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Abstract 

Background  Diabetes mellitus (DM) is a major risk factor for tuberculosis (TB). Evidence has linked the DM-related 
dysbiosis of gut microbiota to modifiable host immunity to Mycobacterium tuberculosis infection. However, the 
crosslinks between gut microbiota composition and immunological effects on the development of latent TB infection 
(LTBI) in DM patients remain uncertain.

Methods  We prospectively obtained stool, blood samples, and medical records from 130 patients with poorly-con‑
trolled DM (pDM), defined as ever having an HbA1c > 9.0% within previous 1 year. Among them, 43 had LTBI, as deter‑
mined by QuantiFERON-TB Gold in-Tube assay. The differences in the taxonomic diversity of gut microbiota between 
LTBI and non-LTBI groups were investigated using 16S ribosomal RNA sequencing, and a predictive algorithm was 
established using a random forest model. Serum cytokine levels were measured to determine their correlations with 
gut microbiota.

Results  Compared with non-LTBI group, the microbiota in LTBI group displayed a similar alpha-diversity but different 
beta-diversity, featuring decrease of Prevotella_9, Streptococcus, and Actinomyces and increase of Bacteroides, Alistipes, 
and Blautia at the genus level. The accuracy was 0.872 for the LTBI prediction model using the aforementioned 6 
microbiome-based biomarkers. Compared with the non-LTBI group, the LTBI group had a significantly lower serum 
levels of IL-17F (p = 0.025) and TNF-α (p = 0.038), which were correlated with the abundance of the aforementioned 6 
taxa.

Conclusions  The study results suggest that gut microbiome composition maybe associated with host immunity 
relevant to TB status, and gut microbial signature might be helpful for the diagnosis of LTBI.
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Introduction
With the acceleration of the global burden of type 2 dia-
betes mellitus (DM) among people older than 40 years, 
DM has become a major threat for tuberculosis (TB) 
control [1, 2] because it compromises host immunity 
and facilitates either primary infection by Mycobacte-
rium tuberculosis (Mtb) or reactivation from latent TB 
infection (LTBI) [3]. According to estimations, indi-
viduals with DM had a 3- and 1.18-fold higher risks of 
having active TB [4] or LTBI [5], respectively. Further-
more, every 1% increment of glycosylated hemoglobin 
(HbA1c) level can result in a 1.13-fold higher risk of 
LTBI [6]. A Taiwanese study revealed that approxi-
mately 26.7% of patients with poorly controlled diabe-
tes, defined as ever having an HbA1c level > 9.0% in the 
past year, had LTBI. The prevalence was even higher 
than that among TB close contacts (15%) [7].

The effects of DM on host immune responses are 
complicated and may differ based on different TB 
statuses. Studies have suggested that although DM 
may augment systemic inflammation in patients with 
active TB, it attenuates mycobacteria-induced immune 
responses in those with LTBI by diminishing CD4-pos-
itive lymphocytes [8] and decreasing circulating levels 
of pro-inflammatory cytokines and anti-inflammatory 
cytokines [9]. The exact mechanism of disrupted host 
defense in DM patients with LTBI remains unknown, 
and host immunity enhancement might be a future 
strategy for preventing TB reactivation.

Recent advances in microbiome research indicate 
that gut microbiome–immune interactions in hosts 
are systemic, dynamic, and context dependent [10]. 
The transition and imbalance of gut microbiota can 
be observed under different DM statuses, which sub-
sequently alters host immunity and homeostasis [11]. 
Additionally, growing evidence highlights the bidirec-
tional modulation of lung immune responses through 
the enhancement of the niche-specific functions of the 
gut microbiome and its metabolites [12, 13]. Relevant 
gut microbiota alternations were associated with the 
disruption of host responses against TB infection in a 
healthy population [14], indicating that microbiota fea-
tures could be modified to provide a critical asset in 
host responses to Mtb infection and serve as biomark-
ers to differentiate between different stages of TB.

This prospective cohort study aimed to inves-
tigate whether gut microbiota signatures can be 
used to identify LTBI status and reveal whether gut 

microbiota composition is correlated with cytokine lev-
els in patients with poorly controlled DM (pDM).

