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Abstract 

Electronic cigarettes (or e-cigarettes) can be used as smoking cessation aid. Some studies tend to show that they 
are less hazardous than tobacco cigarettes, even if it does not mean they are completely safe. The huge variation in 
study designs assessing in vitro toxicity of e-cigarettes aerosol makes it difficult to make comparisons and draw robust 
and irrefutable conclusions. In this paper, we review this heterogeneity (in terms of e-cigarette products, biological 
models, and exposure conditions) with a special focus on the wide disparity in the doses used as well as in the way 
they are expressed. Finally, we discuss the major issue of dosimetry and show how dosimetry tools enable to align 
data between different exposure systems or data from different laboratories and therefore allow comparisons to help 
further exploring the risk potential of e-cigarettes.
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Introduction
Vaping devices (i.e. electronic cigarettes or e-cigarettes) 
were introduced into the market a decade ago. They can 
be used as a possible alternative to tobacco smoking and 
some results showed that they can play an interesting 
role as a smoking cessation aid [1]. Besides, many stud-
ies seem to demonstrate that they are intrinsically less 
hazardous than conventional tobacco cigarettes and thus 
that health risks are expected to be less. However, con-
cerns remain about their potential toxicity and adverse 
health effects, including long-term pulmonary or cardio-
vascular effects of the aerosol generated by e-cigarettes 
from the nicotine-containing fluids [2]. Indeed, instead 
of burning tobacco e-cigarette allows the heating of a 
so-called e-liquid, generating an aerosol that is inhaled 
by the vaper. The e-liquid is a mixture of variable com-
position including for instance propylene glycol, glyc-
erol, water, various flavors and in most cases nicotine 
(although vapers can also use e-liquids without nicotine). 

While some of these compounds can exhibit an intrinsic 
toxicity, the heating process can also lead to the forma-
tion of new thermal decomposition compounds that may 
be also hazardous [2–4]. Approximately 250 chemical 
substances have already been detected in vaping aero-
sols, including substances initially present in the e-liquid 
formulation (e.g. nicotine, flavorings, propylene glycol), 
but also a large number of thermal degradation prod-
ucts (e.g. alkaloids, volatile organic compounds (VOCs), 
pyridine, carbonyl compounds such as acrolein or for-
maldehyde) and metals. In addition, thermal degradation 
substances of e-liquids such as tobacco-specific nitrosa-
mines (TSNAs) and polycyclic aromatic hydrocarbons 
(PAHs) can also be found in some cases. The physical and 
chemical nature of vaping aerosols is quite different from 
burned tobacco smoke as no combustion process occurs 
during the vaporization of e-liquid. However, the particu-
late concentration in e-cigarette aerosol may be similar to 
that of tobacco cigarettes [3, 5, 6].

Heterogeneity of studies
The toxicity of e-cigarette aerosol remains controversial, 
particularly because of the heterogeneity in the design 
of experimental toxicological studies regarding several 
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parameters such as the choice of: (i) the e-cigarette prod-
ucts tested, (ii) the biological models used, and (iii) the 
different exposure conditions [3, 4, 7]. This heterogeneity 
makes it difficult to draw firm conclusions concerning the 
potential health adverse effect of vaping aerosol. Indeed, 
we cannot compare results obtained from such different 
experimental contexts, this makes meta-analyses impos-
sible. Consequently, despite the wide amount of studies 
available in the literature, consistent comparisons cannot 
be made and robust and reliable conclusions cannot be 
drawn. However, although the diversity of study designs 
makes it difficult to draw quantitative conclusions, quali-
tative conclusions about health risks can be reached.

