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Abstract 

Background Idiopathic Pulmonary Fibrosis (IPF) is an age-associated progressive lung disease with accumulation of 
scar tissue impairing gas exchange. Previous high-throughput studies elucidated the role of cellular heterogeneity 
and molecular pathways in advanced disease. However, critical pathogenic pathways occurring in the transition of 
fibroblasts from normal to profibrotic have been largely overlooked.

Methods We used single cell transcriptomics (scRNA-seq) from lungs of healthy controls and IPF patients (lower and 
upper lobes). We identified fibroblast subclusters, genes and pathways associated with early disease. Immunofluores-
cence assays validated the role of MOXD1 early in fibrosis.

Results We identified four distinct fibroblast subgroups, including one marking the normal-to-profibrotic state transi-
tion. Our results show for the first time that global downregulation of ribosomal proteins and significant upregulation 
of the majority of copper-binding proteins, including MOXD1, mark the IPF transition. We find no significant differ-
ences in gene expression in IPF upper and lower lobe samples, which were selected to have low and high degree of 
fibrosis, respectively.

Conclusions Early events during IPF onset in fibroblasts include dysregulation of ribosomal and copper-binding pro-
teins. Fibroblasts in early stage IPF may have already acquired a profibrotic phenotype while hallmarks of advanced 
disease, including fibroblast foci and honeycomb formation, are still not evident. The new transitional fibroblasts 
we discover could prove very important for studying the role of fibroblast plasticity in disease progression and help 
develop early diagnosis tools and therapeutic interventions targeting earlier disease states.
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Introduction
Idiopathic Pulmonary Fibrosis (IPF) is an age-dependent 
chronic lung disease affecting individuals generally over 
60  years old [1]. The mechanisms driving the disease 
development and progression are still not fully under-
stood [2]. Gene-by-gene analysis and high-throughput 
studies have promoted the field over the years, offering 
valuable insights into the pathophysiology of the disease 
[3–5]. Similar to other diseases, single cell approaches 
have the potential to advance this knowledge even fur-
ther by fully dissecting the disease milieu and allowing 
investigators to assess individualized cell contributions 
and complex cellular dynamics during disease emergence 
and progression [6–8].

Extensive research has provided valuable insight into 
the origin and contribution of fibroblasts and especially 
myofibroblasts in pulmonary fibrosis [9, 10]. All evi-
dence supports the hypothesis that these are heterogene-
ous groups of cells, undergoing very distinct transition 
processes dictated by the disease microenvironments 
[9–11]. They share common characteristics and express 
a set of biomolecules that drive fibrosis [12]. Single cell 
transcriptomics allow dissection of this heterogeneous 
population. Murine models have been used to better 
understand how fibroblast subtypes contribute to fibrosis 
[9]. More recently, single cell RNA sequencing (scRNA-
seq) of fresh human tissue revealed cell-specific differ-
ences between normal and fibrotic tissue [8, 13].

To study the disease onset and progression, our group 
has performed scRNA-seq on upper and lower lobes of 
fresh human explanted IPF lungs and on healthy con-
trols, identifying a subpopulation of proliferating  SPP1Hi 
macrophages with a potential role in lung fibrosis [8]. 
Here, we reanalyze the raw sequencing data after per-
forming an imputation step and focus on the early events 
that could drive transition of normal lung fibroblasts 
to profibrotic. Our analyses reveal four major fibro-
blast clusters showing unique characteristics regarding 
their gene expression and related to their tissue of ori-
gin (control or IPF). A closer look at each cluster con-
firms previously reported changes associated with IPF 
and—more importantly—reveals a profibrotic state of 
the upper (unaffected) lung. Gene expression patterns in 
each cluster reveal an expected dysregulation of fibrosis-
associated genes. A novel finding is the dysregulation of 
genes coding for copper-binding proteins during both 
early and late stages of the disease. Immunohistochemis-
try assays in IPF lung fibroblasts show high levels of one 
of the top differentially expressed copper-binding genes, 
MOXD1. Furthermore, pseudotime analysis identifies a 
distinct group of fibroblasts in the process of acquiring 
a profibrotic phenotype while undergoing a global down-
regulation of genes coding for ribosomal proteins. Both 

copper-binding [14] and ribosomal protein pathways 
[15–17] have been previously associated to senescence. 
The discovery of this new type of transitional fibroblasts 
is important as it provides insights into the early events 
of fibrosis and may prove more helpful in finding suit-
able targets for early diagnosis and possible therapeutic 
interventions.

