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Abstract 

PIWI-interacting RNA (piRNA) is a class of recently discovered small non-coding RNA molecules with a length of 18–33 
nt that interacts with the PIWI protein to form the piRNA/PIWI complex. The PIWI family is a subfamily of Argonaute 
(AGO) proteins that also contain the AGO family which bind to microRNA (miRNA). Recently studies indicate that piR-
NAs are not specific to in the mammalian germline, they are also expressed in a tissue-specific manner in a variety of 
human tissues and participated in various of diseases, such as cardiovascular, neurological, and urinary tract diseases, 
and are especially prevalent in malignant tumors in these systems. However, the functions and abnormal expression 
of piRNAs in respiratory tract diseases and their underlying mechanisms remain incompletely understood. In this 
review, we discuss current studies summarizing the biogenetic processes, functions, and emerging roles of piRNAs in 
respiratory tract diseases, providing a reference value for future piRNA research.
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Background
Noncoding RNA (ncRNA) is a group of RNA molecules 
that are transcribed but do not encode proteins [1]. 
PIWI-interacting RNA (piRNA) is a class of small non-
coding RNA (sncRNA) [2]. The first piRNA was discov-
ered in 2001 in Drosophila testes by Aravin as a small 
RNA derived from the Su (Ste) tandem repeats, which 
silence transcripts to maintain male fertility [3]. The 
small RNA was named piRNA until they were separated 

from mice testes which guided for mammalian PIWI pro-
teins in the male germ line [3]. Studies have shown that 
MIWI/MILI, a murine PIWI protein, binds a previously 
uncharacterized class of 26–30-nucleotide (nt) RNAs 
that are highly abundant in testes. To date, piRNAs have 
been comprehensively studied in other organisms such as 
arthropods, worms, humans and rats, in both germ cells 
and somatic cells [4–12]. Additional studies have shown 
that piRNAs are significantly different from other sncR-
NAs in their characteristics, biogenesis and functions. 
These differences are summarized as follows: (1) the size 
of piRNAs is approximately 18–33nt [13, 14]; (2)  piR-
NAs originated from two types of piRNA clusters: the 
uni-stranded cluster and the dual-stranded cluster [1]; 
(3)  piRNAs usually have 3ʹ-2-O-methylation [15–23]. 
While miRNA do not have any of those characteristics. 
In recent years, various piRNA-related high-through-
put data have been collected and integrated into sev-
eral databases including piRBase [24],piRNAQuest [25], 
and piRNABank [26], and the piRNA cluster database 
[27]. The piRBase currently lists 8,438,265 piRNAs in 
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Homo sapiens. Moreover, recent studies have described 
a large number of piRNAs and their related PIWI pro-
tein expression in somatic cells, with some piRNA/PIWI 
complexes participating in numerous diseases, includ-
ing respiratory tract disease [4, 28]. In this study, the 
formation, function and mechanism of piRNAs and the 
research progress on the relationship between piRNA/
PIWI protein and respiratory tract disease in recent years 
are reviewed, which will provide a reference for further 
exploration of the mechanism of piRNAs.

The biosynthesis of piRNAs
Mature piRNAs are generated by two distinct path-
ways: the primary maturation pathway, which is directly 
encoded from the piRNA cluster (Fig.  1), and the ping-
pong cycle (Fig.  2). We call piRNAs produced from the 
latter route secondary piRNAs. Conceptually, primary 
piRNA biogenesis can be divided into several steps. The 
first step is the transcription of piRNA. A large fraction 
of piRNAs originate from two specific types of genomic 
loci, named the piRNA cluster [15–17, 29].The mamma-
lian piRNA cluster which is a uni-stranded clusters con-
tains a promoter element (A-MYB), RNA polymerase II 