Heterogeneity of e‑cigarette products
The diversity of e-cigarette products (e-liquids formula-
tions, and e-cigarette devices) available on the market 
and their constant high velocity evolution makes it chal-
lenging to test each product. Although sharing similar 
key components and operating procedures, e-cigarettes 
can be classified on four generations reflecting major 
differences in both their design and technology. First 
generation of e-cigarettes, also called “cig-a-like”, ade-
quately mimic the appearance of conventional cigarettes 
[8]. These devices are mainly disposable, include little 
e-liquid and their inner components are not modifiable. 
Second generation e-cigarettes are reusable and intro-
duce a refillable tank granting the user a better adjust-
ment of nicotine exposure through the consumption of 
e-liquids containing variable nicotine concentrations [9]. 
The greatest flexibility is offered by the third generation 
e-cigarettes. These devices are based on a large refill-
able tank and an electronic card that directly controls the 
voltage and power. Because they are highly customizable, 
third generation e-cigarettes perfectly illustrate the het-
erogeneity of e-cigarette products and the complexity of 
comparative studies. Indeed, users can choose between 
various coil types (vertical, dual, triple, multiple, twisted, 
mesh, etc.), made of different alloys containing iron, 
chromium, aluminum or nickel and coils can be wicked 
with several materials including organic cotton balls, sil-
ica fibers wick, or Stainless Steel Mesh among others [10]. 
Moreover, a wide range of resistances is available on the 
market with values typically ranging from 0.1 to 3 ohms 
allowing the vaper to modify the density and temperature 
of the aerosol created. Finally, the most recent low-pow-
ered flash drive-shaped fourth generation e-cigarettes 
(e.g. Juul, NJOY, and Vuse) is mainly based on replaceable 
prefilled cartridge or POD containing nicotine salts that 
deliver much higher levels of nicotine than freebase nico-
tine [11]. Although these devices have not been designed 
to be modified by the user, closed cartridges can be eas-
ily dismounted and refilled with other e-liquids. Besides 

the heterogeneity of e-cigarettes devices, the vape market 
is also flooded with a tremendous diversity of e-liquids. 
In 2014, over 7500 different e-liquids were reported with 
approximately 250 new flavors released in the market 
per month [12]. These numbers rose to almost 20.000 
e-liquids in the 2021 Dutch market [13] while a 2020 
survey conducted in France revealed that nearly 27.000 
e-liquids were available on the market [14]. Since screen-
ing toxicological studies are costly and time consuming, 
the huge heterogeneity of vape products and the signifi-
cant amount of monthly released new products prevent 
an exhaustive assessment. Furthermore, comparison of 
studies using an identical device should be made carefully 
as several parameters can vary (e.g. power, resistance 
value, e-liquid formulation).

Heterogeneity of biological models
While human clinical studies are available, the vast 
majority of studies aiming at investigating potential toxic 
effects of e-cigarettes use preclinical models such as 
cell culture and animal models [7]. Indeed, animal test-
ing has traditionally been a primary method for evalu-
ating product safety, however, it is expensive, time and 
personnel-consuming and most of all associated with 
ethical concerns [15–17]. In addition, criticisms about 
the translation of these results into clinical practice have 
been raised, for instance because of differences in the 
physiology and breathing behaviors between humans and 
rodents as well as the use of non-physiological exposure 
methods such as whole body exposure instead of mouth 
breathing [7, 18]. Probably the most important differ-
ence between experimental animals and humans is that 
rodents (since rats and mice are the species most often 
used) are obligatory nasal breathers while vaping is about 
oral inhalation. Rats and mice show the so-called “scrub-
bing effect” which means that a large part of inhaled sub-
stances will be deposited in the nasal passage and does 
not reach the lower respiratory tract. In parallel, with 
the development of new technologies, human relevant 
in  vitro models for toxicity assessment have been pro-
posed such as three dimensional (3D) advanced models 
or reconstructed human airway tissues [17, 18]. For these 
reasons, researchers massively turned their attention to 
in vitro alternative methods [16].

While too simplistic and not recapitulating neither the 
complexity of whole organisms nor the toxicokinetics 
[19] in vitro models offer many advantages. They permit 
different levels of study: organ, tissue, cell (one or several 
populations), they allow large screening of effects with 
a very small amount of test material and are very well 
adapted for the study of mechanisms, mainly for short 
term studies [17, 20, 21]. As they are performed under 
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controlled testing conditions they allow reduction of var-
iability between experiments [20].

The effects of e-cigarettes have been assessed using a 
wide range of target cells, especially from the respiratory 
tract [7]. A non-exhaustive list of the diversity of cellular 
models is shown in Table 1. It also illustrates the variety 
of biological endpoints assessed, adding a supplementary 
layer of heterogeneity and complexity in cross-analyses of 
results.