Materials and methods
Study population and sample collection
This prospective study recruited patients with pDM, 
defined as those aged ≥ 45 years with a maximum HbA1c 
level of > 9.0% within the previous year before enroll-
ment, between October 2019 and December 2020. Each 
patient with pDM received LTBI screening by using 
QuantiFERON-TB Gold In-tube (Cellestis/Qiagen, Car-
negie, Australia). This study excluded patients with cul-
ture-confirmed active TB, history of LTBI treatment, 
malignancy, HIV infection, pregnancycy, concomitant 
acute or chronic inflammatory disease, and who used 
systemic antibiotics, immunosuppressive agents, or pro-
biotics within 3  months prior to enrolment. Patients’ 
baseline characteristics and clinical medical records were 
obtained. The study was approved by the Institutional 
Ethics Committees of Kaohsiung Medical University 
Hospital (IRB: KMUIRB-G(II)-20170033, KMUHIRB-
G(I)-20190035). Each participant provided informed 
consent before enrollment.

Fresh fecal samples were obtained from the recruited par-
ticipants at enrollment for microbiota analysis, and blood 
samples were simultaneously collected for cytokine meas-
urements. The fecal samples were stored in collection tubes 
with a DNA stabilizer, and the plasma isolated from blood 
samples was frozen at − 80 °C until further processing.

Fecal sample processing and sequencing
Bacterial genomic DNA was extracted from the fecal 
samples using the QIAmp fast DNA Stool Mini Kit (Qia-
gen, Germany) according to the manufacturer’s protocol, 
and DNA was quantified using NanoDrop 2000 (Thermo 
Fisher Scientific, USA).

DNA libraries were produced by polymerase chain 
reaction amplicons targeting the V3 and V4 hypervaria-
ble regions of the 16S rRNA gene by using 341F and 805R 
primers, and were sequenced using the Illumina MiSeq 
(Illumina, USA) 2 × 300-bp paired-end reads platform 
(details in Additional file 1).

Bioinformatics analysis
Demultiplexed sequencing reads were trimmed using 
QIIME2.0 and filtered for quality using a DADA2 pipe-
line; subsequently, the reads were merged into amplicon 
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sequence variants (ASVs) for downstream analysis. Tax-
onomy identification was mapped based on the SILVA 
16S rRNA gene reference database (version 132) [15].

Alpha-diversity metrics, including observed ASVs, 
Faith’s phylogenetic diversity (PD), Shannon index, and 
Pielou’s evenness index were compared between groups 
using Mann–Whitney U tests with correction for multi-
ple comparison using the Benjamini–Hochberg method 
[16]. For the beta-diversity analysis, UniFrac distances 
were used to illustrate microbial community structures, 
and permutational multivariate analysis of variance 
(PERMANOVA) was used to determine taxonomic dif-
ferences between LTBI and non-LTBI groups. Principal 
coordinate analysis (PCoA) enabled the visualization of 
unweighted and weighted UniFrac distances [17]. Lin-
ear discriminant analysis (LDA) and LDA with effect 
size measurements (LEfSe) were used to evaluate the 
influence of each differentially abundant taxon between 
groups [18]. Pathway enrichment analysis was performed 
using the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and SILVA reference database by PICRUSt2 [19].

Plasma cytokine measurement
The serum concentrations (pg/mL) of interleukin (IL)-
17A, IL-17F, IL-22, interferon gamma (IFN-γ), IL-2, 
IL-10, IL-22, and tumor necrosis factor-alpha (TNF-α) 
were measured using enzyme‐linked immunofluores-
cence assay (ELISA) kits according to the manufacturer’s 
protocol (R&D Systems Inc., Minneapolis, Minnesota, 
USA).

Statistical analysis
Statistical analysis was performed using SPSS version 
22 (IBM, Armonk, NY, USA). Continuous data were 
expressed as mean ± standard error of mean or standard 
deviation and compared using Student’s t test or Mann–
Whitney U test based on the normality of data distribu-
tion. Categorical data were expressed as percentages and 
compared using chi-squared test. A linear regression 
model was applied to analyze the correlation between 
microbial relative abundance and cytokine level. Statisti-
cal significance was denoted by p < 0.05.