and downstream components marked by histone 3 lysine 
4 dimethylation (H3K4me3) [30–32]. After undergoing 
5ʹ capping, 3ʹ polyadenylation and alternative splicing, 
the cluster eventually produce the piRNAs transcripts. 
In flies, the dual-stranded cluster has histone 3 lysine 9 
dimethylation/trimethylation (H3K9me2/3) marks modi-
fications and depends on promoters in neighboring cod-
ing genes to initiate transcription [18, 22, 31, 33–37]. 
However, most dual-strand clusters transcription is 
promoter-less and relies on proteins Rhino and Moon-
shiner [33]. Next, piRNAs transcripts are transported to 
the cytoplasmic nuage through nuclear pores and com-
bined with Zucchini (ZUC) and its cofactors including 
Minotaur (Mino), Vreteno (Vert), and a leucine zipper 
(Gasz), which act as an endonuclease to modify the 5ʹend 
of pre-piRNAs, producing piRNA intermediates with 5ʹ 
uracil [38–52]. Finally, piRNA intermediates bind to the 
PAZ domain of the PIWI protein and recruit the Trim-
mer/PNLDC1 to modify the 3ʹend of the piRNA [48, 53, 
54]. Subsequent methylation by Hen1 yields the mature 
piRNA-PIWI complex [22, 55, 56]. The ping-pong 
cycle plays a crucial role in the amplification of piRNAs 
through the piRNA-dependent post-transcriptional gene 

Fig. 1  The biosynthesis of PIWI-interacting RNAs (PiRNAs). In the nucleus, the uni-stranded piRNA cluster are transcribed into the primary 
piRNAs transcripts, which are transported to the cytoplasmic nuage. There, the primary piRNAs transcripts are spliced by Zuc and its co-factor 
(mino) to produce piRNA intermediates with 5ʹuracil. After binding to the PIWI protein, the 3ʹ end is modified by Zuc or Trimmer and its cofactor 
Papi, which is an exonuclease. Following methylation by Hen1, the mature piRNA-PIWI complex is generated
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silencing (PTGS) mechanism [18, 22, 44, 57, 58]. Follow-
ing the production of primary piRNAs, Aubergine (Aub)-
bound antisense piRNA initiates the ping-pong cycle by 
splicing transposon mRNA transcripts and generating a 
sense-oriented piRNA intermediate. The sense piRNA 
intermediate is bound to the AGO3 protein and trimmed 
to produce mature sense piRNA (secondary piRNA). 
Similar to the steps described above, AGO3-bound 
sense piRNA can bind and cleave the antisense transpo-
son sequences present in the transcripts of the original 
piRNA cluster, producing antisense piRNAs intermedi-
ates which then bind Aub protein. As a result, the cycle 
reinitiates [59, 60].

PiRNA/PIWI complex function and mechanism 
in respiratory tract diseases
Recent studies indicate that piRNAs exist in a variety of 
tissues in multiple organisms and contribute to the physi-
ological and pathological processes at the transcriptional 
or post-transcriptional level [61–63]. Here, we summa-
rize the function and mechanism of piRNAs in respira-
tory tract diseases.

PiRNA/PIWI complex‑mediated transcriptional gene 
silencing (TGS)
PiRNA/PIWI complexes bound to the Asterix (Arx) 
protein enter the nucleus, and scan for nascent trans-
poson transcription through complementary sequence 
[64, 65]. In drosophilids, after identification, the 
piRNA-PIWI/Arx complexes are combined with pano-
ramix (Panx) and induce transcriptional gene silencing 
(TGS) by recruiting general silencing machinery com-
ponents [30, 66]. As a result, repressive histone 3 lysine 
9 trimethylation (H3K9me) marks are added in the tar-
get transposon, induced by Eggless (Egg) and its cofac-
tor Windei (Wde), leading to heterochromatin protein 
1 (HP1) recruitment and subsequently heterochroma-
tion formation [31, 67–69]. In mammals, SPOCD1 is 
bound to MIWI2 and participated in young transposon 
methylation and silencing. SPOCD1 co-purified in vivo 
with DNMT3L and DNMT3A, components of the de 
novo methylation machinery [70]. One study used 
reduced representation bisulfite sequencing (RRBS) 
to perform global DNA methylation analyses and 
found that the RASSF1-PIWI1-piRNA pathway could 

