fig. 4E) and was correlated with a lower risk 
of tumor immune escape, and Cluster 1 patients had a 
greater likelihood ratio of benefiting from ICI treatment 
[25]. These results suggest that DAMP molecules may be 
able to distinguish the tumor immune microenvironment 
and that Cluster 1 was linked with the immune “hot” phe-
notype and Cluster 2 with the immune “cold” phenotype.

Biological function and enriched pathway analysis of the 
two DAMP subtypes of LUAD
We examined a total of 200 screened differential expres-
sion genes (DEGs) between the Cluster1 and Cluster2 
subgroups in order to investigate the distinct transcrip-
tomic signatures (Fig. 5A).

Fig. 3 Consensus clustering of DAMP-related genes in LUAD. (A-B) K = 2 identified as the optimal value for consensus clustering. (C) PCA analysis display-
ing the gene expression distribution in TCGA-LUAD cohort. (D) Heatmap demonstrating gene expression profiles of 28 DAMP genes in two subtypes. (E) 
Kaplan-Meier curves of OS between the two subtypes in the TCGA-LUAD cohort. (F) A Sankey plot showing the distribution of clinical stage and subtypes 
of DAMP. P values were calculated using Wilcoxon rank sum test. (*P < 0.05; **P < 0.01; ***P < 0.001)
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In LUAD, the GO cluster plots and KEGG plots 
revealed that the down-regulated DEGs in Cluster2 com-
pared with Cluster1 were more likely to be involved in 
immunological signaling pathways, such as the process-
ing and presentation of antigens, phagosomes, and cell 
adhesion molecules (Fig.  5B-C). Interestingly, the first 

three significantly differential genes, including SFTPD, 
STFPA1, and SFTPA2, were surfactant proteins (SP), 
which contribute to innate immunity and surfactant 
function in the lung [28]. In addition, using GSEA analy-
sis, we showed that phagosome and antigen processing 
and presentation pathways were remarkably inhibited 

Fig. 4 Comparison of the somatic mutation and immune landscape between DAMP-related subtypes. (A) Distinct somatic mutation profiles among the 
two subgroups. ns, not significant. (B) Estimation of immune scores, stromal scores, and tumor purity between two subgroups using the ESTIMATE algo-
rithm. (C) Evaluation of immune cell proportions in two subgroups using the ssGSEA algorithm. (D) A Boxplot demonstrating gene distinct expression 
profiles of immune checkpoint genes in two subgroups. (E) Comparison of the TIDE score in two subgroups. P values were calculated using Wilcoxon rank 
sum test (*P < 0.05; **P < 0.01; ***P < 0.001, ****P < 0.0001)
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Fig. 5 Functional analysis of DEGs based on the DAMP-related subtypes of LUAD patients. (A) The volcano plots displaying differentially expressed genes 
between Cluster1 and Cluster2 from TCGA dataset. (B) Chord plot depicting the relationship between genes and immune-related signaling pathways. 
The genes marked in red fonts refer to the most significant genes in immune-related signaling pathways. (C) Dots plot presents the GO signaling pathway 
enrichment analysis. The size of the dot represents gene count and the color of the dot represents – log10 (p. adjust-value). (D) GSEA enrichment plots of 
the Cluster1 and Cluster2 LUAD patients. (E) Violin plots of the protein expression of the three differential genes in normal and tumor samples in LUAD. P 
values were calculated using Fisher’s exact test or Wilcoxon rank sum test (*P < 0.05; **P < 0.01; ***P < 0.001)
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in the Cluster2 subgroup (Fig.  5D). Subsequently, we 
observed significantly down-regulated protein levels of 
SFTPD, STFPA1, and SFTPA2 in LUAD tissues (Fig. 5E). 
These results suggest that DAMP subtypes could poten-
tially distinguish the tumor immune microenvironment 
owing to distinct innate immune activity, and could be 
associated with surfactant proteins in LUAD patients.

