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Abstract 

Background:  Air pollutants can activate low-grade subclinical inflammation which further impairs respiratory 
health. We aimed to investigate the role of polygenic susceptibility to chronic air pollution-induced subclinical airway 
inflammation.

Methods:  We used data from 296 women (69–79 years) enrolled in the population-based SALIA cohort (Study on the 
influence of Air pollution on Lung function, Inflammation and Aging). Biomarkers of airway inflammation were meas-
ured in induced-sputum samples at follow-up investigation in 2007–2010. Chronic air pollution exposures at residen-
tial addresses within 15 years prior to the biomarker assessments were used to estimate main environmental effects 
on subclinical airway inflammation. Furthermore, we calculated internally weighted polygenic risk scores based on 
genome-wide derived single nucleotide polymorphisms. Polygenic main and gene-environment interaction (GxE) 
effects were investigated by adjusted linear regression models.

Results:  Higher exposures to nitrogen dioxide (NO2), nitrogen oxides (NOx), particulate matter with aerodynamic 
diameters of ≤ 2.5 μm, ≤ 10 μm, and 2.5–10 µm significantly increased the levels of leukotriene (LT)B4 by 19.7% 
(p-value = 0.005), 20.9% (p = 0.002), 22.1% (p = 0.004), 17.4% (p = 0.004), and 23.4% (p = 0.001), respectively. We found 
significant effects of NO2 (25.9%, p = 0.008) and NOx (25.9%, p-value = 0.004) on the total number of cells. No signifi-
cant GxE effects were observed. The trends were mostly robust in sensitivity analyses.

Conclusions:  While this study confirms that higher chronic exposures to air pollution increase the risk of subclinical 
airway inflammation in elderly women, we could not demonstrate a significant role of polygenic susceptibility on this 
pathway. Further studies are required to investigate the role of polygenic susceptibility.

Keywords:  Aged, Air pollution, Biomarkers, Gene-environment interaction, Leukotriene B4, Lung, Tumor necrosis 
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Background
The association between chronic air pollution exposure 
and respiratory health is well-established [1–3]. Regard-
ing the underlying mechanisms, evidence supports that 
air pollutants can activate low-grade subclinical inflam-
matory biomarkers, which increase oxidative stress and 
further impair systemic respiratory health [3, 4].

Airway inflammatory biomarkers [5] reflect local 
inflammation in the lung and are directly associated with 
the development of respiratory morbidity [6–9]. There 
are various biomarkers representing different mecha-
nisms of inflammatory pathways. Besides biomarkers 
of DNA oxidative damage and biomarkers of inflam-
mation following oxidative damage (e.g. TNF-α), there 
are biomarkers of mediators following inflammation 
and oxidative damage e.g. LTB4 [8]. For example, alveo-
lar macrophages ingest and clear inhaled particles and 
their stimulation leads to an increase of tumor necrosis 
factor-α (TNF-α) levels [10, 11]. LTB4 induces apopto-
sis in endothelial cells of the pulmonary artery, thereby 
affecting tissue injury and inflammation [12], and con-
tributing significantly to neutrophil inflow into the 
airways of COPD patients [13]. Airway inflammatory 
biomarkers offer the possibility of detecting respiratory 
impacts at an early stage of disease development and 
could further be used to assess the individual progress of 
chronic obstructive pulmonary disease (COPD) [14, 15], 
where the elderly are considered particularly vulnerable.

