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Abstract
Background Lung squamous cell carcinoma (LUSC) is a subtype of non-small cell carcinoma, accounting for about 
30% of all lung cancers. Yet, the evaluation of prognostic outcome and therapy response of patients with LUSC 
remains to be resolved. This study aimed to explore the prognostic value of cell death pathways and develop a cell 
death-associated signature for predicting prognosis and guiding treatment in LUSC.

Methods Transcriptome profiles and corresponding clinical information of LUSC patients were gathered from The 
Cancer Genome Atlas (TCGA-LUSC, n = 493) and Gene Expression Omnibus database (GSE74777, n = 107). The cell 
death-related genes including autophagy (n = 348), apoptosis (n = 163), and necrosis (n = 166) were retrieved from 
the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology databases. In the training cohort (TCGA-LUSC), 
LASSO Cox regression was used to construct four prognostic signatures of respective autophagy, apoptosis, and 
necrosis pathway and genes of three pathways. After comparing the four signatures, the cell death index (CDI), 
the signature of combined genes, was further validated in the GSE74777 dataset. We also investigated the clinical 
significance of the CDI signature in predicting the immunotherapeutic response of LUSC patients.

Results The CDI signature was significantly associated with the overall survival of LUSC patients in the training 
cohort (HR, 2.13; 95% CI, 1.62‒2.82; P < 0.001) and in the validation cohort (HR, 1.94; 95% CI, 1.01‒3.72; P = 0.04). The 
differentially expressed genes between the high- and low-risk groups contained cell death-associated cytokines and 
were enriched in immune-associated pathways. We also found a higher infiltration of naive CD4+ T cells, monocytes, 
activated dendritic cells, neutrophils, and lower infiltration of plasma cells and resting memory CD4+ T cells in the 
high-risk group. Tumor stemness indices, mRNAsi and mDNAsi, were both negatively correlated with the risk score of 
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Background
Lung cancer accounted for 11.4% and 18% of the total 
cancer incidence and mortality worldwide, respectively 
[1]. In the United States, 236,740 new cases and 130,180 
deaths of lung cancer were estimated to occur in 2022 [2]. 
As a common pathological type of non-small cell lung 
cancer (NSCLC), lung squamous cell carcinoma (LUSC) 
comprises about 30% of all cases [3]. The prognosis and 
treatment decision of LUSC patients is mostly evalu-
ated based on the American Joint Committee on Cancer 
(AJCC) staging system (eighth edition). Yet, this system 
may not able to distinguish the heterogeneous outcomes 
of individual patients with the same TNM stage because 
of other complicated factors [4, 5]. Thus, novel bio-
markers and prognostic signatures for identifying LUSC 
patients at higher risk are required to optimize clinical 
management.

Cell death and related mechanisms are pivotal dur-
ing the evolution of diseases. Apoptosis, autophagy, and 
necrosis are the three main types of mammalian cell 
death [6], which have been widely studied in tumorigen-
esis. Apoptosis mediates cell death through three distinct 
pathways, i.e., death receptors, mitochondria, and endo-
plasmic reticulum, along with the activation of effec-
tor cysteinyl aspartate proteases (caspases) [7]. Eluding 
apoptosis is an important hallmark of cancer. Autophagy 
is a cellular catabolic degradation in response to starva-
tion or stress whereby macromolecules, organelles, and 
cytoplasm are engulfed, digested, and recycled to sustain 
cellular metabolism to generate energy and metabolites 
[8]. Autophagy can also eliminate pathogens, superfluous 
cytoplasmic components, and damaged or apoptotic cells 
[9, 10]. Although presumably as a suppressor of neopla-
sia, autophagy dysregulation may be a key mechanism in 
tumor progression to enable long-term survival, toler-
ance from cancer therapy, regrowth, and eventual relapse 
[11]. Necrosis has long been considered as a result of a 
response to acute hypoxic or ischemic injury, occurring 
spontaneously in neoplasms when cell proliferation out-
paces angiogenesis [6, 12].