Construction and Verification of the DAMP-related 
prognostic signature for LUAD patients
To construct a gene-associated prognostic model, we 
firstly analyzed the prognostic role of 28 genes in lung 
adenocarcinoma using univariate Cox regression. The 
results showed that the expression levels of 13 genes were 
associated with the prognosis of patients with lung ade-
nocarcinoma (Additional file 1 Fig. 2). Next, the LASSO 
analyses of 13 DAMP-related genes from the TCGA-
LUAD cohort revealed the best risk signature for estimat-
ing LUAD patients’ prognoses (Fig. 6A). The confidence 
interval for each lambda was also shown (Fig. 6B). Nine 
DAMP-associated genes, including CLEC7A, PPIA, 
PANX1, TLR7, TLR2, HSP90AA1, HSPA4, and IL33, 
were selected from the algorithm with an ideal λ value. 
The regression coefficients of the formula for 9 genes 
were displayed (Fig. 6C). The hazard ratio (HR) for four 
genes (TLR7, TLR2, CLEC7A, and IL33) was less than 
one, whereas the HR for five genes was greater than one 
(HSPA4, IL1A, PPIA, PANX1, and HSP90AA1) (Fig. 6D). 
We investigated the expression of the corresponding pro-
teins in LUAD tumors and non-tumor tissues to ascer-
tain the clinical significance of the risk model. Similar to 
the mRNA levels, HSPA4, PANX1, and HSP90AA1 were 
significantly elevated in LUAD tumor tissues compared 
to normal tissues. On the other hand, compared to non-
tumor tissues, LUAD tissues expressed significantly less 
protein. However, the protein expression data for IL1A 
and CLEC7A are not available in the CPTAC database, 
and PPIA showed no difference (Additional file 1 Fig. 1B). 
Our findings demonstrate that the expression levels of 
the corresponding proteins are comparable to those of 
the model genes.

The LUAD patients were divided into low-risk and 
high-risk groups using the formula and the median risk 
value. The OS and nine gene expression profiles of the 
TCGA-LUAD cohort were analyzed in order to instinc-
tively investigate the value of the risk model’s predictive 
ability (Fig.  6E). The composite plot demonstrates that 
the protective factors IL33, TLR2, CLEC7A, and TLR7 
were significantly expressed at higher levels in the low-
risk subtype (p < 0.001). HSPA4, PPIA, PANX1, and 
HSP90AA1 expression levels were also significantly lower 
in low-risk patients (p < 0.001). Low-risk patients had 
a greater chance of survival than high-risk patients, as 
indicated by the survival probability. The Sankey diagram 

shows the correlation between DAMP-related signa-
ture and the survival status of LUAD patients (Fig.  6F), 
and the majority of deceased patients were included in 
the high-risk group and Cluster2. Then, we conducted 
KM survival analysis and found that high-risk patients 
had strikingly shorter OS (log-rank test; P < 0.0001) and 
PFS (log-rank test; P < 0.0001) than those with low-risk 
patients. Additionally, these results were verified with 
an external cohort (GSE31210). High-risk patients had 
significantly worse OS (log-rank test; P < 0.001) and DFS 
(log-rank test; P < 0.0001) than low-risk patients (Fig. 6G), 
proving that the risk signature derived from these nine 
DAMP-associated genes was able to independently pre-
dict the clinical outcomes of the LUAD patients.

In addition, a receiver operating characteristic curve 
(ROC) curve analysis was carried out in order to better 
ascertain whether the DAMP signature is capable of accu-
rately predicting the outcomes of LUAD patients. Results 
showed that the risk signature based on nine DAMP-
related genes was a good predictor of survival rate. The 
area under the curve (AUC) value of 1-year OS and PFS 
reached 0.73 (95%CI, 0.65–0.81) and 0.70 (95%CI, 0.62–
0.77), respectively. In line with these results, the valida-
tion set GSE31210 also showed AUC values of one-year 
OS and DFS reaching 0.72 (95%CI, 0.45-1.00) and 0.69 
(95%CI, 0.57–0.81), respectively (Fig.  6H). Additionally, 
three- and five-year survival rates were also calculated 
for the TCGA and GEO datasets, displaying the robust 
nature of the predictive accuracy.

To confirm the important role of 9 genes in the progno-
sis signature, we explored the differential expression of 9 
DAMP-associated genes between 35 pairs of lung cancer 
tissues and adjacent noncancerous tissues. Similar with 
the bioinformatics results in TCGA database (Additional 
file 1 Fig.  1A), our experiments confirmed the expres-
sion of CLEC7A, TLR7, IL-1A and IL33 were decreased 
in lung cancer. And PANX1, PPIA and TLR2 were highly 
expressed in tumor group (Fig. 7).

Establishment and validation of the DAMP-related 
prognostic nomogram for LUAD patients
By combining common clinical factors with the gene sig-
nature, we produced a prognostic nomogram. Our ulti-
mate objective was to develop a quantitative algorithm 
that could estimate the survival probabilities of LUAD 
patients. To estimate one-, three-, and five-year OS and 
PFS, individual scores based on each factor (gender, age, 
clinical stage, and risk score) and total scores were calcu-
lated (Fig. 8A-B).