It could be surprising to find nasal models as vaping 
is about oral inhalation. However, many vapers exhibit 
a practice in which e-cigarette aerosols are frequently 
exhaled through the nose (simulating a habit that is also 
very common among tobacco smokers). Furthermore, 
regardless of how the vaper exhales, a fraction of the 
exhaled aerosol comes into contact with the nasal cavi-
ties. Thus, nasal cell models may be relevant to assess the 
health risk of vaping.

Table 1  Diversity of the cellular models used in e-cigarette toxicological studies (not exhaustive)

Cell line Anatomical location Cell type Biological endpoints References

MSK-Leuk1 Oral Cancerous from dysplastic leukoplakia 
near the tongue

Cell viability
Oxidative stress
Genotoxicity

[22]

EpiOral™ Oral Commercially available primary oral 
model from MatTek

Histology
Inflammatory mediators
Transcriptomic

[23]

Human primary nasal epithelial cells Nasal Primary cells from never-smoker patient Bacterial adhesion [24]

Human primary airway epithelial nasal 
cells

Nasal Commercially available primary cells 
from Epithelix

Cell viability
Inflammatory cytokines
Mucins expression

[25]

Oropharyngeal mucosa Pharynx Primary cells from healthy patients Cell viability
Genotoxicity

[26]

Calu-3 Bronchial Cancerous from lung adenocarcinoma Inflammatory cytokines
Bacterial adhesion

[27]

NCI-H292 Bronchial Cancerous from pulmonary mucoepider-
moid carcinoma

Oxidative stress
Inflammatory cytokines
Tight junction integrity

[28]

16HBE14o- Bronchial SV40-immortalized normal bronchial 
epithelial cells

Cell viability
Tight junction integrity

[29]

BEAS-2B Bronchial Normal bronchial epithelial cells Oxidative stress
Inflammatory cytokines
Transcriptomic analysis

[30]

CL-1548 Bronchial hTERT-immortalized primary bronchial 
epithelial cells

Cell viability
Oxidative stress

[31]

NHBE Bronchial Primary bronchial epithelial cells from 
healthy donors

Cell viability
Oxidative stress
Apoptosis

[32]

MucilAir™ Bronchial Commercially available primary bronchial 
model from Epithelix

Tight junction integrity
Ciliary beat frequency
Permeability

[33]

EpiAirway™ Bronchial Commercially available primary bronchial 
model from MatTek

Cell viability
Tight junction integrity

[34]

SmallAir™ Bronchial—small airway Commercially available primary small 
airway model from Epithelix

Histology
Inflammatory mediators
Transcriptomic analysis
Ciliary beat frequency

[23]

A549 Alveolar Cancerous from lung adenocarcinoma Cell viability
Apoptosis
Genotoxicity

[35]

Alveolar Macrophages Immune system Primary cells from healthy patients Phagocytosis
Apoptosis/Necrosis
Inflammatory cytokines
Oxidative stress

[36]

U937 Immune system Cancerous monocytes from pleural 
effusion

Cell viability
Oxidative stress
Inflammatory cytokines

[37]
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A single cell type can be used or alternatively co-
cultures of different cell types, which include cell 
interactions and better reproduce a physiological micro-
environment [18]. A widely used model for inhalation 
toxicity evaluation is 3-dimensional (3D) in vitro models 
ranging from spheroids and organoids to the reproduc-
tion of an organotypic tissue. Some models are commer-
cially available such as EpiAirway™, constructed from 
primary human tracheal-bronchial epithelial cells that 
form a fully differentiated, pseudostratified epithelium 
containing mucus-producing goblet cells, ciliated cells 
and basal cells [16]. These models are then exposed at the 
air–liquid interface (ALI), providing a useful platform for 
the toxicity assessment of e-cigarette aerosols [16]. Fur-
thermore, they seem to have the potential to be more pre-
dictive of effects in humans since they are derived from 
biopsied human cells and contain many of the relevant 
differentiated cell types not found in monolayer cultures. 
As an example, EpiAirway™ tissues have been shown 
to be quite predictive of in  vivo respiratory response to 
chemicals, although the comparisons were made only 
with a classification based on in vivo rat studies and not 
humans [38]. Even if this comparison is promising, this is 
a definite limitation that does not allow for a robust evi-
dence of excellent in vivo prediction of EpiAirway™ tis-
sues in humans which is still quite far from prediction in 
the sense of a quantitative estimate of health risks from 
long term daily e-cigarette use by humans.