In this regard, we have already reported an associa-
tion between five-year means of air pollution exposure 

and increased levels of airway inflammatory biomarkers, 
such as TNF-α and leukotriene (LT) B4 in induced spu-
tum from elderly individuals [16]. However, it is likely 
that the association between air pollution and respira-
tory health is influenced by individual genetic suscep-
tibility [17–19]. Genetic variation in single nucleotide 
polymorphisms (SNPs) contributes to some variability 
in the individual response to air pollutants and the prob-
ability to develop respiratory impairment [20, 21]. SNPs 
acting along with environmental factors on respiratory 
health have already been reported in gene-environment 
interaction (GxE) studies [17, 18]. So far, to the best of 
our knowledge only one GxE study exists, which focused 
on SNPs belonging to the oxidative stress pathway [19]. 
However, many SNPs, each with a relatively small health 
effect, are linked within natural synergies across the 
entire genome. SNPs with genome-wide significance 
summarized in polygenic risk scores (PRS) can precisely 
estimate individual genetic susceptibility [22, 23].

This study aimed to investigate the role of polygenic 
susceptibility on the pathway of chronic air pollu-
tion exposure to subclinical airway inflammation in 
elderly women from the population-based longitudinal 
Study on the influence of Air pollution on Lung func-
tion, Inflammation and Aging (SALIA) cohort study. 
Adjusted linear GxE models with internally weighted 
PRS were fitted to the airway inflammatory biomark-
ers TNF-α, LTB4, and the total number of cells (sum of 
eosinophils, macrophages, neutrophils and epithelial 
cells) at a mean age of 74 years.
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Methods
In the ongoing SALIA cohort, 4,874 women aged 
55 years living between 1985 and 1994 in the Ruhr area 
and the adjacent Münsterland, Germany, were enrolled. 
Further details of the study have been described previ-
ously [5, 24]. The study has been performed in accord-
ance with the Declaration of Helsinki and approval was 
obtained from Ethics Committees of the Ruhr Univer-
sity, Bochum (reference number: 2732), and the Hein-
rich Heine University, Düsseldorf (reference number: 
3507). Written informed consent from all women was 
received. In the current study, data from baseline, the 
first (2006, n = 4,027), and the second follow-up exami-
nations (2007–10, n = 834) were analysed. The study 
sample was restricted to 296 women with available 
information on air pollution, genetics, LTB4 and the 
total number of cells at the second follow-up examina-
tion (age of 68–79 years) (292 women for TNF-α).

The airway inflammatory biomarkers (TNF-α, 
LTB4, and the total number of cells) were determined 
in induced sputum samples from randomly selected 
women. Induced sputum was collected after inhala-
tion of vaporized isomolar saline solution for 10  min 
and coughing provoked according to Raulf-Heimsoth 
et al. [25]. Further details of the sample collection have 
been described previously [16]. TNF-α was measured 
using the PeliKine™-Tool set (CLB, Amsterdam, Neth-
erlands) in a standard range of 1.4–1000  pg/ml and 
LTB4 by a competitive enzyme immunoassay (Assay 
Design, Ann Arbor, MI, USA) with a detection limit of 
11.7–3000 pg/ml. The total number of cells [× 105] was 
determined as the sum of eosinophils, macrophages, 
neutrophils and epithelial cells. Higher levels of air-
way inflammatory biomarkers represented greater sub-
clinical inflammation and indicated higher risk for 
respiratory impairment. In our models, the airway 
inflammatory biomarker levels were log-transformed 
due to skewed distributions.

Individual exposures to nitrogen dioxide (NO2), nitro-
gen oxides (NOx), particulate matter with aerodynamic 
diameters of ≤ 2.5  μm, ≤ 10  μm, and 2.5–10  µm (PM2.5, 
PM10, PMcoarse), and the reflectance of PM2.5 filters (PM2.5 

absorbance) were estimated from average concentrations 
at women’s residential addresses, derived from land-use 
regression models assigned within the European Study 
of Cohorts for Air Pollution Effects (ESCAPE). Details of 
measurements have been described before [26, 27] and 
are summarised in the Additional file 1. In our study, we 
used the mean of annual average concentrations from 
baseline and first follow-up examinations with statistical 
centring across the participants to model chronic air pol-
lution exposure of 15 years prior to the biomarker assess-
ment. Higher concentrations of air pollution represented 

higher exposure and were standardized in interquartile 
ranges (IQR).