Random forest model creation for predicting LTBI 
in patients with pDM
A random forest model was constructed using the Ran-
domForest Classifier from the scikit-learn Python library. 
The study cohort was randomly divided into training and 
test sets (70:30). Each decision tree in the forest classified 
samples as being from participants with or without LTBI 
based on differential taxa abundance, and the model 
parameters included number of trees (1000), number of 
top genera (from 2 to 26), and other default parameters 

to retain consistency among comparisons; the parame-
ters were systemically tested using bootstrapping to avoid 
overfitting. The feature importance score was computed 
based on Gini index [20] (details in Additional file 1). A 
confusion matrix was constructed to calculate the accu-
racy, sensitivity, specificity and F1 score to predict LTBI 
status based on the relative abundance of top genera. The 
areas under the receiver operating characteristic curve 
(AUROC) was used for evaluating the discriminative 
ability of the model.

Results
Characteristics of enrolled participants
Figure  1 presents the patient selection process. In total, 
130 participants with pDM (LTBI = 43; non-LTBI = 87) 
were included in the final analysis.

Table 1 and Additional file 1: Table S1 present the clini-
cal, laboratory, and immunological profiles of the 130 
patients with pDM. Among them, 51% were male. The 
mean age was 67.1 years, mean body mass index (BMI) 
was 26.6 kg/m2, 80.0% were nonsmokers, and the mean 
maximum HbA1c level within 1  year was 10.7%. The 
baseline characteristics (age, sex, BMI, diet, and use of 
antihyperglycemic and lipid-lowering drugs) were similar 
between LTBI and non-LTBI groups. The mean HbA1c 
level at enrollment was 8.8% and 8.9% in the LTBI and 
non-LTBI groups, respectively (p = 0.723).

Sequencing data and microbiome characteristics
In total, 16,147,438 16S rRNA reads were generated 
from fecal samples provided by the 130 participants, 
and 6,813,529 reads and 4371 ASVs were obtained after 
denoising and filtering were conducted. We obtained a 
median of 49,423 sequences (range: 32,136–121,226) per 
sample and used 45,000 sequences per sample for rare-
faction, revealing that saturation was reached (see Addi-
tional file  1: Fig. S1). Following taxonomic assignment, 
all ASVs were aligned to 366 genera and 871 species. 
Figure 2A/2B and Additional file 1: Tables S2–S5 reveal 
the relatively abundant composition of gut microbiota at 
phylum and genus level in LTBI and non-LTBI groups. 
Bacteroides was more abundant in the LTBI group 
(37.79% vs. 29.72%, p = 0.001), whereas Prevotella_9 was 
more abundant in the non-LTBI group (2.53% vs. 8.95%, 
p < 0.001).

Biodiversity of gut microbiota is associated with LTBI status 
in patients with pDM
Figure 2C indicates that no differences exist between LTBI 
and non-LTBI groups in terms of alpha-diversity based 
on observed ASVs (p = 0.988), Shannon index (p = 0.853), 
evenness (p = 0.669), and Faith’s PD (p = 0.377). By con-
trast, beta-diversity was significantly different between 
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the 2 groups, as determined using PCoA plots based on 
the unweighted and weighted UniFrac distance (p = 0.007 
and p = 0.002 by PERMANOVA, respectively) (Fig.  2D 
and Additional file  1: Fig. S2A). The LTBI group had a 
significantly lower Prevotella/Bacteroides ratio than non-
LTBI group did (0.251 vs. 0.724, p < 0.001, Additional 
file  1: Fig. S2B). Additionally, there was no differences 
in beta-diversity among subgroups stratified based on 
different clinical characteristics, including sex, obesity 
(body-mass-index ≥ 27  kg/m2), use of various antidia-
betic and antihyperlipidemic drugs (Additional file 1: Fig. 
S3).