Methods
Single cell RNA sequencing (scRNA‑seq)
Raw scRNA-seq data were derived from our previ-
ous publication [8]. Briefly, normal and IPF lung tissue 
(Additional file 1: Table S1, Additional file 2: Fig. S1) was 
obtained and processed to obtain single cell suspension. 
Single cell libraries were prepared using the 10X Genom-
ics Chromium instrument and V2 chemistry. Sequencing 
was performed on an Illumina NextSeq-500 instrument.

scRNA‑seq data analysis
scRNA-seq raw count and cell-UMI (Unique Molecular 
Identifier) count matrix were generated by Cell Ranger 
[8]. Single-cell Analysis Via Expression Recovery (Saver) 
was used to impute dropout events in gene expression 
[18]. Seurat (version 2.3.4) was used to normalize gene 
expression, perform differentially expressed gene analy-
sis, identify distinct cell populations and visualize clus-
ters graphically [19, 20]. The cell-UMI matrix was filtered 
and only cells expressing at least 200 genes were further 
analyzed. Cells containing greater than 35% of mitochon-
drial genes were also excluded from the analysis. Highly 
variable genes were identified, based on their average 
expression and dispersion, and would be used in the 
downstream analysis. Data were scaled and the number 
of UMIs per cell as well as the percentage of mitochon-
drial gene content were regressed out. In this study, we 
further removed the effect from technical or biological 
confounders using Harmony, which integrates multi-
ple scRNA seq datasets by projecting cells into a shared 
embedding in which cells are grouped by cell type, not 
the specific conditions related to the datasets [21]. t-Dis-
tributed stochastic neighbor embedding (t-SNE) plots 
based on Harmony embeddings were generated to assign 
clusters and each cluster was identified by differentially 
expressed genomic signatures.

Analysis of fibroblast cluster from scRNA‑seq data
The fibroblast cells from scRNA-seq data were processed 
by Seurat and Harmony to identify subclusters of fibro-
blast cells. Destiny was used for pseudotime analysis of 
the subclusters [20]. Velocyto was used to estimate the 
time derivative of the gene expression state [22]. RNA 
velocity was estimated using gene-relative model with 
k-nearest neighbor cell pooling (k = 20) and velocity 
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fields were projected into a UMAP-based embedding 
through SeuratWrappers and Seurat (version 3.1.0). We 
also used AddModuleScore of Seurat to calculate aver-
age expression level of (i) copper binding [23], (ii) senes-
cence [24] and (iii) ribosome biogenesis (Gene Ontology 
Browser) gene sets on a single cell level, normalized by 
randomly selected control feature set.

Immunostainings
Immunofluorescence
Fresh lung tissue (Additional file  1: Table  S1) was fixed 
with 4% paraformaldehyde and embedded in OCT (Tis-
sue-Tek® Sakura® Finetek, US). Cultured fibroblasts 
(Additional file  1: Table  S1) were plated in chamber-
slides and fixed with 2% paraformaldehyde. OCT sec-
tions (5 μM thick) and fixed fibroblasts were stained with 
the primary/secondary antibodies listed in Additional 
file  1: Table  S2. Slides were mounted using ProLong 
Gold Antifade Mountant with DAPI (Life technologies, 
USA). Images were obtained using an Olympus Fluoview 
1000-3 Confocal Microscope (20× objective).

Immunohistochemistry
Briefly, formalin-fixed paraffin-embebbed tissue sections 
were deparaffinised, rehydrated and subjected to an anti-
gen retrieval step, blocked with 10% Normal Serum (PK-
6200, Vector Laboratories, Burlingame, USA) in DAKO 
diluent (S3022, DAKO, Glostrup, Denmark), washed and 
incubated overnight at 4  °C with 1:300 of anti-MOXD1 
(bs-17733R, Bioss, Massachusetts, USA) antibody. Spe-
cific staining was detected with secondary biotinylated 
horse anti-rabbit antibody (PK-6200, Vector Laborato-
ries, Burlingame, USA) followed by Vectorstain ABC 
Elite reagent and DAB peroxidase substrate (SK-4105, 
Vector laboratories, Burlingame, USA) and counter-
stained with haematoxylin. Slides were mounted with 
permount mounting medium (SP15-100, Fisher Scien-
tific, Pittsburgh, PA, USA) and analyzed in a light micros-
copy (Nikon Eclipse 55i, Melville, NY, USA).