Genome-wide genotyping using the Axiom Precision 
Medicine Research Array GRCh37/hg19 (Affymetrix, 
Santa Clara, CA, USA) and quality controls [28] were 
performed and genetic variants were imputed against 
the Haplotype Reference Consortium using the Michi-
gan Imputation Server [29] (see Additional file  1). The 
selection of relevant SNPs was based on the genome-
wide association study (GWAS) of lung function and 
COPD [21] that identified 279 genome-wide significant 
SNPs (Additional file 2: Table S1). The biomarker-specific 
PRS were defined as the weighted sum of the individual 
number of risk alleles of the selected SNPs and calcu-
lated using the genetic risk score-interaction-training 
approach as recommended by Hüls et  al. [30]. The data 
were split into a training and a test dataset. The training 
dataset was used to calculate the weight of each SNP on 
the specific biomarker and the test dataset to calculate 
the weighted PRS on the specific biomarker and to per-
form the GxE analysis. The internal weights were gained 
from interaction terms between each SNP and the air 
pollution exposure using elastic net regression models. 
The interaction terms were used, since there might be 
SNPs that were only important in areas with high air pol-
lution exposure and these SNPs might not be included 
in association analyses of the main airway inflammatory 
effect alone. The optimal balance of sample sizes between 
training and test dataset in our study was determined to 
be 1:2 [30]. A higher PRS represented a higher number of 
risk alleles and was standardized in IQRs.

Descriptive study characteristics, the airway inflam-
matory biomarker levels, and air pollution exposure lev-
els are presented. Linear regression models were fitted 
to loge-TNF-α level, loge-LTB4 level, and the loge-total 
number of cells with each air pollutant separately to 
avoid collinearity between pollutants. Using the test 
dataset, firstly, environmental main effects and secondly, 
the polygenic main effects were estimated. Furthermore, 
GxE effects were evaluated via a multiplicative interac-
tion term between the air pollutant and PRS also using 
the test dataset. All models were adjusted for potential 
confounders selected a priori [19] including age, body 
mass index (BMI in kg/m2), highest education of the 
women or her spouse (low < 10 years, medium = 10 years, 
high > 10  years of education), ever-/never-smoking and 
second-hand smoking. Possible confounding due to 
residential moving could be neglected because only 1.7 
percent (5 of 296) of the women changed their residen-
tial address in the last five years before the airway bio-
marker assessment. Results are presented in percentage 
changes of TNF-α level, LTB4 level, and the total number 
of cells and beta coefficients of loge-airway inflammatory 
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biomarkers, as well as the corresponding 95% confidence 
intervals (CI) and p-values. P-values < 0.05 (two-sided) 
were considered as statistically significant and p-val-
ues < 0.1 were marked in the results. R version 4.1.2 [31] 
was used for all statistical analyses. In sensitivity analy-
ses, first, we tested the role of binary polygenic risk (high-
risk vs. low-risk group) where the group assignment was 
conducted according to the median of continuous poly-
genic risk score. Furthermore, we added indoor air pol-
lution (exposure to mould) and heating with fossil fuels 
as additional potentially confounders [16]. Additionally, 
we investigated the main and GxE effects without adjust-
ment for BMI as it could act more as a mediator than a 
confounder. We performed stratified GxE analyses to 

investigate potential effect modification according to 
chronic inflammatory respiratory conditions, such as 
asthma, chronic bronchitis, hay fever, cough, cough with 
sputum or COPD [16]. Finally, we tested another PRS 
including only the sentinel SNPs belonging to causal 
genes presented in Shrine et al. [21].