The calibration plots demonstrated excellent agree-
ment between the predicted probability of one-, three-, 
and five-year OS and the actual OS in the TCGA-LUAD 
cohort (Fig.  8C), with comparable outcomes for one-, 
three-, and five-year PFS prediction, demonstrating 
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Fig. 6 Construction and validation of the DAMP-related signature for LUAD patients. (A-B) Analysis of LASSO regression in TCGA database. The determi-
nation of “lambda” for optimal selection of gene signature. (C) Coefficients of the 9 prognostic molecules in the risk model. (D) Univariate Cox analysis 
evaluates the prognostic value of the DAMP genes in terms of OS; (E) Risk scores distribution, survival status of each patient, and heatmaps of prognostic 
9- gene signature in TCGA dataset; (F) A Sankey plot showing the distribution of alive/dead status and subtypes of DAMP. (G) Kaplan–Meier analyses 
demonstrating the prognostic significance of the risk model in TCGA and GSE31210 cohort. OS and PFS between the two subtypes displayed in the 
TCGA-LUAD cohort and OS and DFS in the GSE1210. (H) Comparison of AUC of one-, three- and five- year OS and PFS in TCGA dataset, and OS and DFS in 
the GSE1210. P values were calculated using Wilcoxon rank sum test or log-rank test. (*P < 0.05; **P < 0.01; ***P < 0.001)
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consistency between the actual measured values and 
those projected by the nomogram. In addition, GSE31210 
confirmed these outcomes (Fig.  8D). Additionally, ROC 
analysis was used to assess the nomogram’s predictive 
accuracy. The AUC values of the OS nomogram were 
found to be higher than the risk score or clinical stage 
alone in both the training and validation sets, reaching 
0.90 for one-year OS prediction (Fig.  8E-F), indicating 
that the nomograms performed better than other pre-
dictors when estimating the clinical outcomes of LUAD 
patients. It is also important to note that the nomo-
gram’s stable predictive ability was demonstrated by 
the C-index of the TCGA dataset (OS: C-index = 0.72; 

PFS: C-index = 0.65), and the GSE31210 dataset (OS: 
C-index = 0.76; DFS: C-index = 0.73).

Based on these findings, it can be concluded that the 
nomogram could accurately and reliably predict the sur-
vival rates of LUAD patients.

Prediction of immunotherapy response and tumor 
microenvironment landscape
According to the ESTIMATE algorithm analysis, patients 
in the low-risk group had higher immune scores, indicat-
ing a significantly higher infiltration of immune cells into 
the TME (p < 0.0001) (Fig.  9A). Using the ssGSEA algo-
rithm to evaluate tumor-infiltrating immune cells, we also 
looked at the specific difference in infiltrating immune 