Results
Cell types in IPF and healthy lungs
A mixed population of cells (48,023 cells) from the lungs 
of three healthy control (21,485 cells) and six IPF (26,538 
cells) samples (from three donors) was sequenced using 
next generation single cell sequencing. An important 
study design includes tissue from three upper lobes 
(IPF_UP; 12,577 cells) and fibrotic tissue from three 
lower lobes (IPF_LOW; 13,961 cells) (Fig. 1A). In general, 
samples from the upper lobes presented a relatively unaf-
fected lung histology, while all samples from the lower 
lobes showed advanced fibrosis [8]. Here, we performed 
imputation of dropouts and gene expression profiles were 

clustered and visualized (t-SNE). Our analysis resulted in 
20 clusters (Fig.  1B) that were identified as distinct cell 
types (Fig.  1C), using previously described cell markers 
[8]. Each cluster had variable cell counts coming from 
healthy and IPF upper and lower lung lobes (Fig.  1D, 
E and Additional file 2: Fig. S1).

Fibroblast (FB) clusters’ characteristics
Fibroblasts (Fig.  1C, green box) were re-clustered and 
visualized in two dimensions using t-SNE (Fig. 2A). Over-
all, the clustering of fibroblasts from 449 control, 404 
IPF_UP and 1085 IPF_LOW samples revealed four differ-
ent groups. A fifth cluster, neighboring B-cells, was found 
to contain cells expressing HLA type II family genes and 
was excluded from this analysis (Additional file  2: Fig. 
S2). Despite our best efforts, one of the IPF upper lung 
lobe samples (SC154) showed extensive fibrosis com-
pared to normal controls (Additional file  2: Fig. S1A), 
posing a risk of masking any differences between the IPF_
UP and IPF_LOW fibroblasts. We decided to include this 
sample in our analysis since it clustered similarly to the 
other fibroblasts in IPF_UP samples (Additional file  2: 
Fig. S3A). Similarly, we checked the age distribution of 
the fibroblast cells. Despite the fact that IPF samples gen-
erally come from older people (since IPF usually presents 
itself > 55 yrs), we did not see any other age bias (Addi-
tional file 2: Fig. S3B).

Cluster-1 (608 cells, 31% of all FB) contained mainly 
cells from the healthy control donors (80% of the control 
FBs were in Cluster-1) as well as a smaller percentage of 
the IPF_UP and IPF_LOW cells (24% and 14% respec-
tively). Cluster-2, a much smaller cluster (197 cells, 10% 
of all FB), included cells from each sample origin. Clus-
ter-3 (920 cells, 48% of all FB) contained mainly IPF_UP 
and IPF_LOW (56% and 64% respectively). Only 1% of 
the healthy control FBs classified as Cluster-3. Clus-
ter-4 (213 cells, 11% of all FB) contained a slightly higher 
percentage of the IPF_UP and IPF_LOW (12% and 13% 
respectively) than the healthy control fibroblasts (6%). 
The breakdown of each cluster to sample types is summa-
rized in Fig. 2B, C while the breakdown of each sample to 
different clusters is summarized in Fig. 2D.

Since fibroblasts in Cluster-1 came predominantly 
from control samples we consider this to represent the 
“normal state”; while those in Cluster-3, which came 
almost exclusively form IPF_UP and IPF_LOW, repre-
sent the “disease state”. Cluster-1, Cluster-2 and Cluster-4 
had distinct expression profiles, but they were all present 
in healthy and IPF lungs (Fig. 2C). Overall, IPF_UP and 
IPF_LOW fibroblasts showed similar clustering and com-
positional patterns (Fig. 2B, D). These results showed that 
fibroblasts from the relatively non-fibrotic upper lobes 
had similar molecular signatures to those from the highly 
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Fig. 1 Analysis of scRNA-seq data from control and IPF lung cells identifies a complex network of cell types. A A suspension of single cells was 
generated from lung explants of control or IPF patients and was subsequently sequenced using the 10X genomics scRNA platform. B t-SNE plot of 
cell clustering after data imputation (raw sequencing data: Morse et al.). C Expression heatmap of genes that are used to identify cell type in each 
cluster. D Cells in the t-SNE plots are colored according to their origin: control, IPF upper (IPF_UP) or lower lobe (IPF_LOW). E Cellular composition of 
each sample type

Fig. 2 Analysis of scRNA sequencing data from control and IPF lung fibroblasts identifies four distinct clusters/subtypes. A t-SNE plot of fibroblast 
clusters. B Cells in the tSNE plots are colored according to their origin: control, IPF upper (IPF_UP) or lower lobe (IPF_LOW). C Contribution of each 
sample type to each cluster. D Partition of each cell origin into the four fibroblast clusters
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fibrotic lower lobes, suggesting that molecular changes in 
lung fibroblasts precede the morphological changes iden-
tified by histological examination.