Cell death plays a key role in various immunological 
processes associated with tumor progression and drug 
resistance. Immune cells in the tumor microenvironment 
(TME) function as dual roles in both tumor-antagoniz-
ing and tumor-promoting, and immunogenic cell death 

occupies features prominently in stimulating the dys-
functional antitumor immune system [13, 14]. Recently, 
immunotherapy has developed rapidly in lung cancer. 
The immune checkpoint inhibitors (ICIs) effectively 
improve the survival of patients with advanced LUSC by 
targeting programmed cell death protein 1 (PD-1) and its 
ligand PD-L1, such as pembrolizumab [15], nivolumab 
[16], and atezolizumab [17]. Immunotherapy combined 
with classic chemotherapy or radiotherapy and targeted 
therapies can induce apoptosis of cancer cells through 
granzyme or extrinsic cell death [18]. Certain macro-
phages or dendritic cells that engulf apoptotic cells can 
subsequently activate antitumor immunity [19]. Besides, 
a subset of caspases has been identified to be involved in 
immune responses to pathogens and associated with the 
maturation of pro-inflammatory cytokines [20]. Given 
the rapid progress of immunotherapy, more detailed 
findings of cell death might create a new dimension to 
develop accurate risk stratification, prognostic evaluation 
model, and personalized immunotherapy for patients 
with cancer.

Bioinformatic analysis of genomic, transcriptomic, or 
proteomic profiles has identified a number of potential 
biomarkers for LUSC [21–24]. However, little research 
on cell death-related signatures in LUSC, which has been 
established in lung adenocarcinoma (LUAD) [25, 26] and 
other types of cancer [27, 28]. In this systematic study, a 
robust prognostic signature based on cell death-related 
genes was constructed based on the cell death-associated 
genes and further confirmed as an independent prognos-
tic factor for LUSC. Most importantly, we highlighted the 
crucial role of this signature in predicting the survival 
and immunotherapeutic response of patients with LUSC.

Methods
Data acquisition and preprocessing
Transcriptome profiles and clinical data of two public 
cohorts of LUSC patients were respectively collected 
from the databases of The Cancer Genome Atlas (TCGA) 
and Gene Expression Omnibus (GEO). Patients without 
complete clinical and survival information were excluded 
from the study (11 cases in the TCGA-LUSC cohort). 
The RNA-Seq data of 493 LUSC tissue and 49 adjacent 
normal tissue samples in the training cohort were from 
the TCGA-LUSC dataset retrieved from UCSC Xena 

the CDI. Moreover, LUSC patients in the low-risk group are more likely to respond to immunotherapy than those in the 
high-risk group (P = 0.002).

Conclusions This study revealed a reliable cell death-associated signature (CDI) that closely correlated with 
prognosis and the tumor microenvironment in LUSC, which may assist in predicting the prognosis and response to 
immunotherapy for patients with LUSC.
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(https://gdc.xenahubs.net) and converted into tran-
script per million (TPM) formats before analysis. For the 
GSE74777 validation cohort (n = 107), the raw CEL files 
generated by Affymetrix were downloaded from the GEO 
dataset (http://www.ncbi.nlm.nih.gov/geo/). The probes 
in each dataset were annotated according to the platform 
annotation file. When multiple probes were mapped to 
the same gene, the average expression value of the gene 
was used as the final value. The baseline characteristics of 
LUSC samples are provided in Table S1.

To determine the prognostic value of cell death-related 
genes in LUSC, a list of genes in the pathways of autoph-
agy (n = 348), apoptosis (n = 163), and necrosis (n = 166) 
were gathered from the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and Gene Ontology (GO) databases 
(https://www.gsea-msigdb.org) using terms “KEGG_Reg-
ulation of autophagy”, “GOBP_Execution phase of apop-
tosis”, “KEGG_Apoptosis”, and “GOBP_Tumor necrosis 
factor mediated signaling pathway”. A total of 263 cyto-
kine genes were downloaded using the keyword “KEGG_
Cytokine-cytokine receptor interaction” (https://www.
gsea-msigdb.org). These genes are listed in Table S2.

Construction and validation of cell death-related 
prognostic signature
In the training cohort, TCGA-LUSC, univariable Cox 
analysis was utilized to screen the cell death-related genes 
with prognostic value. Then, the least absolute shrinkage 
and selection operator (LASSO) logistic regression algo-
rithm was used to reduce the candidate genes and mini-
mize the risk of overfitting. Univariable cox regression to 
screen genes associated with three cell death pathways 
of autophagy, apoptosis, and necrosis was conducted 
by R package “glmnet”. Then, the screened genes were 
included in the construction of four risk-scoring mod-
els by LASSO Cox regression. The penalty parameter (λ) 
that was chosen as the minimal value of partial likelihood 
deviance in the LASSO, of each prognostic signature was 
determined by 10-fold cross-validation.