Fig. 2  The ping-pong cycle. The antisense piRNA (5ʹ-3ʹ) binding with the Aub protein cuts the transcript of the transposon mRNA to produce sense 
piRNA (3ʹ-5ʹ). Then, the sense piRNA (3ʹ-5ʹ) binds with the AGO3 protein and becomes mature sense piRNAs through shear and methylation in in a 
similar manner. The mature sense piRNAs (3ʹ-5ʹ) combine with the piRNA cluster transcript and sliced it to produce antisense piRNA (5ʹ-3ʹ), which is 
repeated in the ping-pong cycle. The piRNA produced in the ping-pong cycle is also called secondary piRNA
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modulate key oncogenes and tumor suppressor genes 
by methylated Gen interacting protein (GMIP) [71]. 
PiRNA-overexpression facilitated the DNA methyla-
tion of the acly-CoA dehydrogenase (Acadm) promoter 
region, repressing Acadm expression and promoting 
pulmonary arterial smooth muscle cell (PASMC) pro-
liferation [72].

PiRNA/PIWI complex‑mediated post‑transcriptional gene 
silencing (PTGS)
There is a relationship between the mechanisms of 
miRNA silencing and PTGS of piRNA/PIWI complexes. 
Mature miRNAs combined with the RNA-induced 
silencing complex (RISC) silence gene through transla-
tion repression and mRNA decay while piRNA-induced 
silencing complexes, consisting of PIWI protein, piRNAs, 
CAF1 deadenylase, occasionally recruit carbon catab-
olite-repressed 4-negative on TATA-less (CCR4-NOT) 
and Smaug (Smg), and mediate mRNA deadenylation 
and decay through an miRNA-similar mechanism [73]. 
The RNAs of piRNA-RNA interaction include mRNA, 
transcribed pseudogenes, and long noncoding RNA 
(lncRNA) [74–76].  Combined analyses of small RNA 
sequencing of peripheral blood collected from pulmo-
nary tuberculosis (PTB) patients and healthy individuals 
demonstrated that one mRNA can be regulated by several 
piRNAs. From the constructed network of upregulated 
piRNAs and downregulated mRNAs, piRNA-881565, 
piRNA-489848, piRNA-1869760, piRNA-784007 and 
piRNA-1503138 regulated 34, 32, 28, 21 and 18mRNA 
targets, respectively [77]. Furthermore, piR-55490 binds 
the mTOR 3ʹ-UTR, inducing mRNA degradation and 
repression of lung cancer growth [78]. In radiation-
induced lung fibrosis (RILF), Nrf2 signaling increased the 
expression of PIWI-like RNA-meditate gene silencing 2 
(PIWIL2), which is usually upregulated in somatic cells 
during DNA damage to promote repair by remodeling 

chromatin [79]. Furthermore, by screening the bronchial 
smooth muscle (BSM) cell transcriptome for targets of 
the piRNAs differentially expressed in asthma samples, 
Elena Alexandrova et  al. revealed that some mRNAs 
had multiple possible binding sites for the same piRNA, 
located in different domains of the molecule (5ʹ-UTR, 
coding DNA sequence, or 3ʹ-UTR), while others were 
complementary to two complete differentially expressed 
piRNAs. Interestingly, many pseudogenes and lncRNAs 
are also potential targets of asthma-specific piRNAs [80].