LEfSe revealed 41 discriminating taxon features 
between LTBI and non-LTBI groups across different 
phylogenetic levels, including 3 classes, 5 orders, 7 fam-
ilies, and 26 genera (LDA score (log10) > 2.0, p < 0.05; 
Fig. 3A and B and Additional file 1: Table S6). Compo-
sitional differences in gut microbiota at the genus level 

(LDA score (log10) > 3.5) were primarily driven by the 
enrichment of Bacteroides, Alistipes and Blautia in the 
LTBI group and the enrichment of Prevotella_9, Strep-
tococcus, and Actinomyces in the non-LTBI group.

Gut microbiota‑based prediction for discriminating 
between patients with and without LTBI
In accordance with the 6 most differential genera 
between the LTBI and non-LTBI groups for predicting 
LTBI status in the 130 patients with pDM, the best ran-
dom forest model constructed had an AUROC of 0.834, 
an accuracy of 0.872, sensitivity of 0.769, and specificity 
of 0.923 (Fig.  3C and Additional file  1: Tables S7–S8). 
Regarding feature importance in this predictive model, 
Bacteroides was the genus with the highest weighting, 
followed by Streptococcus, Alistipes, Blautia, Prevo-
tella_9, and Actinomyces (Fig. 3D).

Fig. 1  Overview of case selection, sample collection, and analysis strategies. QFT: QuantiFERON-TB Gold In-tube. * Poorly controlled diabetes 
mellitus was defined as ever having a glycated hemoglobin (HbA1c) level of ≥ 9.0% within 1 year before enrollment. # Two patients had bronchitis 
and one had urinary tract infection. $ One patient had influenza A and one had urinary tract infection
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Table 1  Clinical characteristics of the 130 patients with poorly controlled diabetes mellitus, stratified by the status of latent 
tuberculosis infection (LTBI)

CKD: chronic kidney disease; CAD: coronary artery disease; CVA: cerebral vascular accident; DM: diabetic mellitus; DPP-4: dipeptidyl peptidase-4; ESRD: end-stage 
renal disease; GLP-1: glucagon-like peptide 1; HbA1c: glycated hemoglobin; HDL: high density lipoprotein; LDL: low density lipoprotein; LTBI: latent tuberculosis 
infection; SGLT2: sodium glucose co-transporters 2

Data are either mean ± standard deviation or number (%)

p value was calculated using χ2 test, student’s t test and Mann–Whitney U test, if appropriate

All
(n = 130)

Non-LTBI
(n = 87)

LTBI
(n = 43)

p-value

Male sex 66 (51%) 47 (54%) 19 (44%) 0.291

Age 67.1 ± 7.6 66.1 ± 9.8 68.2 ± 9.0 0.121

BMI (kg/m2) 26.6 ± 4.2 26.7 ± 4.5 26.6 ± 3.4 0.395

Smoking status 0.694

 Never smoker 104 (80%) 68 (78%) 36 (84%)

 Ex-smoker 13 (10%) 9 (10%) 4 (9%)

 Current smoker 13 (10%) 10 (11%) 3 (7%)

Dietary (times/day)