We also noticed that both Cluster-1 and CLus-
ter-3 contained some alveolar fibroblasts 
(SPINT2+FGFR4+GPC3+), while cluster 2 was 
predominately composed of adventitial fibroblasts 
(SFRP2+PI16+SERPINF1+) (Additional file  2: Fig. S4), 
which were previously reported [25]. Additionally, some 
fibroblast cells in Cluster-3 highly expressed LGR5, and 
LGR5+ fibroblasts serve as a mesenchymal niche for 
distal airway epithelial cells, as it was recently reported 
[26]. From the UMAP plots, LGR5+ fibroblasts are next 
adventitial fibroblasts (Additional file  2: Fig. S4A). Fur-
thermore, part of Cluster-3 and Cluster-4 are CTHRC1+ 
fibroblasts, which are uniquely found in fibrotic lungs 
(Additional file 2: Fig. S4B). In a previous RNA velocity 
analysis in mouse fibroblasts, vectors from alveolar fibro-
blasts and adventitial fibroblasts pointed to CTHRC1+ 
fibroblasts [27]. Consistently, our velocity analysis 
showed that vectors from myofibroblast Cluster-4, alve-
olar fibroblasts, and LGR5+ fibroblasts, point towards 
CTHRC1+ fibroblasts.

Differentially expressed genes in each cluster are listed 
in Additional file  1: Table  S3 and expression of the top 
16 genes in these lists is further described per cluster 
and sample type (Figs.  3, 4, 5, 6). Briefly, fibroblasts in 

Cluster-1 had higher expression in 263 genes (FDR < 0.05) 
with the highest being: ICAM1, CXCL1, CXCL2, CXCL3, 
CXCL8, CCL2, IL6, PTX3, IER3, GADD45B, THBS1, 
SOD2 and NFKBIA which are associated with immune 
response and regulation of inflammation (Fig.  3 and 
Additional file 1: Table S4).

Among the 118 genes that were significantly upregu-
lated in Cluster-2, CXCL14, SFRP2 and SFRP4 had 
higher expression levels in IPF samples. Interestingly, 
the highest levels of CXCL14 were detected in IPF_LOW 
fibroblasts, being one of the most significant differences 
observed overall between IPF_UP and IPF_LOW sam-
ples. Profibrotic gene CXCL14 is shown to play a regu-
latory role in immune response and inflammation while 
SFRP2 and SFRP4 are regulators (inhibitors) of Wnt sign-
aling (Fig. 4 and Additional file 1: Table S4).

The majority of the top 16 upregulated genes in Clus-
ter-3 (out of the total 219 differentially expressed) have 
been previously shown to increase in lung fibrosis (Fig. 5 
and Additional file  1: Table  S4). Our results corfirmed 
that cells expressing myofibroblasts markers like POSTN 
and ASPN also expressed LTBP2, LTBP1, BGN, DPT and 
the highest levels of COL3A1 and COL8A1. Interestingly, 
68–93% of the cells on this cluster that had low expres-
sion of myofibroblast-associated genes also had high 
expression levels of IPF-associated profibrotic markers 
such as MFAP4, LTBP1, BGN, COMP, MMP2, COL3A1 

Fig. 3 Top 16 most upregulated genes in Cluster-1. A tSNE plots. B Expression by cluster. C Expression by tissue of origin
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Fig. 4 Top 16 most upregulated genes in Cluster-2. A–C As above

Fig. 5 Top 16 most upregulated genes in Cluster-3. A–C As above



Page 7 of 13Jia et al. Respiratory Research          (2023) 24:116  

and COL8A1. All 16 genes had similar expression in IPF_
UP and IPF_LOW samples. CXCL14, which was upregu-
lated in Cluster-2, was also upregulated in the Cluster-3 
IPF_LOW compared to IPF_UP.

Cells in Cluster-4 expressed profibrotic and myofibro-
blast markers like TNC, collagens, SPARC, POSTN, FN1 
and TPM2 in higher levels than cells in Cluster-3. All 16 
top upregulated genes in this group had similar expres-
sion levels in IPF_UP and IPF_LOW samples (Fig. 6 and 
Additional file 1: Table S4).

Full names and relevant references for all genes men-
tioned above are listed in Additional file 1: Table S4.