PiRNA/PIWI complex‑mediated protein modification
Some studies have shown that piRNAs and piRNA/
PIWI complexes directly bind to some proteins, which 
is dependent on the piRNAs or the PAZ domain of the 
PIWI protein. The central part of the UUNNUUUN-
NUU motif in piRNA-like-163 (piR-L-163) directly inter-
acted with the RRRKPDT element of phosphorylated 
ERM proteins, promoting the proliferation and migra-
tion in both human bronchial epithelial (HBE) cells and 
normal HBE (NHBE) cells [81]. Yuyan Wang et.al found 
that piRNA-L-138 bound the p60-MDM2 (mouse double 
minute 2 homolog) and inhibited chemoresistance to cis-
platin (CDDP)-activated apoptosis in p53-mutated lung 
squamous cell carcinoma (LSCC) [82].

PiRNA/PIWI complex in respiratory tract diseases
Growing evidence shows that the piRNAs/PIWI protein 
plays important roles in the pathogenesis and progres-
sion of various respiratory tract diseases, including pneu-
monia, tuberculosis (TB), asthma, interstitial lung disease 
(ILD), pulmonary arterial hypertension and lung cancer 
(Table 1). In addition, scientists have found evidence that 
supports the differential expression of the piRNAs/PIWI 
protein between healthy people and patients with respir-
atory tract diseases (Table 2). Here, we summarize recent 

Table 1  PiRNA/PIWI complex as a biomarker in respiratory tract diseases

PiRNA Diseases Expression Function References

PiRNA-L-138 Lung cancer Up Directly bond p60-MDM2 to induce apoptosis [77]

PiRNA-651 Lung cancer Up Promoted cells and tumor proliferation and inhibited apoptosis by inducing cyclin D1 and 
CDK4 expression

[94]

PiRNA-34871 Lung cancer Up Correlated with RASSF1C expression, promoted cell proliferation by ATM-AMPK-p53-p21 
pathway

[98]

PiRNA-52200 Lung cancer Up

PiRNA-35127 Lung cancer Down

PiRNA-46545 Lung cancer Down

PiRNA-L-163 Lung cancer Down Directly bond with p-ERM [76]

PiRNA-55490 Lung cancer Down Inhibited lung cancer cells and tumor proliferation by binding 3ʹUTR of mTOR messenger RNA [73]

PiRNA-63076 PAH Up Increasing the methylation status of the Acadm promoter [69]

PIWIL2 RILF Up Interacted with heat shot protein 90 [74]
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Table 2  PiRNAs/PIWI complex with differential expression between patients with respiratory tract diseases and healthy people

Groups Diseases Origins Total piRNAs Differential 
expression of piRNAs

References

HBE VS NSCL Lung cancer Cell culture 555 69 [76]

LUAD VS HC Lung cancer DLK1-DIO3 locus in cell 138 5 [92]

LUSC VS HC Lung cancer DLK1-DIO3 locus in cell 138 1 [92]

LUAD VS LUSC Lung cancer DLK1-DIO3 locus in cell 138 6 [92]

TNonS VS TS Lung cancer Lung tissue – 55 [91]

NNonS VS NS Lung cancer Lung tissue – 49 [91]

PTB VS HC TB Human plasma 6200 777 [72]

TB VS LTBItt TB Human plasma – 4 [88]

TB VS ExC TB Human plasma – 2 [88]

TB VS LTBI TB Human plasma – 2 [88]

BSM VS NC Asthma Lung tissue 121 5 [75]

LUNG VS BRAIN Egyptian HPAI (H5N1) Duck lung tissue and brain tissue 93,598 – [81]

NOR VS HYP PAH PAs of rat – 2 [69]