The risk scores of samples for each signature were 
calculated according to the expression level of each cell 
death-related gene and its corresponding regression coef-
ficient. The formula was established as follows:

 Risk_scores =
∑

Coef (i) ∗ Exp(i)

According to the median risk score, samples were divided 
into high- and low-risk groups. Kaplan-Meier sur-
vival analysis was implemented to compare the survival 
between the two groups. A time-dependent receiver 
operating characteristic (ROC) curve was conducted to 
evaluate the predictive value of the prognostic signature. 
Multivariable Cox analysis was performed to verify the 

independent prognostic value of the cell death-related 
prognostic model.

The concordance index (C-index) was calculated to 
evaluate the performance of the signature by R package 
“survival” and the value ranged from 0.5 to 1.0. The value 
of 0.5 and 1.0 respectively represented random opportu-
nities and excellent feasibility of a prognostic signature in 
predicting the survival of LUSC patients.

Differential expression and functional enrichment analysis
The differentially expressed genes (DEGs) between 
high- and low-risk groups were identified using the 
“limma” package in R, which was used to conduct dif-
ference analyses by estimating the mean and variance 
of gene expression in different groups through linear 
models. The filtering threshold was set as false discovery 
rate (FDR) < 0.01 and absolute log2fold change > 0.4. GO 
annotation, and KEGG analysis was carried out using the 
Database for Annotation, Visualization, and Integrated 
Discovery (DAVID). The FDR was used for the P value 
correction.

Protein–protein interaction (PPI) network analysis
The interaction associations of the proteins were ana-
lyzed using the online tool Search Tool for the Retrieval 
of Interacting Genes (STRING; http://string-db.org/) 
and visualized by Cytoscape software. A confidence 
level (combined score) ≥ 0.7 was selected as the cutoff 
criterion.

Immune cell infiltration analysis
The Cell Type Identification by Estimating Relative Sub-
sets of RNA Transcripts (CIBERSORT) deconvolution 
algorithm (https://cibersortx.stanford.edu/) is an ana-
lytical tool reinforced by support vector regression to 
quantify the abundances of each cell type in a mixed cell 
population using gene expression profiles. The abun-
dance of 22 types of infiltrating immune cells of each 
patient with LUSC in the TCGA cohort was estimated by 
translating the gene expression level into the relative pro-
portion of immune cells using CIBERSORT.

Immunotherapeutic response prediction
The Tumor Immune Dysfunction and Exclusion (TIDE) 
algorithm (http://tide.dfci.harvard.edu/) and unsuper-
vised subclass mapping analysis (GenePattern mod-
ule “SubMap”; https://cloud.genepattern.org/gp/) were 
performed to predict the treatment response of LUSC 
patients with high- or low-risk scores to immunother-
apy. TIDE is a computational method that integrates the 
expression profile of T cell dysfunction and exclusion to 
model tumor immune escape. Submap is an algorithm to 
assess similarities in gene expression between previously 

https://gdc.xenahubs.net
http://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org
https://www.gsea-msigdb.org
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https://cibersortx.stanford.edu/
http://tide.dfci.harvard.edu/
https://cloud.genepattern.org/gp/
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defined immunophenotypes and responders or non-
responders to ICIs.

Statistical analysis
All statistical analyses were performed using the R statis-
tical software, version 3.5.3 (https://www.r-project.org). 
ROC analysis was performed to describe the discrimina-
tion accuracy of cell death-related prognostic signatures 
for patients with LUSC. The area under the curve (AUC) 
represented the accuracy and efficiency of this signature 
as a predictive tool for prognosis. Kaplan-Meier curves 
with log-rank tests were used to compare the differences 
in survival between the two groups. Univariable and mul-
tivariable Cox regression analyses were utilized to screen 
the independent predictors for the survival of LUSC 
patients. The Wilcoxon rank sum test was used to com-
pare the different abundance of 22 immune cells between 
high- and low-risk groups. Spearman correlation was 
employed to test the correlation between risk score and 
tumor stemness indices. P value < 0.05 was considered 
statistically significant.