Results
The 296 women included were on average 74.4 years old 
and of overweight. About a half of the participants had 
an education level of 10 years. Of the women, 16.6% were 
ever smokers and 58.5% had been exposed to second 
hand smoke (Table  1). The geometric means (geomet-
ric standard deviations) were 1.8 (2.1) pg/ml for TNF-α, 

Table 1  Description of the study characteristics and air pollution exposures

sd standard deviation, IQR interquartile ranges

total number of cells = the sum of eosinophils, macrophages, neutrophils and epithelial cells in induced sputum

Chronic inflammatory respiratory condition = any condition of asthma, chronic bronchitis, hay fever, cough, cough with sputum or chronic obstructive pulmonary 
disease

SALIA study sample

N 296

Airway inflammatory biomarkers

 Arithmetic mean tumor necrosis factor-α (TNF-α) [pg/ml] (sd) 2.5 (2.4) [N = 292]

 Geometric mean TNF-α [pg/ml] (gsd) 1.8 (2.1) [N = 292]

 Mean loge-TNF-α [pg/ml] (sd) 0.6 (0.7) [N = 292]

 Arithmetic mean leukotriene (LT) B4 [pg/ml] (sd) 867.0 (797.5)

 Geometric mean LTB4 [pg/ml] (gsd) 646.3 (2.1)

 Mean loge-LTB4 [pg/ml] (sd) 6.5 (0.8)

 Arithmetic mean total number of cells [× 105] (sd) 23.0 (26.3)

 Geometric mean total number of cells [× 105] (gsd) 14.8 (2.7)

 Mean loge-total number of cells [× 105] (sd) 2.7 (1.0)

 Arithmetic mean tumor necrosis factor-α (TNF-α) [pg/ml] (sd) 867.0 (797.5)

Study characteristics

 Mean age ± sd 74.4 ± 2.7

 Mean body mass index [kg/m2] ± sd 27.6 ± 4.6

 Less than 10 years education of the participant or spouse (%) 51 (17.2)

 10 years maximal education of the participant or spouse (%) 150 (50.7)

 More than 10 years of the participant or spouse (%) 95 (32.1)

 Ever smoker (%) 49 (16.6)

 Second-hand smoking (%) 173 (58.5)

 Indoor mould (%) 45 (15.2)

 Heating with fossil fuels (%) 44 (15.2) [n = 289]

 Chronic inflammatory respiratory conditions 81 (27.7)

Air pollution exposure

 Median chronic NO2 exposure [µg/m3] (IQR) 29.8 (10.3)

 Median chronic NOx exposure [µg/m3] (IQR) 46.5 (27.5)

 Median chronic PM2.5 exposure [µg/m3] (IQR) 25.8 (2.8)

 Median chronic PM10 exposure [µg/m3] (IQR) 38.8 (3.0)

 Median chronic PMcoarse exposure [µg/m3] (IQR) 13.4 (2.7)

 Median chronic PM2.5 absorbance exposure [10–5/m] (IQR) 2.0 (0.6)
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646.3 (2.1) pg/ml for LTB4, and 14.8 (2.7) × 105 for the 
total number of cells. The median chronic air pollution 
exposure was lower than the annual limits of the Euro-
pean Union (RL 2008/50/EG) for PM10 (40  µg/m3), and 
NO2 (40  µg/m3), and about the same for PM2.5 (25  µg/
m3) [32]. However, with regard to the annual air qual-
ity guideline levels recommended in 2021 by the World 
Health Organization (NO2: 10  µg/m3; PM2.5: 5  µg/m3; 
PM10: 15 µg/m3) [33], the median exposures were higher 
than recommended. The descriptive results of the SALIA 
study samples and the sample with air pollution and 
genetic assessment available, but without airway inflam-
matory biomarkers available indicated selection bias 
should be minimal (Additional file 2: Table S2).