Fig. 3  PiRNAs/PIWI complex as a diagnostic biomarker and therapeutic target in respiratory tract diseases. piRNA-L-163 directly bonded to 
p-ERM and regulated its activity, affecting the proliferation and migration ability of lung cancer cells. There are 5 piRNAs (DQ596390, DQ597484, 
DQ595186, DQ582264, DQ597347) differently expressed in BSM cells between asthmatic patients and healthy subjects, which plays a role in the 
development of asthma through the PTEN signaling pathway. piR-63076 regulated cell proliferation and proliferation by increasing the methylation 
status of the Acadm promoter. In the process of TB, there are 428 upregulated piRNAs and 349 downregulated piRNAs involved in regulation of 
the actin cytoskeleton, proteoglycans of cancer, the Rap1 signaling pathway and the cGMP–PKG signaling pathway. Moreover, the PIWIL2 was 
the target gene of Nrf2, which can repress TGF-β signal transduction by interacting with heat shock protein 90 and lead to the reprogramming of 
purine metabolism in RILF. PIWI protein MIWI2 was induced and expressed in lung epithelial cells of a murine model infected with Streptococcus 
pneumonia, ultimately increasing the club cells and leukocyte (The Figures are created with BioRender.com)
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studies regarding functions and mechanism of piRNA/
PIWI protein in respiratory tract diseases (Fig. 3).

PiRNA/PIWI complex in pneumonia
Pneumonia is the result of pulmonary inflammation in 
response to pathogens that include viruses, bacteria, and 
fungi. Thus, pneumonia is the result of host–pathogen 
interactions in the lung [83]. Moreover, recent studies 
showed that piRNAs/PIWI protein might contribute to 
the potential mechanism of pneumonia. The lung is con-
nected to the environment through the bronchus, and 
HBE cells act as the first line of defense against pathogens 
and environmental stressors [84]. After exposure to these 
stress factors, these exposed cells become disordered 
in endoplasmic reticulum (ER) homeostasis and lead to 
activation of the unfolded protein response (UPR) path-
way. Of these processes, the expression of PIWIL2 and 
PIWIL4 are significantly increased, causing the mRNA 
levels of the CCAAT-enhancer-binding protein homolo-
gous protein (CHOP) and NOXA to rise [85]. Similarly, 
a total of 93,598 piRNAs were expressed in the lung and 
brain of all experimental ducks infected with Egyptian 
HPAI (H5N1). Although, 90% of piRNAs are expressed at 
extremely low levels, piRNAs constitute the highest num-
ber of expressed sncRNAs [86]. PIWI protein MIWI2 was 
induced and expressed in lung epithelial cells of a murine 
model infected with Streptococcus pneumonia, ultimately 
affecting the composition of pulmonary epithelial cells 
and the innate immunity of the lung [87]. These results 
show that the piRNAs/PIWI protein may act as a diag-
nostics biomarker and therapeutic target for pneumonia.

PiRNA/PIWI complex in asthma
Asthma is mainly characterized by airway hyper respon-
siveness (AHR) as well as airway inflammation and air-
way remodeling resulting from nonspecific stimulus in 
the airway, with involvement of various cells, including 
airway epithelial cells, eosinophils, neutrophils, T-lym-
phocytes and mast cells. BSM cells are the effector cells 
of bronchoconstriction and produce inflammatory 
mediators and angiogenic factors. A recent study indi-
cated that 5 piRNAs (DQ596390, DQ597484, DQ595186, 
DQ582264, DQ597347) were differently expressed in 
BSM cells by statistically analysing the profile between 
asthmatic patients and healthy subjects [80]. There-
fore, piRNA plays a role in the development of asthma, 
but there is still a lack of comprehensive studies to fully 
understand the relevant mechanisms of asthma.

PiRNA/PIWI complex in pulmonary arterial hypertension 
(PAH)
PAH is a chronic lung disease caused by functional and 
structural changes in the pulmonary vasculature, leading 

to right ventricular failure and premature death [88, 89]. 
Endothelial dysfunction, activation of fibroblasts and 
proliferation of smooth muscle cells are the main factors 
in the pathogenesis of PAH [90]. An investigation by Cui 
Ma et  al. observed that piR-63076 regulated cell prolif-
eration through DNA methylation. PiR-rno-63076 antag-
omir transfection into PASMC decreases the mRNA 
expression of Acadm by increasing the methylation status 
of the Acadm promoter [72]. However, the piR-63076 did 
not follow the gold-standard of piRNAs library prepara-
tion, the molecular mechanism of piRNA/PIWI in PAH 
needs further study.