Results
Construction of cell death-associated prognostic 
signatures for lung squamous cell carcinoma
The overall design of this study is shown in the flow dia-
gram (Fig. 1). This study consisted of 493 LUSC samples 
from the TCGA-LUSC cohort and 107 LUSC samples 
from the GSE74777 cohort. To generate a prognostic 
model for LUSC, the univariable Cox analysis was first 
performed in the TCGA-LUSC cohort to screen the 
prognostic genes related to cell death (Table S3‒5). There 
are 18 genes in the autophagy pathway, 8 genes in the 
apoptosis pathway, and 9 genes in the necrosis pathway 
with prognostic values (P < 0.05, Fig.  2A‒C; Figure S1). 
Four prognostic signatures for autophagy, apoptosis, and 
necrosis pathways, and the combination of cell death 
genes selected in the three pathways were constructed 
by LASSO cox regression. The optimal value of λ and 
lists of coefficients of every signature were summarized 
in Table  1 (Figure S2). The signature of the combined 
genes was defined as cell death index (CDI). The risk 
score of the CDI signature was calculated using the fol-
lowing formula: Risk Score = 0.003 × ATP6V0D1 + 0.101 
× ATP6V1B1 − 0.052 × DRAM2 + 0.003 × GPSM1 + 0.059 

Fig. 1 Flow chart of study design

 

https://www.r-project.org
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Fig. 2 Identification of cell death-associated prognostic signatures for LUSC patients. (A) Univariable cox regression analysis between autophagy-related 
genes and OS in LUSC patients. (B) Univariable Cox regression analysis between apoptosis-related genes and OS in LUSC patients. (C) Univariable Cox 
regression analysis between necrosis-related genes and OS in LUSC patients. (D) The median value and distribution of the risk scores in the four signatures 
of autophagy, apoptosis, necrosis pathways, and CDI. (E) Kaplan-Meier survival analysis of the four cell death-associated prognostic signatures in the 
TCGA-LUSC cohort. (F) Comparison of the predictive accuracy among the four signatures using the C-index. (G) Time-dependent ROC curves analysis of 
the CDI signature at 1, 3, and 5 years in the TCGA-LUSC cohort
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× LRRK2 + 0.052 × MAPK3 + 0.053 × PINK1 − 0.157 
× RRAGB + 0.046 × AKT2 + 0.433 × CIDEC − 0.221 × 
HTRA2 + 0.097 × PTGIS + 0.275 × STK24 − 0.110 × 
BAG4 + 0.023 × CASP4 + 0.041 × TNFRSF12A + 0.151 × 
TNFRSF8 + 0.040 × TRADD. The risk scores of other sig-
natures were calculated similarly with their own genes 
and coefficients. Patients with LUSC were divided into 
high- and low-risk groups according to the median cutoff 
value of the risk score (Fig. 2D; Table S6). All four signa-
tures could differentiate patients with different survival 
(P < 0.05, Fig. 2E).

To assess the predictive performance among the four 
prognostic signatures, the C-index of each signature was 
calculated. The CDI had the highest C-index (P = 0.92, 
Fig. 2F). Although no significant difference was observed 
among the four signatures in the C-index analysis, given 
that the CDI had the highest hazard ratio (same as apop-
tosis signature, HR, 2.13; 95% CI, 1.61‒2.82; P < 0.001, 
Fig.  2E) and was constructed with genes combining all 
three pathways, which reflected cell death process more 
comprehensively, the CDI signature will be further inves-
tigated. ROC analysis of the CDI showed that the AUC 
values of 1-, 3-, and 5-year OS were 0.629, 0.697, and 
0.694, respectively, in the TCGA-LUSC cohorts (Fig. 2G). 
In addition, the age and subtype of LUSC patients were 
significantly different between the high- and low-risk 
groups of the CDI (Fig.  3A). There was a higher per-
centage of LUSC patients with older age in the high-risk 
group than in the low-risk group. LUSC patients in the 
high-risk group also presented more basal and secretory 

subtypes, while those in the low-risk group showed more 
primitive and classical subtypes.

Moreover, univariable and multivariable cox regres-
sion analyses were conducted in the training cohort to 
explore whether the CDI could be an independent prog-
nostic predictor for OS for LUSC patients. Univariable 
cox regression analysis showed that both the stage of 
cancer and the CDI were associated with OS. (stage HR, 
1.57; 95% CI, 1.14‒2.16; P = 0.006; CDI HR, 2.13; 95% CI, 
1.62‒2.82; P < 0.001; Table  2). The association between 
the CDI signature and OS remained significant (HR, 2.10; 
95% CI, 1.59‒2.78; P < 0.001; Table  2) in the multivari-
able cox regression after adjusting tumor stage, suggest-
ing that the CDI is an independent prognostic factor for 
LUSC.