Trajectory and RNA velocity analysis reveals early 
disease‑associated events
Single cell trajectory inference and pseudotime analy-
sis are often used to study cellular dynamics or tran-
sitional states and special organization of cells in 
tissues [28]. Each cell is assigned a numeric value 
(pseudotime) which indicates where in the underlying 
dynamic biological process that cell falls into. These 
methods allow the visualization of intermediate stages 
that connect distinct cell states, which are often over-
looked during cell clustering. We used diffusion map 
(destiny) to perform pseudotime analysis on the four 
fibroblast subclusters (Fig.  7A). The diffusion compo-
nents, as measures of pseudotime [29], revealed tem-
poral ordering and cellular decision on the single-cell 

transcriptome level. Interestingly, cells in Cluster-1 had 
two distinct subpopulations (Fig. 7A, ovals) which cor-
responded to cells from Control and IPF samples with 
the latter being closer to Cluster-2 and 3 (Fig. 7B). This 
suggests that IPF fibroblasts in Cluster-1, despite their 
overall “healthy” phenotype, have been influenced by 
the disease environment.

To further our understanding of the mechanisms driv-
ing disease onset, we calculated RNA velocity [22], which 
is based on the balance of unspliced (nascent) and spliced 
(mature) mRNA. This high-dimensional vector can act 
as an indicator of the future state of mature mRNA, 
driving cell state. The directionality of the plot arrows 
depicts the direction of cell state progression. RNA 
velocity analysis of all fibroblasts (Fig.  7C) showed that 
the majority of the fibroblasts in Cluster-1 (composed 
mainly of non-IPF fibroblasts) trended towards a steady 
state (SS1). Even fibroblasts originating from IPF samples 
in this cluster appeared to be able to express genes driv-
ing them towards SS1. Similarly, cluster-3 fibroblasts are 
attracted to another steady state (SS2) which is likely dis-
ease related since almost all of these cells originated from 
IPF lungs. Although not as clear, Cluster-4 also showed 
a directional flow towards SS2 suggesting that these cells 
may transition to a profibrotic phenotype but have a cel-
lular transcriptome that differentiates them from fibro-
blasts in Cluster-3 (Fig. 7C). TIMP1, COL1A1, CTHRC1, 
TUBA1B, SH3BGRL3 and S100A16 were the top six 

Fig. 6 Top 16 most upregulated genes in Cluster-4. A–C As above
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differentially expressed genes between Cluster-3 and 
Cluster-4 (upregulated in Cluster-4).

Cluster-2 fibroblasts showed a more complex pattern 
(Fig.  7C) with some cells going towards Cluster-1 (sub-
group C2G1; Fig. 7D, gold) and others towards Cluster-3 
(subgroup C2G2; Fig. 7D, purple) suggesting that cells in 
Cluster-2 were captured in a transition state that could 
either be resolved (SS1) or progress to a profibrotic state 
(SS2). We found 74 of the 103 genes coding for riboso-
mal proteins to be significantly downregulated in C2G2 
vs C2G1 (Additional file  1: Table  S5). The remaining 
29 ribosomal protein genes were unaffected. Based on 
these 74 genes, C2G1 and C2G2 cells were assigned a 
ribosome score which was significantly decreased in 
C2G2 (p-value ≪ 0.001). In addition, we calculated a 
ribosome biogenesis score based on 267 other genes 
associated with this process (Gene Ontology Browser). 
Again, C2G2 showed a significant decrease for this score 

(p-value ≪ 0.001). Both these observations (Fig.  7E) are 
consistent with the hypothesis that there is a dysregula-
tion of ribosomal function at the early stages of IPF.

To validate this finding, we used a second publicly 
available scRNA-seq dataset [6], that had similar tis-
sue collection and processing procedures as ours. This 
dataset consisted of eight transplant donors and four 
IPF ex-plants, but it did not have distinct upper/lower 
lobe samples. We processed and reanalyzed the raw 
scRNA-seq data in the same way as our dataset. Due to 
the low number of IPF fibroblasts (see Additional file 2: 
Fig. S5B) we couldn’t confidently identify a subcluster 
similar to our Cluster-2 in the fibroblast cluster, but we 
observed three areas containing distinct cell populations 
originating from Controls, IPF and a mixture of the two, 
respectively (Additional file 2: Fig. S5A, green). Analysis 
of those cells showed 32 ribosomal genes to be differen-
tially expressed between control and IPF with 29 of them 

Fig. 7 Pseudotime analysis of fibroblasts. RNA trajectory analysis shows (A) two distinct cell subgroups (ovals) in Cluster-1 (B) depending on the cell 
origin (control or IPF). Overall, the majority of the cells follow a pseudotime trajectory suggesting a phenotypic transition from Cluster-1 to Cluster-2 
to Cluster-3 and finally Cluster-4 (arrow). C Velocity analysis of all fibroblasts suggests that Cluster-1 fibroblasts independently of their origin tend 
to reinstate their “normal/healthy” steady state (SS1). Fibroblasts from Cluster-3 tend to acquire a second steady state (SS2) which is distinctively 
different from the “normal” steady state. Blue dots indicate cluster number. D Cluster-2 fibroblasts can be divided into two sub-groups according 
to their velocity: one tending towards SS1 (C2G1, gold) and one towards SS2 (C2G2, magenta). E Histograms showing a ribosome score based on 
differentially expressed ribosomal protein genes in our dataset and a ribosome biogenesis score based on the expression of all GO genes associated 
with this process
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downregulated. Notably, all 29 were also included in the 
previous list of 74 differentially expressed genes in our 
Cluster-2 (p-value < 0.01).