PiRNA/PIWI complex in interstitial lung disease (ILD)
ILD is a heterogeneous group of lung diseases character-
ized by inflammation or fibrosis within the interstitial 
space, which can be broadly categorized into idiopathic, 
autoimmune-related, exposure-related (including iatro-
genic), interstitial lung diseases with cysts or airspace fill-
ing, sarcoidosis, and orphan diseases. Radiation-induced 
lung injury (RILF) is a subset of exposure-related inter-
stitial lung diseases [91]. RILF, the main complication 
of radiotherapy among thoracic cancer patients, not 
only limits the efficacy of radiotherapy but also seri-
ously affects patients’ quality of life. A previous study 
confirmed that the activation of NF-E2-related factor 2 
(Nrf2), which is induced by 2-cyano-3, 12-dioxoolean-1, 
9-dien-28-oic acid (CDDO-Me), alleviates RILF. Moreo-
ver, the PIWIL2 was the target gene of Nrf2, which can 
repress TGF-β signal transduction by interacting with 
heat shock protein 90 and triggering ubiquitin-controlled 
TGF-β receptor degradation and lead to the reprogram-
ming of purine metabolism in WI-38 cells [79]. To date, 
there are no effective therapies for ILD. Hopefully, the 
results of relevant studies on piRNA and PIWI protein 
can be applied to clinical practice.

PiRNA/PIWI complex in tuberculosis (TB)
TB is an infectious lung disease caused by Mycobacte-
rium tuberculosis (Mtb). However, the pathogenesis of 
TB has not been completely elucidated. Multiple reports 
have suggested that ncRNAs, such as miRNAs, can play a 
vital role in the Mtb infection process by acting as diag-
nostic biomarkers [92, 93]. A previous study explored 
the differences in piRNA profiles though deep sequenc-
ing and real-time PCR (RT-PCR). Based on their previ-
ous research, Xing Zhang et al. chose two of four human 
PIWIL proteins (PIWIL2 and PIWIL4) as symbolic pro-
teins to investigate the activity of piRNA pathways in 
the peripheral blood of PTB patients by Western blot-
ting. The study found 428 upregulated piRNAs and 349 
downregulated piRNAs between healthy people and PTB 
patients. The sequencing date were verified by RT-PCR, 
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demonstrating the authenticity of the results. Their study 
indicated that piRNAs had the potential as diagnostic 
biomarkers for TB. The pathway analyses of transcrip-
tome data indicated that the target genes of differen-
tially expressed piRNAs are involved in cancer-related 
pathways, such as regulation of the actin cytoskeleton, 
the Rap1 signaling pathway and the cGMP–PKG sign-
aling pathway. Similar to miRNA, piRNAs can degrade 
specific mRNAs. According to the Gene Ontology (GO) 
annotation analysis, the differentially expressed piRNAs 
might be involved in the process of transcription, regula-
tion of transcription and signal transduction in the bio-
logical process (BP) subgroup, but this prediction still 
requires further validation. Given the potential of these 
differently expressed piRNAs as diagnostic biomarkers 
for TB, further studies should be carried out to clarify 
the mechanisms by which these piRNAs contributes 
to the pathogenesis of TB, especially in the processes 
of protein binding, metal ion binding, and ATP bind-
ing [77]. Another study on the expression of piRNAs in 
TB reported that 11 piRNAs were differently expressed 
between the TB group, the ExC group (exposed controls), 
the LTBI (latent TB infection) group and the LTBItt 
group (treated LTBI). PiR-020381 and piR-020490 were 
identified as moderately accurate biomarkers for LTBI, 
and piR-009059 was identified in LTBI treatment [94]. 
The early diagnosis of TB is of vital significance for the 
treatment of TB patients. The study of piRNA/PIWI pro-
tein can serve as a new approach for the diagnosis of TB.