NO2 = nitrogen dioxide, NOx = nitrogen oxides, 
PM2.5/10/coarse = particulate matter with aerodynamic 
diameters ≤ 2.5/ ≤ 10/ 2.5–10 µm, PM2.5 absorbance = reflec-
tance of PM2.5 filtersThe environmental main effects are 
presented in Fig. 1 and together with the polygenic main 
effects in Additional file 2: Table S3. One IQR-increase in 

the exposure to NO2, NOx, PM2.5, PM10, and PMcoarse was 
significantly associated with an increase in LTB4 levels of 
19.7% (p = 0.005), 20.9% (p = 0.002), 22.1% (p = 0.004), 
17.4% (p = 0.004), and 23.3% (p = 0.001), respectively. 
Furthermore, we found significant effects of NO2 (25.9%, 
p = 0.008) and NOx (25.9%, p = 0.004) on the total num-
ber of cells. One significant polygenic main effect was 
found for TNF-α using polygenic weights from the inter-
action terms between each SNP and NOx.

All environmental main effects remained stable in the 
main GxE model. However, we did not find a significant 
GxE effect (Fig. 2, Additional file 2: Table S5).

In the sensitivity analyses with binary PRS (Additional 
file 2: Table S6), no adjustment for BMI (Additional file 2: 
Tables S4 and S8), and additional adjustment according 
to indoor air pollution (exposure to mould) and heating 
with fossil fuels (Additional file  2: Table  S7), the trends 
remained stable. Excluding women with any chronic 
inflammatory respiratory condition did not change the 
GxE effects (Additional file  2: Table  S9). However, this 

Fig. 1  Environmental main effects of chronic air pollution exposure on airway inflammatory biomarker levels. % change percentage change in 
biomarker level, CI confidence interval, * = p-value: < 0.01, tumor necrosis factor-α (TNF-α), leukotriene (LT) B4, total number of cells = the sum of 
eosinophils, macrophages, neutrophils and epithelial cells, NO2 = nitrogen dioxide, NOx = nitrogen oxides, PM2.5/10/coarse = particulate matter with 
aerodynamic diameters ≤ 2.5/ ≤ 10/ 2.5–10 µm, PMabs = PM2.5 absorbance, reflectance of PM2.5 filters Air pollutants: The mean of the annual average 
concentrations from baseline and first follow-up examination within a time window of 15 years prior to the airway inflammatory biomarker 
assessments, standardized using interquartile ranges. Adjusted for: age, body mass index (BMI in kg/m2), highest education of the participant or 
spouse, ever-/never-smoking and second-hand smoking
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exclusion decreased the air pollution effects on LTB4 
and increased the effects on TNF-α of NOx from a 6.2 
to 15.0% increase (p = 0.278 vs. 0.041) and PM2.5 absorbance 
from a 1.0 to 16.2% increase (p = 0.884 vs. 0.037). Testing 
the PRS with only the sentinel SNPs belonging to causal 
genes included, showed consistent results and additional 
GxE indications for PM2.5 on TNF-α and PM2.5 absorbance 
on TNF-α and the total number of cells.

Discussion
In this study, the role of polygenic susceptibility on the 
pathway of chronic air pollution exposure to subclini-
cal airway inflammation in elderly women was investi-
gated focusing on three biomarkers TNF-α, LTB4, and 
the total number of cells in sputum. In adjusted linear 
regression models, we found significant environmental 
main effects between chronic exposures to NO2, NOx, 
PM2.5, PM10, and PMcoarse and an increase in LTB4 level. 

Furthermore, the total number of cells was significantly 
increased by chronic exposures to NO2 and NOx. No sig-
nificant interaction effects were observed. These trends 
were robust in sensitivity analyses testing the dichoto-
mized PRS, the PRS with only the sentinel SNPs belong-
ing to causal genes included, excluding adjustment for 
BMI, adding potential confounders (exposure to mould 
and heating with fossil fuels), and the modifying effect of 
chronic inflammatory respiratory conditions. However, 
for women without any chronic inflammatory respiratory 
condition, a harmful environmental effect on LTB4 level 
was not confirmed.