It is well known that increasing the complexity of 
in  vitro models improve both their physiological rel-
evance and robustness of the generated data. How-
ever, these benefits are balanced by a high cost and an 
increased variability. Thus, the choice of a cell model 
should be carefully adapted to the design of the study and 
the biological endpoints [39]. Overall, well-characterized 
immortalized cell lines are a great tool for low-cost large 
screening studies investigating a wide set of products 
focused on basic biological endpoints as cell viability, 
oxidative stress or inflammatory cytokines released. On 
the other hand, complex 3D models are useful to assess 
tissue-specific markers (mucus production, ciliary beat 
frequency, surfactant composition, etc.) and in-depth 
molecular mechanisms as well as to conduct chronic 
exposure studies.

The heterogeneity of biological models observed in 
e-cigarette toxicological studies makes it difficult to com-
pare data across studies as a result of two main issues. 
The first issue is the diversity in anatomical locations of 
cell models used. Because of the phenotypic variability 
among cell populations composing the respiratory tract, 
biological responses following e-cigarette aerosol expo-
sure will differ between models from different anatomi-
cal locations. A transcriptomic analysis between primary 

oral and bronchial models following e-cigarette aerosol 
exposure showed that bronchial epithelium was more 
sensitive than oral tissue but recovered quicker suggest-
ing a tissue-specific response through distinct molecular 
pathways [23]. The second issue is related to the sus-
ceptibility towards chemical substances which can vary 
depending on the cell type. CL-1548 primary immortal-
ized bronchial cells were less sensitive to e-cigarette aero-
sol compared to non-immortalized bronchial cells NHBE 
[31]. Similarly, H292 cancerous bronchial cells were 
less susceptible than normal BEAS-2B bronchial cells 
in terms of toxicity and gene expression [28]. This is a 
limitation to keep in mind when working with immortal-
ized cell lines. Indeed, while primary cultures may better 
mimic a physiological behavior, they are associated with 
technical challenges (lack of tissue availability, specific 
handling required and donor-specific variations) [19, 40]. 
Usually, cells lines are preferred because of their homo-
geneity and stability resulting in reproducible results. 
However, they are either cancer cells or cells artificially 
immortalized and although their high proliferative rate 
makes them easily cultivable, available in large quantities, 
and inexpensive, they exhibit altered pathways compared 
to normal cells. Consequently, they should not answer 
exactly as healthy cells would do, making them a poorly 
reliable representation of what really occurs in  vivo. In 
addition, if they are used for long periods of time, a cell 
de-differentiation and thus a change in phenotype can 
occur [17, 19, 40].

Heterogeneity of exposure conditions
The cytotoxicity of vaping commercial products is usu-
ally assessed as e-liquids and/or as aerosols [6, 7]. Expo-
sure of cells (submerged culture) to unheated e-liquid or 
to one of its specific ingredients is a very inexpensive, 
simple and high-throughput method for rapid screen-
ing. However, we should keep in mind that most of the 
components of the e-liquid are changed through aero-
solization and that the complex gas mixture from heat-
ing process is mainly responsible for the cytotoxic effects 
[18]. But it is not just the change of chemicals as a result 
of heating that makes the composition of the aerosol dif-
ferent from that of the e-liquid. It is also simply a matter 
of volatility that makes that some components evaporate 
more quickly than others. Submerged cells can alterna-
tively be exposed to an aqueous extract consisting of an 
aerosol that has been bubbled through media or buffer. 
This is a relatively simple and inexpensive exposure that 
captures both the water-soluble particulate and gas phase 
components [18]. Despite a good representation of e-cig-
arette aerosol composition, this method only captures 
cell medium soluble compounds. The latter can further 
cross-react with proteins in cell medium which may 
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reduce their bioavailability and underestimate their tox-
icity. Lastly, aqueous extracts are not suitable to ALI cell 
models since the application of these extracts is based on 
cell submersion, a non-physiological exposure method 
that annihilates the benefits of ALI. To avoid bias related 
to e-cigarette aerosol capture, more complex exposure 
systems involve the direct exposure of cells to a whole 
aerosol at the air–liquid interface. Although more chal-
lenging and costly, ALI better recapitulates physiological 
conditions of the pulmonary barrier and all phases (gas-
eous, semi-volatile and particulate) and components of 
the test aerosol are included in the analysis [18].