PiRNA/PIWI complex in lung cancer
Lung cancer is a malignant neoplastic disease with 
the highest incidence and mortality of all cancers 
[95]. Some studies have compared differential expres-
sion of the piRNAs/PIWI protein in patients with lung 
cancer and healthy subjects. One study analyzed the 
expression of piRNAs in the tumor tissues from 3020 
patients with hypoxic and non-hypoxic tumors. It 
identified 33 hypoxia-related piRNAs in adenocarci-
nomas and 17 hypoxia-related piRNAs in squamous 
cell carcinomas. In addition, by testing the expression 
of DQ590404 and DQ596992 in A549 cells with VHL 
and HIF-1α knockdown, the researchers found that 
hypoxia-related piRNAs increased via VHL knockdown 
in a HIF-1α  dependent manner [96]. Natasha Andressa 
Nogueira Jorge et  al. discovered that piRNAs were not 
differentially expressed between normal non-smokers 
(NNonS) and normal smokers (NS). However, in the 
lung tissue samples of non-smoking lung cancer patients 
and smoking lung cancer patients, 55 sncRNAs were 
differentially expressed, and of these, 2 piRNAs were 
upregulated (has-piR-010894-3 and has-piR-001168-4) 
[97]. Previous studies have found that the dysregulation 

of the DLK1-DIO3 locus on chromosomes 14q32.1-
14q32.31 was related to the development of respiratory 
tract diseases (including cancer). Katey SS Enfield et  al. 
analyzed the piRNAs encoded by the DLK1-DIO3 gene 
locus among the lung adenocarcinoma cells, lung squa-
mous cell carcinoma cells and normal lung tissues. They 
found that 7 piRNAs were expressed in three groups, of 
which 4 piRNAs (DQ596225, DQ596306, DQ596309, 
DQ596354) were overexpressed in lung adenocarci-
noma, and 1 piRNA (DQ596309) was overexpressed in 
lung squamous cell carcinoma [98]. Through survival 
curve analysis, intermediate-risk patients could be clas-
sified as high-risk patients according to the characteris-
tics of miRNA and piRNA, indicating that piRNA could 
predict the prognosis of lung cancer patients more pre-
cisely. Through piRNA microarray screening, Jia Cheng 
et al. found that the expression of piRNA-651 increased 
in both gastrointestinal cancer and lung cancer tissues 
[99]. Dan Li et al. later studied the mechanism of action 
of piRNA-651 in non-small cell lung cancer. A xenograft 
nude mice model was established by injecting A549 cells 
transfected with the piRNA-651 plasmid, and it was 
found that the overexpression of piRNA-651 regulates 
cyclin D1 and cyclin-dependent kinase4 (CDK4), thereby 
promoting tumor growth [100]. Comparing paired 
tumors and normal tissues collected from 71 patients 
with non-small cell lung cancer, Alfons Navarro et  al. 
found that PIWIL1 was expressed in 11 tumor samples 
but not in normal tissue samples. Patients who expressed 
PIWIL1 had a shorter disease-free survival than patients 
who did not express PIWIL1. In addition, compared with 
normal tissues, the expression of PIWIL2 and PIWIL4 
was downregulated in tumor tissues. PIWIL4 levels were 
directly proportional to tumor recurrence time (TTR) 
(p = 0.048) and overall survival (OS). Treatment with 
methyltransferase inhibitor (5ʹ-aza-2-deoxycytidine) and 
genome bisulfite sequencing analysis showed that the 
expression of PIWI1 can be partly regulated by methyla-
tion [101]. These results indicated that the piRNA path-
way can affect the growth of lung cancer and is of great 
importance in predicting the prognosis of patients. In 
addition, these results showed that methylation plays 
a key role in the piRNA pathway. Yuping Mei et al. per-
formed RNA sequencing in HBE cells and non-small cell 
lung cancer cells. They found a total of 555 piRNAs, of 
which 51 piRNAs/piRNA-Ls were differently expressed. 
The ezrin/radixin/moesin (EMR) family is a recently dis-
covered membrane cytoskeleton junction protein family 
that is expressed on the surface of cell membranes and 