Validation of the cell death index as an independent 
prognostic factor in the validation cohort
To validate the prognostic value of the CDI, 107 LUSC 
patients from the GSE74777 cohort were analyzed. The 
107 LUSC patients were stratified into the high- and low-
risk groups according to the risk scores of the CDI sig-
nature (Fig. 3B, Table S7). Similar to the results obtained 
from the TCGA-LUSC cohort, patients in the high-risk 
group had worse overall survival than those in the low-
risk group (HR, 1.94; 95% CI, 1.01‒3.72; P = 0.04, Fig. 3C).

We further conducted univariable and multivariable 
Cox regression to analyze the association of the clinical 
variables and CDI with OS in validation cohorts. Similar 
to the training cohort, the CDI signature was associated 
with OS in the univariable cox regression (HR, 1.94; 95% 

Table 1 The prognostic genes and their corresponding coefficients of four cell death signatures
Autophagy Apoptosis Necrosis Cell death index*
Gene Coefficient Gene Coefficient Gene Coefficient Gene Coefficient
ATP6V0D1 0.061855 AKT2 0.158365 BAG4 −0.13201 ATP6V0D1 0.002993

ATP6V1B1 0.122063 CASP4 0.124322 CASP4 0.056541 ATP6V1B1 0.101445

DRAM2 −0.07345 CIDEC 0.577543 CLDN18 0.069005 DRAM2 −0.05243

GPSM1 0.123344 DLC1 0.106105 EDA2R 0.002689 GPSM1 0.002896

HGF 0.031335 HTRA2 −0.34211 ILK 0.057365 LRRK2 0.059429

HTRA2 −0.33536 PTGIS 0.144802 TNFRSF12A 0.081038 MAPK3 0.052099

LAMTOR4 −0.0163 STK24 0.34035 TNFRSF8 0.246743 PINK1 0.052535

LRRK2 0.063269 TRADD 0.249061 TRADD 0.076235 RRAGB −0.1565

MAPK3 0.153165 AKT2 0.045682

PINK1 0.094258 CIDEC 0.432594

PLK3 0.037796 HTRA2 −0.22073

PSAP 0.051802 PTGIS 0.096722

RRAGB −0.24185 STK24 0.27515

TAB2 0.078248 BAG4 −0.10963

TRIM5 0.022462 CASP4 0.023206

TNFRSF12A 0.041075

TNFRSF8 0.150757

TRADD 0.040029
*Cell death index consists of 8 autophagy-related genes (ATP6V0D1, ATP6V1B1, DRAM2, GPSM1, LRRK2, MAPK3, PINK1, and RRAGB), 5 apoptosis-related genes (AKT2, CIDEC, 
HTRA2, PTGIS, and STK24), and 5 necrosis-related genes (BAG4, CASP4, TNFRSF12A, TNFRSF8, and TRADD), which are highlighted in bold in the three pathways
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CI, 1.01‒3.72; P = 0.05; Table 2) and in multivariable cox 
regression (HR, 2.01; 95% CI, 1.05‒3.87; P = 0.05; Table 2), 
suggesting the robustness of the CDI as a prognostic bio-
marker for LUSC.

Identification of the biological mechanism and function 
related to the cell death index
To investigate the potential mechanisms involved in the 
distinct features between high- and low-risk CDI groups, 
the expressions of 263 cytokines were compared and 
their biological functions were further analyzed. There 
were 44 differentially expressed genes (DEGs) of cyto-
kines between the two groups, 2 downregulated and 42 
upregulated in the high-risk group (Fig.  4A; Table S8). 
By using the online STRING tool, we established the 

PPI network of the DEGs, showing hub genes and their 
close connection (Fig. 4B). GO analysis revealed that sev-
eral cell death-associated and immune-related pathways 
were enriched, such as inflammatory response, immune 
response, extrinsic apoptotic signaling pathway (Fig. 4C). 
KEGG terms showed that the DEGs were enriched in 
biological pathways of the tumor initiation, progression, 
and stemness, including TNF signaling pathway, TGF-
beta signaling pathway, and signaling pathways regulat-
ing pluripotency of stem cells and actin cytoskeleton 
(Fig. 4D).