 Fruit/Vegetables 1.0 ± 0.6 1.0 ± 0.6 1.0 ± 0.7 0.916

 Seafood 0.9 ± 0.5 0.9 ± 0.5 0.9 ± 0.5 0.976

 Processed meat 1.1 ± 0.6 1.2 ± 0.6 1.1 ± 0.6 0.858

Comorbidities

 Hypertension 93 (72%) 58 (67%) 35 (81%) 0.080

 Old CVA 13 (10%) 9 (10%) 4 (9%) 0.885

 CKD, stage ≥ 3 45 (35%) 32 (37%) 13 (30%) 0.460

 ESRD 2 (2%) 2 (2%) 0 (0%)  > 0.999

 Coronary artery disease 15 (12%) 8 (9%) 7 (17%) 0.215

 Hepatitis B 5 (4%) 3 (3%) 2 (5%) 0.737

 Hepatitis C 5 (4%) 2 (2%) 3 (7%) 0.331

Laboratory data

 Maximum HbA1c (%) 10.7 ± 1.7 10.8 ± 1.8 10.5 ± 1.5 0.430

 HbA1c at enrolment (%) 8.8 ± 1.7 8.9 ± 1.8 8.8 ± 1.4 0.723

 Total cholesterol (mg/dL) 181.4 ± 40.2 177.9 ± 39.0 189.4 ± 41.4 0.122

 LDL (mg/dL) 98.9 ± 34.5 96.3 ± 31.0 106.9 ± 40.5 0.101

 HDL (mg/dL) 47.7 ± 28.5 47.8 ± 32.6 44.5 ± 13.4 0.529

 Triglyceride (mg/dL) 173.5 ± 127.4 157.6 ± 114.5 202.0 ± 143.5 0.081

Antihyperglycemic drug

 Insulin 80 (62%) 50 (57%) 30 (70%) 0.175

 Metformin 96 (74%) 64 (74%) 32 (74%) 0.917

 Sulfonylurea 69 (53%) 50 (57%) 19 (44%) 0.153

 DPP-4 inhibitor 66 (51%) 44 (51%) 22 (51%) 0.950

 SGLT2 inhibitor 46 (35%) 31 (36%) 15 (35%) 0.933

 Thiazolidinedione 47 (36%) 35 (40%) 12 (28%) 0.169

 Meglitinide 12 (9%) 8 (9%) 4 (9%) 0.984

 α-glucosidase inhibitor 12 (9%) 9 (10%) 3 (7%) 0.533

 GLP-1 agonist 6 (5%) 3 (3%) 3 (7%) 0.397

Lipid-lowering drug

 Statin 84 (65%) 53 (61%) 31 (72%) 0.210

 Fibrate 23 (17%) 14 (16%) 9 (21%) 0.496
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Plasma cytokine level is correlated with gut microbiota 
composition
Compared with non-LTBI group, the plasma concen-
trations of IL-17F and TNF-α, which indicate cytokine 
responses from T helper-17 (Th17) cells and T helper-1 
(Th1) cells, respectively, were significantly lower in 
the LTBI groups (p = 0.025 and p = 0.038, respectively; 
Fig. 4A and Additional file 1: Table S1). The 11 poten-
tial confounders, including sex, obesity (BMI ≥ 27  kg/
m2), use of various antidiabetic medications, and statin, 
were poorly correlated with plasma cytokine levels of 
IFN-γ, IL-17A, IL-17F, IL-2, IL-10, IL-22, TNF-α and 
TGF-β, and the model performance improved after 
adding the 6 selected genera into the linear regression 
model (Additional file 1: Tables S9 and S10). Addition-
ally, the 6 gut microbiota signatures accounted for the 
majority of top 5 important features in linear regression 
model (Additional file 1: Fig. S4).

Regarding the effect of individual genera, Blautia 
was positively correlated with all measured cytokines 

except for TGF-β; Bacteroides had a negative correla-
tion with IFN-γ, IL-17A, IL-10, IL-22, and TNF-α; 
and Prevotella 9 was negatively associated with IL-22 
(Fig. 4B and Additional file 1: Table S9).

Functional analysis
In total, 20 and 43 differentially abundant pathways were 
significantly modified at KEGG levels 2 and 3, respec-
tively (p < 0.05), suggesting diverse changes in the func-
tions of microbiota between LTBI and non-LTBI groups 
(Additional file 1: Fig. S5). Most of the predicted micro-
bial functions in patients with LTBI are negatively corre-
lated with immune (Fig. 4C), metabolism, and replication 
(Fig. 4D) pathways.

Discussion
This is the first study to unravel links between LTBI sta-
tus, host immunity, and gut microbiome dysbiosis in 
patients with pDM. We demonstrated the following: 