plays an important role in cell growth, movement, migra-
tion, mitosis, and signal transduction. RNA pull down 
and immunoprecipitation experiments showed that 
piRNA-L-163 directly bonded to p-ERM and regulated 
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its activity, affecting the proliferation and migration abil-
ity of cells [81]. Liping Peng et al. found that the expres-
sion of piR-55490 in lung cancer specimens was lower 
than normal and it suppressed tumor development in 
lung cancer. Interestingly, piR-55490 binds to the 3ʹUTR 
of mTOR mRNA and induces the degradation of mTOR 
mRNA in a manner similar to miRNA [78]. It is worth 
noting that the expression level of piR-55490 is nega-
tively correlated with patient survival. Dong Liang et al. 
constructed a plasmid that induced U6 promoter-driven 
HIWI antagonism. By regularly injecting the plasmid 
into the tail vein of xenograft tumor mice to observe the 
growth of xenograft tumors, they found that intravenous 
injection of the Hiwi shRNA plasmid could significantly 
inhibit tumor growth [102]. This study aimed to deter-
mine whether the strategy of suppressing Hiwi expres-
sion based on RNA interference would inhibit tumor 
growth in xenogeneic mouse models. Yuguang Wang 
et  al. recently proved that HIWI was overexpressed in 
non-small cell lung cancer tissues and up-regulation 
of HIWI could promote lung cancer cell proliferation 
[103]. This study further illustrated that HIWI exerts a 
carcinogenic effect on lung cancer. These results imply 
that silencing of the PIWI protein family can be used as 
a potential treatment option for lung cancer treatment. 
The RASSF1C gene can promote the growth of lung can-
cer cells. Two upregulated piRNAs (piR-34871 and piR-
52200) and two down-regulated piRNAs (piR-35127 and 
piR-46545) were found through piRNA microarray analy-
sis of lung cancer cells with overexpressed RASSF1C and 
silencing of RASSF1C. This study showed that overex-
pression of piR-35127 and piR-46545 or knockout of piR-
34871 and piR-52200 could promote the proliferation of 
lung cancer cells [104]. RRBS showed that RASSF1 and 
PIWIL1 could regulate gene DNA methylation. Knock-
down of RASSF1 and PIWIL1 increased the expres-
sion of GMIP (a hypermethylated gene), which, in turn, 
caused the proliferation and migration of lung cancer 
cells. The RASSF1C-PIWIL1-piRNA pathway promoted 
the proliferation and migration of lung cancer cells by 
regulating DNA methylation [71]. After treating lung 
squamous cells with four different chemotherapy drugs, 
Yuyan Wang et  al. found that the expression of piR-L-
138 increased significantly in the four groups. Moreover, 
in the knockdown of piR-L-138, the cell viability of lung 
squamous cells decreased and apoptosis increased. A 
study showed that in cisplatin-treated lung squamous cell 
carcinoma cells, piR-L-138 directly bound p60-MDM2 to 
induce apoptosis [81]. This study provided a new strategy 
for lung cancer patients to overcome chemical tolerance, 
piRNA should be applied in clinical practice as soon as 
possible for the benefit of patients.

Conclusion
PiRNA and the PIWI protein are associated with the ini-
tiation and development of several respiratory tract dis-
eases, especially lung cancer, primarily through TGS and 
PTGS. The studies described in this review can provide 
new ideas on how to improve the efficiency and conveni-
ence of the diagnosis and treatment of these respiratory 
tract diseases. At present, piRNA-related drugs for treat-
ment have not yet been discovered, as studies about the 
piRNA/PIWI complex in respiratory tract diseases are 
limited, mainly in basic research of cancers. However, 
the piRNA/PIWI complex have the potential to become a 
diagnostic biomarker and therapeutic target in the clinic 
following the development of technologies involving 
molecular targeted therapy.
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