Fig. 7 Validation of the 9 DAMP-related genes for LUAD tissues and adjacent noncancerous tissue. P values were calculated using Wilcoxon rank sum test 
(*P < 0.05; **P < 0.01; ***P < 0.001, ns, not significant)
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Fig. 8 Construction of a nomogram combined with clinical characteristics in TCGA and GEO datasets. (A) The predictive nomogram built in combina-
tion with the risk signature and clinical characteristics predicted one-, three- and five-year OS and PFS of patients with LUAD in TCGA dataset. (B) The 
predictive nomogram built in combination with the risk signature and clinical characteristics predicted one-, three- and five-year OS and DFS of patients 
with LUAD in GSE31210. (C) The probabilities of OS and PFS at one-, three- and five- years were assessed by calibration plots of the nomogram in TCGA 
dataset. (D) The probabilities of OS and DFS at one-, three- and five- years were assessed by calibration plots of the nomogram in GSE31210. (E) ROC 
curves of the nomograms compared with clinical stage and risk score with regard to one-, three- and five-year survival in TCGA dataset. (F) ROC curves 
of the nomograms compared with clinical stage and risk score with regard to one-, three- and five-year survival in GSE31210. OS, overall survival; PFS, 
progression-free survival; DFS, disease-free survival
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Fig. 9 The immune landscape and the immunotherapy response of the DAMP-related signature. (A) Estimation of immune scores, stromal scores, tumor 
purity between low- and high-risk patients using the ESTIMATE algorithm. (B) Estimation of immune cell proportions in low- and high-risk patients using 
the ssGSEA algorithm. (C) Heat map demonstrating gene expression profiles of immune checkpoint genes, immuno-stimulator signature, cytolytic activ-
ity signature, and MHC family genes in low- and high-risk patients. (D) The TIDE score identifying immunotherapy response of patients in TCGA-LUAD 
cohort. (E) The TIDE score in low- and high-risk LUAD patients. (F) Comparison of AUC of immunotherapy biomarkers in several reported immunotherapy 
cohorts. (G) The ability of seven biomarkers to distinguish response or non-response patients with immunotherapy. Red line refers to p < 0.05. (H) OS 
probability in low- and high-risk patients of reported immunotherapy cohorts. P values were calculated using Wilcoxon rank sum test (*P < 0.05; **P < 0.01; 
***P < 0.001, ****P < 0.0001)
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cells between the two risk groups. The low-risk sub-
group had significantly more activated DC cells, CD8 + T 
cells, CD4 + helper cells, B cells, and other immune cells 
(Fig. 9B), demonstrating the strong link between immune 
infiltration and the DAMP signature found in this study. 
The differences in the expression of important molecules 
that are related to the immune system were looked at 
in order to determine whether or not the DAMP signa-
ture could play a significant role in the responsiveness 
of immunotherapy. The low-risk group had significantly 
higher levels of expression of immune checkpoints (PD-
1, PD-L1, PD-L2, CTLA4, TIGIT, LAG3, SIGLEC15, and 
TIM3) and immune-stimulators (ICOS, CD80, CD86, 
and HHLA2) (p < 0.001) (Fig. 9C). Similar patterns were 
also observed in low-risk individuals for the MHC family 
genes (HLA-DOB, HLA-DMA, HLA-DMB, B2M, HLA-
DPA1, and HLA-DRA) and cytolytic activity-related 
molecules (NKG7, PRF1, GNLY, GZMA, GZMH, and 
GZMK). The TIDE algorithm, is a stable and trustworthy 
ICI therapy prediction tool [25] (Fig.  9D). Interestingly, 
the low-risk group of LUAD patients had a lower TIDE 
value than the high-risk group (Fig. 9E). According to the 
DAMP-related signature, low-risk patients are candidates 
for ICI therapy because a higher TIDE score was associ-
ated with a greater likelihood of tumor immune escape 
and decreased benefit from anti-PD-1/CTLA4 therapy 
[25].

Several immunotherapy cohorts were used to test 
the signature’s ability to predict ICI therapy response 
(Fig.  9F-G). In the majority of cohorts, the AUC of the 
risk score for the DAMP-related signature was greater 
than that of the TIDE value, the microsatellite instabil-
ity (MSI) score, CD274/PD-L1, CD8, and Merck18. This 
suggests that the risk score was better than the existing 
biomarkers at predicting immunotherapy response. In 
addition, the validation immunotherapy cohorts showed 
significantly higher survival rates for low-risk patients 
(Fig. 9H). Based on these findings, the DAMP-based sig-
nature may be able to identify patients who might benefit 
from ICIs.

Discussion
Conventional cancer treatment kills tumor cells directly, 
whereas ICIs work by affecting tumor cells via the 
immune system and TME [29, 30]. The tumor immune 
microenvironment ought to be taken into consideration 
when developing predictors for ICIs in LUAD patients. 
Through the spatiotemporal regulation of DAMP emis-
sion, ICD can elicit adaptive immune responses that 
are comprehensively antigen-specific [18]. DCs, mac-
rophages, and monocytes can drain cancer-specific 
antigen-filled lymph nodes thanks to DAMP’s connec-
tion to their maturation and activation [18]. An adap-
tive immune response to cancer is made possible by 

the subsequent robust response of T cells (CD8 + and 
CD4 + T lymphocytes) to tumor antigens. Classifying the 
expression of DAMP-related regulatory factors in tumor 
patients is essential due to the significance of DAMP 
in immune regulation. Our group first demonstrated 
that the expression of DAMP genes associated with 
ICD could distinguish LUAD patients who benefit from 
immunotherapy due to the strong connection between 
DAMP and the immunological microenvironment of 
LUAD. Additionally, we demonstrated that the expres-
sion of DAMP genes associated with ICD can distinguish 
LUAD patients who benefit from immunotherapy. Con-
sensus clustering enabled us to distinguish two LUAD 
molecular subgroups based on DAMP gene expression. 
Cluster1 was associated with favorable clinical outcomes 
and increased levels of immune cell infiltration of B cells, 
CD8 + T cells, CD4 + T cells, and NK cells with strong 
antitumor immunity activity. Mechanistically, Cluster2 
was linked to the downregulation of antigen-presenting 
processes, which prevented effector T cells from being 
activated in the antitumor adaptive immune response. 
There was a clear enrichment in antigen-presenting pro-
cesses and signal pathways between the two subtypes 
as determined by the GSEA and GO analyses of DEGs. 
In conclusion, these findings point to the possibility of 
DAMP dysfunction functioning as a biomarker for the 
prediction of immunotherapy responses.