Table 2 Univariable and multivariable Cox regression analyses of the CDI in the TCGA-LUSC cohort
Univariable analysis Multivariable analysis
TCGA-LUSC cohort GSE74777 cohort TCGA-LUSC cohort GSE74777 cohort

Parameter HR
(95% CI)

P value HR
(95% CI)

P value HR
(95% CI)

P value HR
(95% CI)

P value

Age
(> 65 vs. ≤ 65)

1.26
(0.95‒1.69)

0.11 1.39
(0.74‒2.59)

0.3

Gender
(Male vs. Female)

1.19
(0.87‒1.64)

0.28 3.04
(0.73‒12.62)

0.13

Stage
(III/IV vs. I/II)

1.57
(1.14‒2.16)

0.006 1.28
(0.68‒2.39)

0.44 1.52
(1.10‒2.09)

0.01 1.48
(0.79‒2.77)

0.22

CDI
(High vs. Low)

2.13
(1.62‒2.82)

< 0.001 1.94
(1.01‒3.72)

0.05 2.10
(1.59‒2.78)

< 0.001 2.01
(1.05‒3.87)

0.05

Fig. 3 Clinical variable comparisons and validation of the predictive performance of the CDI signature. (A) Comparison of the percentage of different 
age and subtypes of LUSC between high- and low-risk groups by Fisher’s exact test in the TCGA-LUSC cohort. (B) The median value and distribution of 
the risk scores of CDI signature in the GSE74777 cohort. (C) Kaplan-Meier survival analysis of the CDI signature of LUSC patients in the GSE74777 cohort
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Correlation between cell death index and tumor 
microenvironment and stemness
As one of the important components of TME, the dis-
tribution of immune cells closely correlates with immu-
notherapy strategies for patients with lung cancers. 
The contents of immune cells were significantly differ-
ent between high- and low-risk scores of CDI in LUSC, 
suggesting different immune statuses in the two groups 
(Fig.  5A). Naive CD4+ T cells, monocytes, activated 
dendritic cells (DCs), and neutrophils were higher in 
the high-risk group compared with the low-risk group 
(P < 0.05, Fig.  5A). Meanwhile, the fractions of plasma 
cells and resting memory CD4+ T cells were significantly 

higher in the low-risk group than those in the high-risk 
group (P < 0.05, Fig. 5A).

We then analyzed the relationship between the risk 
score of CDI and cancer stem cells, which can influence 
tumor immunogenicity and susceptibility to immuno-
therapy. mRNAsi and mDNAsi are two independent indi-
ces to quantify the degree of differentiation and stemness 
of LUSC. The mRNAsi and mDNAsi of 33 cancer types 
in the TCGA have been previously studied and reported 
[29], where we retrieved mRNAsi and mDNAsi data of 
the TCGA-LUSC cohort. Then, we analyzed the correla-
tion between CDI and two indices. In the training cohort, 
both mRNAsi (Fig. 5B) and mDNAsi (Fig. 5C) were sig-
nificantly negatively correlated with the risk score of CDI 

Fig. 4 The differentially expressed cytokines and their relevant pathways between high- and low-risk groups of CDI. (A) The differentially expressed cyto-
kines between high- and low-risk groups of the CDI. The red dot represents upregulated genes and the green dot for downregulated genes. (B) The PPI 
analysis was performed by all 44 differentially expressed cytokines using online STRING tool. (C) GO analyses of the 44 differentially expressed cytokines 
between high- and low-risk groups. (D) KEGG analysis of the 44 differentially expressed cytokines between high- and low-risk groups
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signature. Given the significant correlation between CDI 
and tumor microenvironment, this signature might be 
promising and reliable for predicting immunotherapeutic 
response.

Cell death index might be an indicator to predict 
immunotherapeutic outcomes in LUSC
As key regulators in immune escape, the expression 
levels of immune checkpoint molecules such as PD-1, 
PD-L1, and cytotoxic T-lymphocyte associated protein 
4 (CTLA-4) are important indicators for individualized 

immunotherapy. We found that patients of LUSC in the 
high-risk group of the CDI signature had a higher gene 
expression of PD-1 and CTLA-4 than patients in the low-
risk group. Yet, no significant difference in PD-L1 was 
detected between the two groups (Fig.  6A). We further 
predicted the likelihood of immunotherapeutic response 
in LUSC patients with TIDE analysis. The response rate 
to immunotherapy in LUSC was significantly different 
between the two groups. According to the TIDE results, 
more LUSC patients would likely to respond to ICI treat-
ments in the low-risk group of the CDI signature than 