Fig. 2  Altered biodiversity and the major components of gut microbial communities in diabetes mellitus (DM) patients with or without latent 
tuberculosis infection (LTBI). A The top 10 phyla in LTBI and non-LTBI groups are shown with their abundance. B The top 10 genera present in both 
LTBI and non-LTBI groups (254 genera; center panel), only in the non-LTBI group (84 genera; left panel), and only in the LTBI group (28 genera; right 
panel) are presented with their abundance. C The alpha-diversity, namely the richness of gut microbes, was determined by the observed amplicon 
sequence variants (ASVs), Shannon index, Pielou’s evenness index, and Faith’s phylogenetic diversity (PD). D Beta-diversity was determined by a 
principal coordinates analysis (PCoA) plot based on the weighted UniFrac distance. Each dot represents one sample from each group. The relevant 
p values were calculated using a Mann–Whitney U test
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(1) pDM patients with LTBI have a markedly different 
gut microbiome to individuals without LTBI; they had 
enriched Bacteroides, Alistipes, and Blautia, but depleted 
Prevotella_9, Streptococcus, and Actinomyces. (2) The 
proposed microbiota-based model involving the 6 most 
differential genera in gut microbiota had favorable per-
formance with an accuracy of 0.872 in predicting LTBI 
status among patients with pDM. (3) The 6 discrimina-
tory genera were correlated with a decrease in Th1/Th17 
cell-mediated inflammatory cytokines and indicated to 
involve in depletion of immune, metabolism, and replica-
tion pathways.

Interferon gamma release assays (IGRAs), based on the 
detection of IFN-γ responses of peripheral lymphocytes 

against Mtb-specific antigens, are the current stand-
ard diagnostic test for LTBI. However, they have a low 
sensitivity in patients with DM, most likely because of 
the attenuation of IFN-γ release [21, 22]. Additionally, 
the results of sequential IGRAs cannot reflect dynamic 
changes in Mtb infection and identify subclinical TB [23]. 
A new diagnostic platform incorporating various diag-
nostic modalities for LTBI is necessary to guide point-of-
care management and the timing of treatment initiation.

Studies have demonstrated that compared with healthy 
individuals, the gut microbiota of patients with DM 
have a lower relative abundance of genera Bacteroides 
[24], Alistepes [25] and Blautia [26] and a higher rela-
tive abundance of Actinomyces [24] and Prevotella [27]. 

Fig. 3  Differential abundance analysis and identification of representative genera as predictive signatures through linear discriminant analysis 
(LDA) with effect size measurements (LEfSe) analysis and a random forest model to discriminate between patients with poorly controlled 
diabetes with and without latent tuberculosis infection (LTBI). A Significantly different taxa in the cladogram according to a LDA score of ≥ 2 (each 
circle represents phylogenetic levels from phylum to genus [inside to outside], and each diameter is proportional to the taxon’s abundance). 
B Significantly different genera in terms of relative abundance (LDA score of ≥ 2) between LTBI and non-LTBI groups. C Receiver operating 
characteristics (ROC) curve analysis of the predictive model using the 6 most differentially abundant genera (Bacteroides, Alistipes, Blautia, 
Prevotella_9, Streptococcus, and Actinomyces) for discriminating between LTBI and non-LTBI groups (AUROC: area under the ROC curve). D Feature 
importance of each of the 6 genera in the predictive model
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We however demonstrated that the DM patients with 
LTBI had higher abundance of Bacteroides, Alistipes, and 
Blautia than those without LTBI, implying that LTBI sta-
tus might be associated with the dysbiotic microbiota of 
patients with pDM.

Furthermore, growing evidence indicates that the dis-
ruption of gut microbiome equilibrium can contribute 
to changes in TB stage [14, 28, 29], which could provide 
clinical utility for LTBI diagnosis beyond conventional 
IGRAs.

The most differential bacterial taxa between pDM 
patients with and without LTBI identified by the cur-
rent prediction model have previously been associated 
with TB susceptibility based on the regulation of Th1/
Th17 immune responses and inflammation [14, 28–
31]. Although the role of Streptococcus and Actinomy-
ces had not previously been identified in patients with 
TB, patients with active TB have a lower phylogenetic 
diversity and a significantly lower abundance of short 

chain fatty acid (SCFA)–producing bacteria such as 
Bacteroidetes, Alistepes, and Prevotella compared with 
healthy individuals [32–34]. Conversely, the unique 
gut microbiome features with high abundance of SCFA 
producers (Bacteroides and Alistepes) in current pDM 
patients with LTBI may enhance TB susceptibility by 
suppressing B cells and CD4+ and CD8+ lymphocytes, 
reducing the production of TB-induced IFN-γ and 
IL-17, increasing Foxp1 expression [14, 28, 30, 31] and 
elevating the number of T regulatory cells in periph-
eral blood [29]. Blautia was reported to be more abun-
dant in patients with TB than in symptomatic patients 
without TB and transcriptome analysis indicated that 
this abundance may be related to inflammation-mod-
ulating pathways [35]. Paradoxically, Prevotella had 
diverse immunomodulatory properties in different 
TB stages; it was positively correlated with CD4+ cell 
counts in patients with newly diagnosed TB but nega-
tively correlation with such cell counts in patients with 