To further support this concept, a prognostic risk 
model based on nine DAMP-related genes was devel-
oped, validated, and utilized bioinformatics to clas-
sify LUAD patients into high-risk and low-risk groups. 
The scoring system that we developed was comprised 
of CLEC7A, PPIA, and PANX1. It also contained two 
genes from the heat shock protein family (HSP90AA1 
and HSPA4), two genes from the Toll-like receptor fam-
ily (TLR2 and TLR7), and two cytokines (IL1A and IL33). 
Despite the fact that the levels of expression and func-
tions of these genes in the number of cancers have been 
determined [31–35], the clinical significance of integrat-
ing DAMP genes in LUAD patients is still unknown. In 
this study, our risk signature demonstrated high predic-
tive power for survival probability and may function as 
an independent prognostic predictors for LUAD patients. 
Importantly, ICI responsiveness was accurately pre-
dicted by the risk signature derived from specific DAMP 
genes. The low-risk group’s favorable clinical outcomes 
were particularly correlated with a high level of immune 
cell infiltration of CD8 + T cells, CD4 + T cells, B cells, 
and NK cells with robust antitumor immunity. Low-risk 
subgroups also exhibited higher expression of immune-
related genes like MHC, immune checkpoint genes, 
immune stimulator genes, and cytolytic activity genes. 
Recent research [36] indicates that patients with high 
levels of immune checkpoint genes may benefit from 
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immunotherapy. NK cells are a type of lymphocyte of the 
innate immune system that is capable of killing cancerous 
cells and controlling metastatic spread [37] due to their 
strong cytolytic activities against tumors. MHC mol-
ecules are needed for anti-tumor CD8 + T-cell priming by 
DCs, according to one report [38]. The aforementioned 
studies have demonstrated the validity of novel DAMP-
related signatures as potentially measurable prognostic 
biomarkers in LUAD patients, laying the groundwork 
for the current study’s prediction of immunotherapy. To 
investigate immunotherapy responsiveness, we model 
tumor immune infiltration by integrating the expres-
sion signatures of T-cell dysfunction and T-cell exclusion 
using a precise predictive model [25]. This demonstrated 
that low-risk patients are more likely to respond to ICIs 
in accordance with the DAMP signature. When com-
paring AUC, this signature outperformed TIDE scores, 
PD-L1, and CD8 in the immunotherapy cohorts that 
were reported.

The nomogram is frequently used to determine the 
prognosis of cancer [39]. Some nomograms regarding 
the precise prediction of LUAD patients’ prognoses have 
been demonstrated in previous studies [40, 41]. After 
combining the risk signature with other clinical charac-
teristics, precise nomograms for OS, PFS, and DFS that 
are clinically applicable were developed in this study. The 
accuracy of the predictive nomograms in this study was 
confirmed by the calibration plots, AUC, and C-index.

Despite the promising outcomes, we recognize the 
research’s limitations. First, our findings cannot be con-
firmed without large-scale, multi-center clinical trials, 
even though this signature was examined and verified 
in multiple datasets. Additionally, due to the lack of 
prognostic information regarding immunotherapy in 
TCGA-LUAD patients, the immunotherapy response 
was evaluated using the TIDE score. To confirm the risk 
signature in the future, experimental studies ought to be 
carried out.

Conclusions
In brief, the present study for the first time proves that 
the identified ICD-associated DAMP signature is a reli-
able biomarker for survival probability in patients with 
LUAD. Furthermore, the DAMP signature and the 
nomograms were independent prognostic predictors for 
LUAD. Of note, our results suggest that the DAMP sig-
nature could be an effective biomarker of responsiveness 
to ICIs, and demonstrated that this signature might be 
superior to existing biomarkers in the prediction of anti-
tumor immunotherapy. In the future, this signature may 
promote distinct tumor immunophenotypes and person-
alized cancer immunotherapy.
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