The physiological limitations of in  vitro assays based 
on e-cigarette extracts or condensates led to the devel-
opment of new exposure systems (or the adaptation of 
existing ones) for exposure of cell models at the air–liq-
uid interface. Aerosol exposure systems have been his-
torically used for the characterization of conventional 
cigarette smoke and extensively reviewed elsewhere [41, 
42]. These systems were later adapted and characterized 
for e-cigarette aerosols. Exposure systems are composed 
of two distinct modules, a smoking machine generating 
e-cigarette aerosols connected to an exposure chamber 
that contains and maintains the cells at ALI [42]. The 
most described references are the Vitrocell VC 10 Smok-
ing Robot and the Borgwaldt RM20S Smoking machine. 
Although designed for a same goal, VC10 and RM20S 
have been shown to deliver significantly different depos-
ited masses and nicotine concentrations for an identical 
puffing regimen [43]. This was attributed to differences 
in aerosol sampling/dilution system, transit length and 
exposure chambers. Indeed, the RM20S was connected 
to a passive exposure chamber (gravitational settling of 
aerosol) while VC10 was paired to a Vitrocell 6/4 expo-
sure module in which the aerosol is actively guided 
toward the cells by negative pressure. A recent study 
compared the e-cigarette-designed Linear E-cigarette 
puffing Machine (LM4E) with a modified VC10 to inves-
tigate the toxicity of undiluted e-cigarette aerosol [44]. 
Interestingly, authors showed that, despite significant 
differences in nicotine concentration, cytotoxic profile 
was consistent between the two systems. This important 
result showed that the use of undiluted aerosols could 
facilitate comparisons of e-cigarette toxicological data 
between different exposure systems by mitigating the 
variability induced by the dilution step. Another low-cost 
exposure chamber suitable for undiluted aerosol is the 
Vitrocell CLOUD in which aerosol is directly introduced 
from a nebulizer before uniformly sedimenting by gravi-
tational settling [45]. However, this easy handling system 
remains to be characterized in a complete setup dedi-
cated for e-cigarettes aerosol exposure using an appro-
priate puffing regimen. Besides Vitrocell and Borgwaldt, 

several manufacturers have developed others smoking 
machine/exposure chamber (Burghardt, CULTEX, Philip 
Morris, British American Tobacco…) with various engi-
neering processes and technologies [46]. Taken together, 
the heterogeneity of both exposure protocols and expo-
sure systems strengthens the difficulty of comparing data 
obtained from e-cigarette toxicological studies and to 
draw robust conclusions concerning e-cigarette health 
effects. Interestingly, a case study showed that biologi-
cal response to cigarette smoke can be compared across 
five different systems if datasets are normalized as a func-
tion of dose (µg/cm2) and nicotine concentration (mg) 
[47]. This important work suggests that adequate in vitro 
dosimetry techniques are required and can effectively 
unit data between various setups and exposure protocols.

Dosimetry, a major issue
Different ways to express doses and different dose ranges 
used
When considering the studies dealing with the toxicity of 
e-cigarettes assessment, in addition to the heterogeneity 
of e-cigarette products, biological models, or exposure 
conditions observed, there is also a huge disparity in the 
doses used as well as in the way they are expressed as 
shown in Table 2.

Do we have to use physiological doses?
The wide variety of dose ranges used leads to the ques-
tion of the most relevant doses to use when assessing the 
toxicity of e-cigarettes. Do we have to use physiological 
doses to more closely mimic what could happen in vivo?