Our results confirm that higher chronic exposures 
to air pollution increase the risk of subclinical airway 
inflammation, hence supporting the hypothesis that 
subclinical inflammation is an underlying mechanism 
of air pollution causing respiratory impairment [3, 4]. 
It is known that inflammation is the first response to 

Fig. 2  Effects of air pollutant exposure on airway inflammatory biomarkers for each IQR-increase of the PRS. loge-tumor necrosis factor-α (TNF-α), 
loge-leukotriene (LT) B4, loge-total number of cells = the sum of eosinophils, macrophages, neutrophils and epithelial cells, NO2 = nitrogen dioxide, 
NOx = nitrogen oxides, PM2.5/10/coarse = particulate matter with aerodynamic diameters ≤ 2.5/ ≤ 10/ 2.5–10 µm, PM2.5 absorbance = reflectance of PM2.5 
filters, IQR interquartile range, PRS polygenic risk score, dashed line indicates beta estimate = 0. Individual weighted polygenic risk scores (normally 
distributed) derived by the interaction-training approach, standardized using interquartile ranges. Air pollutants: the mean of the annual average 
concentrations from baseline and first follow-up examinations within a time window of 15 years prior to the airway inflammatory biomarker 
assessments, statistically centred across the participants, standardized using interquartile ranges. Adjusted for: age, body mass index (BMI in kg/m2), 
highest education of the participant or her spouse, ever-/never-smoking and second-hand smoking
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infections, toxins and pollutants, measurable in an 
increase of airway inflammatory biomarker levels. How-
ever, persistent exposure to air pollutants precludes reso-
lution of inflammation, resulting in chronically elevated 
levels of biomarkers of inflammation which likely cause 
respiratory impairment [8]. We investigated air pollution 
concentrations within 15  years prior to the biomarker 
assessment to characterise this persistent exposure. To 
our knowledge [8, 16], this is the first study investigating 
air pollution effects on airway inflammatory biomarkers 
in the elderly with such a long exposure window.

In regards to the environmental main effects, the high 
risk of NO2 on airway inflammatory biomarkers was also 
found in a study on 242 elderly COPD patients (mean 
age of 67.8  years) in which ESCAPE-derived exposures 
to PM2.5 and NO2 were examined on C-reactive protein, 
TNF-α, interleukin (IL)-6, IL-8, and hepatocyte growth 
factor. As in our study (both main analysis and analysis 
on women without any chronic inflammatory condi-
tions), the association between NO2 and TNF-α level did 
not reach statistical significance, but showed a harmful 
trend [34]. Furthermore, there was evidence for healthy 
individuals as well as individuals with chronic diseases, 
such as asthma, COPD, and chronic bronchitis, that a 
doctor visit due to respiratory symptoms was associated 
with exposure to NO2 [34, 35]. While most of these study 
individuals were male [34, 35], our study added findings 
for elderly women of the harmful effects of chronic NOx 
and NO2 on LTB4 level and the total number of cells, 
respectively.

Very limited studies have investigated the association 
between air pollution exposure and LTB4 level, although 
the role of LTB4 on respiratory health is well known [8, 
19]. Our study helps to clarify the evidence and supports 
the importance of LTB4 through showing significant 
harmful effects of exposure to NO2, NOx, PM2.5, PM10, 
and PMcoarse. The decreasing trend of air pollution effects 
on LTB4 level in women without any chronic inflamma-
tory respiratory condition could indicate the importance 
for elderly women with COPD. However, the results must 
be taken with caution because of the small sample sizes.