Fig. 4  Correlation of the plasma levels of individual cytokines with latent tuberculosis infection (LTBI) status and the 6 most differentially abundant 
genera (Bacteroides, Alistipes, Blautia, Prevotella_9, Streptococcus, and Actinomyces) (* represents p < 0.05). A Plasma cytokine levels (mean ± standard 
error mean, pg/mL) between LTBI and non-LTBI groups (compared using a Mann–Whitney U test) and the overall performance of the linear 
regression (LR) models in predicting the individual levels of plasma cytokines. B Beta estimates related to the 6 selected genera in the 6 LR models 
for predicting individual cytokine levels among overall population. C Gene functions related to immune, D metabolism, and replication pathways 
in the gut microbiota according to PICRUSt2 with an extended error bar plot to demonstrate the difference between LTBI and non-LTBI groups (the 
middle value represents the mean inter-group differences with the non-LTBI group used as a reference, and the error bar represents the relevant 
95% confidence interval)
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TB recurrence [33]. Further mechanistic studies are 
required to confirm the immunomodulatory effect of 
each relevant taxon.

In accordance with the findings in previous studies [9, 
36], this study revealed significantly lower plasma lev-
els of TNF-α and IL-17 in DM patients with LTBI than 
non-LTBI counterparts, suggesting increased TB suscep-
tibility through the decreasing phagocytic ability of mac-
rophages, interference with granuloma formation [37] 
and inhibiting Mtb-specific memory responses [38]. We 
though herein demonstrated the significant correlation 
between Th1- and Th17-related cytokines and the 6 most 
differentially abundant taxa of gut microbiota, further 
studies should be conducted to explore the immunomod-
ulatory effect of gut microbiome on Mtb infection.

Furthermore, the significant downregulation of gene 
expression in immune, metabolism, and replication path-
ways in the LTBI group was in accordance with the eva-
sion of immune surveillance through the suppression of 
host immunity, a reduction in energy expenditure, and 
the attainment of an intracellularly nonreplicant dor-
mancy status by Mtb [39]. Taken together, the findings 
of the current study provide preliminary evidence that 
gut microbiota composition may reflect the immune 
response of pDM patients with different status of Mtb 
infection. Furthermore, the findings could provide a first 
step toward host-directed immunomodulatory therapy 
through the precise tuning of the enteric microbiome to 
enhance host immunity against Mtb infection.

This study had several limitations. First, this cross-
sectional study could not determine causality or the 
mechanisms behind the effect of gut microbiota altera-
tions on host immunity during various stages of Mtb 
infection. Second, using 16s rRNA sequencing rather 
than shotgun metagenomics may interfere the taxonomic 
and functional resolution of microbiomes owing to the 
inadequacy of gene-related information obtained from 
strains. Third, current study did not reveal the influence 
of microbiome-derived metabolite alterations on TB 
pathogenesis. Further metabolomics studies should be 
conducted to verify this influence. Forth, ethnicity and 
regional variations among individuals can alter the preci-
sion of microbiome-based diagnostics. An external vali-
dation of the proposed prediction model is necessary.

Conclusion
Our study indicates that gut microbiome composi-
tion could modulate Th1/Th17 cell–mediated immune 
responses, which are potentially relevant to TB suscep-
tibility among patients with pDM. We provide a gut 
microbiome-based prediction model for discriminat-
ing between pDM patients with and without LTBI sta-
tus. This study provides a foundation for explorations 

relevant to gut microbiome-based diagnostic biomarkers 
and host-directed treatment strategies; such explorations 
could alleviate the TB–DM co-epidemic.
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