As mentioned before, in  vitro models are very well 
adapted for mechanistic studies. Therefore, in addition 
to exposure doses that tend to mimic the real-life condi-
tions of e-cigarette use, unrealistically high doses can also 
be used without being fundamentally objectionable if the 
ultimate goal is to demonstrate dose-dependent effects 
that are very helpful in terms of elucidating mechanistic 
aspects of the toxicological process, even though such 
doses would neither be applicable nor would make sense 
in in vivo studies, and thus require special attention when 
interpreting the results. Indeed, the use of extreme con-
ditions increases the likelihood of eliciting a response, 
potentially allowing for small effects to be observed that 
would otherwise be missed or represented as no result 
and also allowing comparisons to combustible cigarettes 
via EC50 values. However, when using this approach, 
experimental exposure condition should be contextu-
alized to real-life usage and care should be taken to not 
over-extrapolate conclusions [71].

However, when one wants to compare the in  vitro 
effects of e-cigarettes on different biological targets, 
the dose should be adapted as illustrated by Fig. 1. Let’s 
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take the example of a study of the impact of e-cigarette 
at different levels of the respiratory tract, i.e. from the 
upper respiratory airways (nasal cells) to the deepest 

lung (alveolar cells). Using the same dose range for the 
different cell types would not be relevant as they are dif-
ferentially exposed to the inhaled compounds. In other 

Table 2  Examples of different metrics and dose ranges used in studies for the assessment of the toxicity of e-cigarette (not 
exhaustive)

*Puffs/mL corresponds to the number of puffs reported to the volume of solvent in which the aerosol was captured. **Concentration of a compound diluted in the 
culture medium and used in in vitro assays

Dose metric Dose range Reference

Number of puffs (puff volume) 10–60 puffs (55 mL)
20 puffs (166 mL)
0–35 puffs (70 mL)
0–400 puffs (55 mL)
0–900 puffs (55 mL)

[48]
[49]
[50, 51]
[16]
[52]

Puffs/mL* 0–0.5 puffs/mL
0.075–0.75 puffs/mL
0.02–6 puffs/mL
0–280 puffs/L

[53]
[54]
[5, 55]
[56]

Puffs/m2 85 and 257 puffs/m2 [57]

Concentration of a compound** (µM; mM; mg/mL) 10–1000 µM flavor
1–5 mM flavor
0–600 mg/mL heptyl butyrate, methyl stearate, butyl meth-
acrylate and heptanal
0–10 mg/mL for diverse compounds including flavors

[37, 58]
[59]
[34]
[60]

Ratio (%), corresponding to the dilution of e-liquid 0.001–1%
0–0.3%
0–1%
0–3%
0–4%
0–10%
0–30%

[61, 62]
[63]
[60]
[50]
[64]
[55, 65]
[51]

Ratio (%), corresponding to the dilution of a cigarette or aerosol extract 0.625–20%
3.125–100%
12.5–100%
40–100%

[66]
[67, 68]
[69]
[70]

Fig. 1  Variable dose of inhalable materials depending on the anatomical location within the respiratory tract
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words, the dose actually reaching the target cells can vary 
considerably depending on the target area considered. 
Indeed, different deposition mechanisms, such as diffu-
sion, sedimentation, inertial impaction, interception and 
electrostatic forces, can affect the deposition of inhaled 
droplets in the respiratory system [18, 72]. In this regard, 
a Multiple Path Particle Dosimetry (MPPD) model could 
be used to predict deposition dose at the different loca-
tions of the human (and rat) respiratory tract. This 
may be helpful to choose the range of exposure doses 
in in  vitro assays, but also for the interpretation of the 
in vitro test results to the in vivo situation.

Thus if we want to be consistent and relevant to physi-
ological deposition we should adapt the concentration 
range to the cell model. In the example, nasal cells should 
be exposed to higher concentrations while alveolar cells 
should be exposed to lower concentrations as due to the 
anatomical location, less compounds will reach such 
structures.