Fig. 5 Association between the risk score with immune cell infiltration and tumor stemness. (A) Comparison of the infiltration fraction of 22 types of 
immune cells between the high- and low-risk groups of CDI signature. (B) Spearman correlation analysis between the risk score of the CDI and mRNAsi. 
(C) Spearman correlation analysis between the risk score of the CDI and mDNAsi
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Fig. 6 Association between the CDI signature and different likelihoods of immunotherapeutic response. (A) Comparison of the expression of immune 
checkpoint molecules, namely PD-1, PD-L1, and CTLA4 between high- and low-risk groups of CDI signature. (B) Comparison of the percentage of the 
responders to immunotherapy between high- and low-risk groups of CDI. TIDE algorithm was used to predict the likelihood of immunotherapeutic 
response. (C) Comparison of the likelihood of the response to immunotherapy between high- and low-risk groups of CDI. Submap analysis was used to 
predict the likelihood of immunotherapeutic response. R, response.
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in the high-risk group (P = 0.002, Fig.  6B). The SubMap 
analysis also demonstrated that patients in the high-risk 
group exhibited a similar gene expression profile to LUSC 
patients who did not respond to ICIs (P = 0.001, Fig. 6C). 
Thus, patients in the low-risk group may be potential 
candidates for receiving immunotherapy.

Discussion
Most patients with LUSC are diagnosed at an advanced 
stage and consequently, present unfavorable therapeutic 
effects and poor prognoses [30]. Even with surgery and 
other treatments, the 5-year survival rate of patients is 
only about 15%. The emergence of ICIs, such as PD-1/
PD-L1- and CTLA4-targeted therapy, has revolutionized 
the standard of care for LUSC patients. Although immu-
notherapy is a promising cancer treatment approach, 
only about 20% of NSCLC patients respond to anti-PD-1/
PD-L1 therapy [31]. Due to the lack of effective biomark-
ers, prognostic stratification and predictive identification 
of LUSC patients who are sensitive to immunotherapy is 
challenging [32]. Here, we construct a cell death-asso-
ciated signature, CDI, consisting of 18 genes for LUSC 
patients and determined the prognostic value and reli-
able ability for predicting immunotherapeutic response. 
Patients in the high-risk group of the CDI signature 
had significantly worse survival outcome than those in 
the low-risk group. In addition, we revealed a signifi-
cant relationship between CDI signature and infiltrated 
immune cells as well as tumor stemness indices. TIDE 
prediction analysis also showed that more patients in 
the low-risk group of the CDI signature would be more 
likely to respond to the immunotherapy, suggesting that 
if patients in the low-risk group of the CDI signature of a 
cohort, immunotherapy might be a potential treatment.

Autophagy, apoptosis, and necrosis are three classi-
cal cell death pathways, which assist in tumor growth, 
metastasis, and drug resistance [6] and can serve as novel 
biomarkers and potential therapeutic alternatives for 
LUSC. A previous study indicated that an autophagy-
related signature had good performance for predicting 
the survival of LUAD and LUSC patients with a bet-
ter AUC than other clinical parameters [33]. However, 
cell death-related signatures for LUSC are still lacking, 
and the existing prognostic models either lack the asso-
ciation with the immune microenvironment or the pre-
diction of immunotherapeutic response. Compared 
with these studies, we combined genes associated with 
autophagy, apoptosis, and necrosis to establish a prog-
nostic signature. This CDI signature predicted the prog-
nosis of patients with LUSC better than other signatures 
of cell death pathways. We further analyzed the relation-
ship of CDI signature with clinical characteristics and 
tumor microenvironment. We found that the CDI signa-
ture is an independent predictive prognostic factor and 

distinguishes the distinct immune status of LUSC, indi-
cating its potential as a useful tool to select immunother-
apy-sensitive patients.