Monooxygenase DBH like 1 (MOXD1): a novel early IPF 
biomarker
To identify early IPF biomarkers specific to fibroblasts, 
we examined the Cluster-3 top upregulated genes that 
also showed low expression in the rest of the cell types 
(Fig.  5). The five most significant of those included 
known IPF players (metalloprotease, collagen and two 
-LTBP1 LTBP2) and MOXD1 (Additional file 1: Table S3). 
MOXD1 was not previously associated with IPF, but it is 
expressed significantly higher in Cluster 3 and it is sig-
nificantly downregulated in controls (Fig.  8A–C). Fur-
thermore, it had been described in replicative senescent 
fibroblasts [30]. Given that IPF fibroblasts can be resist-
ant to apoptosis [31] and have a senescent phenotype 
[32], we selected MOXD1 for validation as a new possible 
fibroblast biomarker in early and advanced IPF.

Immunofluorescence and immunohistochemistry 
staining of human lung tissues (Fig. 8D, Additional file 2: 
Figs. S6 and S7) validated the mRNA findings. Cells from 

healthy donors’ tissues expressed minimal MOXD1 pro-
tein. IPF lung upper lobes, showing less advanced fibrotic 
disease, also showed increased MOXD1 compared to 
control lungs. IPF lower lobes, showing advanced fibrotic 
disease, expressed even higher levels of MOXD1. We 
then proceed to characterize the fibroblast cells express-
ing MOXD1 by co-staining the sections with PDG-
FRa (marker of fibroblasts) and alpha smooth muscle 
actin (α-SMA, a marker of myofibroblasts, which also 
marks pericytes and smooth muscle cells). As expected, 
α-SMA staining was increased in upper lobes and even 
more highly increased in lower lobes of IPF lungs com-
pared to control lungs. Most MOXD1 staining in upper 
lobes was found in cells not staining with α-SMA, while 
these markers co-stained many of the same cells in the 
lower lobe suggesting that MOXD1 is a marker of cells 
that are maturing into myofibroblasts. This is consist-
ent with increased levels of myofibroblasts in IPF. PDG-
FRa staining showed that fibroblasts in control lungs 
are mostly MOXD1/SMA negative, while fibroblasts in 
lower lobes of IPF lungs are mostly MOXD1/SMA posi-
tive, co-staining with these markers indicated that most 
of the MOXD1 staining cells in IPF are myofibroblasts. 

Fig. 8 IPF fibroblasts express MOXD1. A MOXD1 expression peaks in Cluster-3 and is highly expressed in all IPF fibroblasts. B MOXD1 expression 
is specific for fibroblasts. C UMAP plot showing MOXD1 mRNA expression in all four fibroblasts clusters. D MOXD1 immunofluorescence staining 
in lung parenchyma frozen tissue, obtained from control and IPF lungs (×20 magnification, 50 µm). Red: MOXD1; green: PDGFRα (fibroblast 
marker); white: α-SMA (myofibroblast marker). E Velocity analysis of MOXD1 mRNA. F Histograms showing the cell distribution based on a 
Copper-Binding-Score. G UMAP plots of myofibroblast expressing genes
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To assess location of MOXD1 fibroblasts, we per-
formed immunostaining of whole lung tissues. Lung 
sections from age matched donor control were negative 
for MOXD1, whereas sections from IPF lungs showed 
numerous positive cells (Fig.  8D). Immunohistochemis-
try staining also showed increased MOXD1 expression in 
fibroblast foci (Additional file 2: Fig. S7).

Velocity analysis of fibroblasts using their spliced 
(Fig.  8E, left) and unspliced (Fig.  8E, center) MOXD1 
mRNA context indicated transcriptional kinetics towards 
the intersection between Cluster-3 and Cluster-4. A 
closer inspection of this region showed high expression 
of the myofibroblast associated genes POSTN, ASPN, 
ACTA2 and TAGLN (Fig. 8G) [11, 33]. It was clear from 
the UMAP plots that the cells carrying these myofibro-
blast markers did not segregate in one distinct cluster 
(Fig. 7C) suggesting that myofibroblast specific genes are 
having similar signatures to the original cells that transi-
tioned to a myofibroblast.