As the mechanism of toxicity and the severity of tox-
icity outcome highly depend on the dose, it is crucial to 
characterize the actual dose reaching the target (Fig. 2). 
The knowledge of the delivered dose and its time course 
using reliable dosimetry techniques is critical to inter-
preting and potentially extrapolating results from in vitro 
assays, but also to gain in homogeneity and be able to 
compare different toxicological studies [18].

Dosimetry approaches for standardization
Especially in the case of comparative studies such as the 
effects of e-cigarette versus those of conventional ciga-
rettes, to characterize dosimetry and normalize results 
we can use chemical markers common to cigarette and 
e-cigarette aerosol. Among them, nicotine is extensively 
used since it is an ingredient common to cigarettes and 
e-cigarettes with well-documented addiction promoting 
activity and toxicity [18, 27, 43].

Dosimetry, i.e. the quantification of what the cell 
cultures are exposed to at the interface, is thus crucial 
to the accurate biological assessment of the effects of 
the exposure to different aerosols [43, 71]. Indeed, the 
deposited aerosol from a conventional cigarette and an 
e-cigarette are compositionally different. The quantifi-
cation of the dose is also crucial to accurately compare 
e-cigarette devices since significant variations in the 

deposited mass were observed between two devices 
using an identical puffing profile [71]. Dosimetry tools 
enable easier extrapolation and comparison of pre-
clinical data and consumer use studies, to help further 
explore the reduced risk potential of next generation 
nicotine products [43, 73]. To that purpose, a widely 
used method is the measurement of the deposited mass 
with the quartz crystal microbalance (QCM), which is 
placed inside a cell exposure chamber at the cell–aer-
osol interface. QCM is very sensitive as it can detect 
changes in mass within the nanogram range, and allow 
measurement of deposited mass per surface area (µg/
cm2) in real time. The characterization of the depos-
ited mass allows direct comparison of mass-based dose 
versus biological responses to aerosols, which is impor-
tant for toxicity and safety assessment studies. It also 
serves as a quality control confirming within an expo-
sure that the culture in the exposure chamber is indeed 
receiving the aerosol dilution that is being reported [43, 
71, 73]. Using this approach Adamson et  al. were able 
to determine if a differential cytotoxic response could 
be elicited from exposure of an in  vitro human bron-
chial epithelial model to aerosols generated from an 
e-cigarette and a conventional cigarette [43]. Although 
QCM can be considered as a reliable dosimetry tool, 
care should be taken concerning the reported mass. 
Indeed, QCM was shown to dramatically underesti-
mate the deposited mass of a glycerol-based model aer-
osol compared to the fluorometric quantification of a 
tracer [74]. These differences could be explained by the 
viscosity of the aerosol and the deposited liquid layer 
that may impair the resonant frequency of the quartz 
to ultimately bias the QCM readout. Thus, further 
studies should ensure the reliability of QCM measure-
ment including other quantification methods. Among 
them, nicotine is a reliable in  situ cross-product dosi-
metric marker [52] while gravimetric method based on 
Cambridge filters weighing could be alternatively used 
when working with nicotine-free e-liquids [75]. Finally, 
it is worth mentioning that the combination of several 
dosimetry methods within a study could dramatically 
increase the relevance of toxicological data in addition 
to readily enable comparison of the results with other 
works.

Fig. 2  The dose reaching and effectively retained in a target is different from the inhaled dose
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Conclusion
The lack of standardization among the studies aiming 
to assess in  vitro e-cigarette toxicity makes it challeng-
ing to conclude on their safety [4]. This heterogeneity 
regards the e-cigarette products, the biological models, 
the exposure systems, and also the doses used. Because 
of this diversity, although e-cigarettes seem to appear 
less harmful than tobacco cigarettes, their long term 
adverse health effects on humans cannot be easily pre-
dicted from the currently available data [2, 7]. Therefore 
the development of a standardized approach to evaluate 
the e-cigarette toxicity is doubtless an urgent need [6]. In 
this approach, dosimetry should be carefully considered 
to align experimental data generated from completely 
different exposure systems or conditions, or data from 
different laboratories. In addition, although some limi-
tations remain, dosimetry could provide an helpful link 
between in  vitro, in vivo and human studies and thus 
greatly facilitate the comparison of data across different 
categories of tobacco and nicotine products [18, 71].
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