The majority of the cell death-related genes in the CDI 
signature are known to be involved in LUSC progres-
sion as potential prospective biomarkers and therapeu-
tic targets. For instance, ALK rearrangement involving 
ATPase H + transporting V1 subunit B1 (ATP6V1B1) 
[34] and Bcl-2-associated athanogene 4 (BAG4)-fibro-
blast growth factor receptor 1 (FGFR1) fusion [35] were 
detected in NSCLC. ATP6V1B1 encodes a component 
of vacuolar ATPase (V-ATPase). Decreased V-ATPase 
activity changes the cytoplasmic pH of cancer cells to 
repress granzyme bioactivity, which adversely influences 
the apoptosis of cancer cells induced by NK cells [36]. 
As a member of the Roco protein family, leucine-rich 
repeat kinase 2 (LRRK2) is frequently mutated in LUSC 
patients and involved in the metastasis and prognosis 
of LUSC [37, 38]. Damage-regulated autophagy modu-
lator 2 (DRAM2) [39], caspase-4, which is encoded by 
CASP4 [40], and fibroblast growth factor-inducible 14 
(Fn14; TNFRSF12A) [41] were frequently overexpressed 
in NSCLC tissues. A higher expression of DRAM2 may 
promote cell metastasis and proliferation by reducing the 
expression of p53 [39]. Caspase-4 positive LUAD (79.3%) 
and LUSC (88.2%) patients have poorer survival com-
pared with patients with lower levels of caspase-4 [40]. 
Prostaglandin I2 synthase (PTGIS) is a key regulator in 
the synthesis of prostaglandin I2, which plays multiple 
roles in inflammation and immune modulation. The level 
of PTGIS was lower in lung cancer compared with the 
normal tissues and is associated with a variety of immune 
markers and the survival of patients with lung cancer 
[42]. Downregulation of miR-497-targeted AKT2 might 
affect tumor growth and chemoresistance to cisplatin in 
NSCLC [43]. In addition, the role of several genes that 
have been reported in other types of cancers remains to 
be explored in LUSC prognosis, such as mitogen-acti-
vated protein kinase 2 (MAPK2) [44], G protein signal-
ing modulator 1 (GPSM1) [45, 46], tumor necrosis factor 
receptor superfamily member 8 (TNFRSF8; CD30) [47] 
and TNF receptor type 1 associated death domain pro-
tein (TRADD) [48].

TME is a complex and dynamic ecosystem composed 
of diverse cell types including cancer stem cells and infil-
trating immune cells [49]. This ecosystem regulates the 
production and bioactivity of growth factors, inflamma-
tory factors, cytokines, and immune components to cre-
ate a fertile soil for tumor initiation and progression, and 
influences the response of therapy [50, 51]. In this study, 
we observed significant differences in immune response 
and stemness-associated signaling pathways between 
the two risk groups, through the enrichment analysis of 
DEGs. Those pathways (e.g. vascular endothelial growth 
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factor, transforming growth factor β, Ras, PI3K-AKT, 
NF-κB, JAK-STAT, and Hippo) play critical roles in the 
dedifferentiation, proliferation, and metastasis of LUSC, 
as well as the development of many other human diseases 
[51]. While our study focused on the LUSC, the impor-
tance of cell death might be worth investigating in other 
types of cancer and autoimmune diseases.

The innate and adaptive immune cells in the lung TME 
are double-edged for patients and may help predict prog-
nosis and therapy outcome [52]. Importantly, tumor 
cells can accumulate mutations, acquire properties, and 
remodel the surrounding microenvironment, which 
allows them to evade the surveillance of the host immune 
system, such as the increase of immunosuppressive 
cells, the decrease of immunoreactive cells and elevated 
expression of immunosuppressive molecules [53]. There-
fore, we speculated that patients in different risk groups 
might present different immune cell infiltration and 
immunotherapeutic responses. As expected, the higher 
levels of activated DCs and neutrophils in the high-risk 
group than in the low-risk group. DCs can upregulate the 
co-inhibitory molecule B7-H3 (also known as CD276) 
and thus reduce the stimulation of T cells in patients 
with NSCLC [54]. In NSCLC, neutrophils dominate the 
immune landscape, and their depletion is associated 
with a marked reduction in lung carcinogenesis [51]. In 
addition, a subset of tumor-associated neutrophils that 
exhibit characteristics of both neutrophils and antigen-
presenting cells in early-stage human lung cancer has 
been proven to augment antitumor T cell response [55]. 
Consistently, TIDE prediction and Submap analysis dem-
onstrated that LUSC patients in the low-risk group were 
more likely to respond to immunotherapy. These findings 
indicate that CDI signature may help tailor personalized 
immunotherapy for LUSC patients in the future.

However, certain limitations in our study should be 
considered. Firstly, it was a retrospective study based on 
data from public datasets, some information may not be 
available. Secondly, in addition to transcriptome data 
used in this study, other omics data such as proteome 
and metabolome can be used to create a more precise 
model for tumor diagnosis and prognosis. Thirdly, the in-
depth molecular mechanisms by which cell death-related 
genes affect LUSC progression require verification by in 
vitro and in vivo experiments.

Conclusions
In summary, our study constructed a cell death-associ-
ated signature, CDI, which is an independent prognostic 
indicator able to predict the prognosis for LUSC patients. 
Furthermore, patients at lower risk might benefit from 
the PD-1 or CTLA-4 blockade. With further validation, 
this signature could be developed as a prognostic and 

predictive biomarker for precise and personalized thera-
pies for LUSC patients.
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