Copper‑binding proteins are upregulated early in disease
MOXD1 is a copper-binding protein and copper itself has 
been implicated in pulmonary fibrosis [34]. Blockhuys 
et al. [23] have identified 54 human Cu-binding proteins, 
divided in 9 groups according to their cellular localiza-
tion. We found 39 of them to be significantly up- and 
10 down-regulated in Cluster-3 (“fibrotic”) vs Cluster-1 
(“control”) (FDR < 0.05; Additional file 1: Table S6A). Fur-
thermore, 20 of them were already significantly upregu-
lated in C2G2 compared to C2G1 subcluster (Additional 
file 1: Table S6B). Among the top differentially expressed 
genes we found SPARC, LOXL1, and APP which have 
been implicated in lung fibrosis [35–37]. In similar 
analysis to ribosome genes, we found 29 genes to be sig-
nificantly upregulated in the validation cohort; and 24 
of them were included in the 39 of Cluster-3. Next, we 
assigned a copper-binding score to all fibroblasts based 
on the expression of these proteins in our dataset. IPF 
samples, regardless of lung topology, showed higher 
scores compared to the control samples (Fig.  8F, left). 
This difference was also reflected in the fibroblast clusters 
where Cluster-1 cells had the lowest Cu-binding score 
and Cluster-3 and 4 had the highest. Cluster-2, consistent 
with an intermediate cell state, showed an intermediate 
score (Fig. 8F, right).

Discussion
Fibroblasts have been previously studied for their role 
in fibrosis in general and lung fibrosis in particular [38]. 
Research has been focused on the lower subpleural lung 
regions where fibrotic scar tissue is primarily localized, 
assuming that fibroblasts from these regions contribute 
the most to disease development and progression. In the 

present work we are extending research to generally less 
disease-affected areas, the upper lobes of the lungs, to 
investigate early events in disease onset.

Our results show that the majority of IPF lung fibro-
blasts have a distinct molecular phenotype, since they 
form a distinct cluster. Interestingly, fibroblasts from the 
upper and lower lobes have similar molecular profiles, 
which is consistent with the hypothesis that gene expres-
sion changes in fibroblasts happen at an early disease 
stage. The observed early shift in gene expression in IPF 
fibroblasts, especially in extracellular matrix associated 
genes (collagens, MMP2, etc.), agrees with computation-
ally deconvoluted bulk RNA gene expression signatures 
[5]. These models indicated that deciding regulatory 
molecular events can happen early or late in lung fibro-
sis, depending on the cell type. Our scRNA-seq results 
confirm this prediction. However, we note as a potential 
limitation of this analysis that the control samples come 
from younger individuals compared to the IPF samples.

Our results indicate that underlying cell state differ-
ences (specifically ribosome and copper binding proteins) 
influence the differentiation of fibroblasts to myofibro-
blasts. One of the top differentially expressed genes in the 
IPF fibroblasts (Cluster-3) is MOXD1, a copper-binding 
enzyme, which has not been previously studied in IPF. 
MOXD1 shows a tight association with the ER mem-
brane and is not secreted [39]. Currently its substrate 
is unknown. It is found to be upregulated in senescent 
human fibroblasts and human vascular endothelial cells 
(HUVEC) [30]. Most importantly, IPF fibroblasts, under 
both in  vitro and in  vivo conditions and regardless of 
their lung localization, show high expression of MOXD1. 
Our velocity analysis results of MOXD1 nascent and 
mature mRNAs suggests that it start expressing earlier 
than known myofibroblast markers and could be poten-
tially used for early diagnosis.

We find that MOXD1 upregulation in fibrotic cells is 
part of the more general upregulation of copper bind-
ing enzymes, including Lysyl Oxidase Like 1 (LOXL1) 
and Secreted Protein Acidic and Cystein Rich (SPARC), 
which have been studied for their pro-fibrotic role in 
multiple organs [37, 40]. The dysregulation of copper-
binding proteins along with the recent demonstration 
of copper induced lung fibrosis in mice [34] and copper-
induced premature senescence of human fibroblasts [14] 
supports a more comprehensive role of copper and fibro-
blast senescence in the pathogenesis of IPF. It would be 
interesting to see whether IPF fibroblasts accumulate 
intracellular copper similar to the progressive accumula-
tion of intracellular copper in aging, kidney fibrosis and 
other diseases [41–43].

Depending on their localization (IPF_LOW, IPF_
UP), approximately 15% to 25% of fibroblasts from IPF 
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samples retain a transcriptional profile that resembles 
that of normal control lung fibroblasts. However, they 
form a subgroup which indicates that their “normal” 
phenotype is influenced by the disease environment. 
Another 25% of IPF fibroblasts along with 15% of con-
trol fibroblasts seems to be in “perturbed” states that are 
characterized by increased expression of ECM genes. It 
is reasonable to assume that these states may represent 
normal wound healing processes occurring in both con-
trol and IPF lungs. In the case of IPF lungs, these pro-
cesses would eventually run uncontrolled resulting in 
severe fibrosis [44].

One particular group of cells (Cluster-2) seem to cap-
ture this transition. It shows two distinct cell sub-pop-
ulations with tendency towards opposing states. One 
subgroup shows a tendency to revert to a normal state 
while the other seems to be transitioning towards a 
profibrotic state. A closer examination of the profibrotic 
sub-population reveals a downregulation of almost all 
ribosomal proteins and dysfunctional ribosomal biosyn-
thesis; and upregulation of the majority of copper-bind-
ing genes. We validate these findings in a similar cohort 
from a previous study [6]. Posttranslational regulation 
has been shown to play an important role in heart fibro-
sis through the largely underexplored roles of RNA bind-
ing proteins and variation in ribosome occupancy, which 
affect protein expression levels independent of mRNA 
levels [45]. Importantly, dysregulation of translational 
control on the level of polyribosome formation has been 
shown to play a significant role in the emergence of IPF 
myofibroblasts [46]. Although we observe a decrease 
in ribosomal gene expression, we wouldn’t necessarily 
associate it with decreased genome-wide translational 
activity in these cells. Disproportionate expression of 
ribosomal proteins could affect ribosomal specificity [47, 
48], favoring the translation of a profibrotic proteome in 
fibroblasts. Moreover, quantitative change in ribosome 
biogenesis could increase competition for ribosome 
binding and translation initiation, causing a variable 
effect on the translation of cellular mRNAs [49].

Impairment of ribosomal biogenesis not only could 
have an impact on the ribosomes’ cellular housekeeping 
role in protein synthesis but could also affect cell cycle 
and proliferation [15, 50]. Ribosome biogenesis can be 
impaired at multiple steps by a variety of stress factors, 
resulting in ribosomal stress and cellular senescence 
[15–17]. Our results support the hypothesis that riboso-
mal impairment may be a general mechanism activated 
during switching between two cell fates. In the future, 
experimental manipulation of ribosomal proteins will be 
necessary to decipher whether ribosome dysregulation is 
a driver of IPF or one of the many phenotypes associated 
with the dysregulated homeostasis caused by the disease.

Conclusions
In summary, we examine the events that take place in 
fibroblasts when cells transition from healthy state to 
disease. We demonstrate that, at the single cell level, 
changes in the transcriptome of fibroblasts appear early 
in the relatively unaffected upper lobes of the IPF lungs. 
We also identify two focal points (steady states) towards 
where the normal and the fibrotic cells coalesce. More 
importantly, we discover a point of transition between 
these two states, which is characterized by a significant 
decrease in ribosomal protein genes and a significant 
increase in copper-binding proteins. We examine the sec-
ond most upregulated copper-binding protein, MOXD1, 
and find it to be fibroblast- and IPF-specific. Further-
more, we find that MOXD1 is also expressed at early 
stages of IPF suggesting that it can be used as an early 
biomarker of fibroblast pulmonary fibrosis.

Increasing evidence supports the idea that IPF fibro-
blasts have acquired resistance to apoptosis [31] and have 
a senescent phenotype [32]. Furthermore, senescence can 
mediate the fibrotic phenotype [51], perhaps by secreting 
profibrotic factors [52]. Thus, early targeting of senescent 
fibroblasts with senolytic cocktails may help manage or 
even reverse the disease [51, 52]. To that extend, in future 
studies the transitional fibroblasts we discovered can far-
ther our mechanistic understanding of the transition pro-
cess and can be utilized for the development of potential 
diagnostic and therapeutic strategies.

At present, a major limitation of this study is the lack 
of available biomarkers for these transitioning fibroblasts. 
Future studies can reveal how senescence and alteration 
of ribosomal protein and copper-binding pathways may 
affect the switch of fibroblasts from the normal steady 
state to a profibrotic state. Furthermore, in-depth studies 
of these fibroblasts may provide a useful diagnostic tool 
for early detection of IPF and possibly a therapeutic win-
dow before extensive tissue damage occurs.
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