Additionally, there are some studies of the association 
between genetics and airway inflammatory biomark-
ers. In the family-based Framingham Heart Study, herit-
ability and candidate gene associations of inflammatory 
biomarkers (overlap with the biomarkers included here: 
TNF-α) were investigated, but no correlations with 
TNF-α were found [36]. Moreover, in a GWAS of sys-
temic inflammatory biomarkers of subjects with COPD 
[37] and a meta-analysis of current and former smokers 
with or without COPD [38], none of the SNPs was asso-
ciated with TNF-α level (overlap: TNF-α). In a meta-
analysis of 34 studies involving 5,477 asthma patients and 

5,962 controls TNF-α rs1800629 (no overlap) polymor-
phism was only significantly associated with asthma risk 
in Asian populations, but not in Caucasian populations 
[39]. In another meta-analysis, TNF-α -308 G/A poly-
morphisms (no overlap) was also associated only among 
Asian populations with an increased risk for COPD, but 
not in non-Asian individuals [40]. There are fewer studies 
considering genetic effects on LTB4 and the total num-
ber of cells. Regarding LTB4, no significant association 
was found with LTA4H regulatory variant rs2660845 (no 
overlap) in European late-onset asthma individuals [41]. 
Our study is consistent with these results by showing no 
stable significant polygenic effects, although these stud-
ies are only comparable with our study to a limited extent 
due to the different genetic approaches and the rarely 
examined elderly population.

The association between chronic air pollution and res-
piratory health on airway inflammation is likely to be 
influenced by individual genetic susceptibility [17, 18, 20]. 
To the best of our knowledge, there is only one GxE study 
of air pollution-induced airway inflammation. This study 
focused on SNPs relevant to the oxidative stress pathway 
[19], making it the first study considering SNPs in natural 
synergies across the entire genome, summarized in PRS 
[22, 23]. While Hüls et al. [19] found the strongest GxE 
for LTB4, we found no GxE effects. Possible explanations 
are, on one hand, that the GWAS of lung function and 
COPD [21] used in our study did not cover the relevant 
SNPs for subclinical airway inflammation [42], and espe-
cially not those SNPs that interacted with air pollution. 
SNPs that were only important in areas with low air pol-
lution might not have reached genome-wide significance 
in the GWAS, but would be identified in genome-wide 
association interaction studies and genome-wide by envi-
ronmental interaction studies [43].

On the other hand, GxE effects could have a different 
starting point within the pathway. With our approach, we 
examined GxE effects on subclinical airway inflamma-
tion, where the GxE effect could also influence systemic 
inflammation instead of subclinical inflammation. Maybe 
the subclinical inflammation induced by air pollution was 
not dependent on polygenic susceptibility, but the poly-
genic susceptibility affected the development of subclini-
cal inflammation towards either respiratory impairment 
or recovery. Hüls et  al. [44] have already shown that an 
air pollution-associated improvement of lung function 
depends on the individual genetic risk, which might be 
associated with subclinical airway inflammation. This 
would support our hypothesis. However, further stud-
ies examining the whole pathway are necessary to con-
firm this. Our findings are generalizable to other healthy 
elderly Caucasian women. With regard to the different 
genetic effects between Asian and Caucasian populations 
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in other studies, it is likely that polygenic susceptibility as 
well as the GxE effects differ between ancestry groups.

Strengths of our study are the population-based design, 
standardized procedures to measure the biomarkers, 
and standardized and comparable ESCAPE air pollu-
tion data covering a time window of 15 years prior to the 
biomarker assessments. Several sensitivity analyses were 
performed to confirm our findings, rule out selection 
bias, and investigate modifying effects by chronic inflam-
matory respiratory conditions.

However, there were also some limitations. In the 
SALIA cohort, the effect of air pollution and the GxE 
effect could be underestimated due to the loss to follow-
up examination of women with less education, higher air 
pollution exposure and worse respiratory health [19]. In 
our study, TNF-α results must be treated with caution 
because about 40% of the measurements were below 
the detection limit [19]. Due to the lack of genome-wide 
interaction studies and GWAS on specific airway inflam-
mation biomarkers, the polygenic susceptibility to sub-
clinical airway inflammation was based on SNP selection 
regarding general lung function and COPD, which might 
result in different SNPs and could consequently affect 
polygenic main or GxE effects. Using external weights 
would improve the external validity of GxE results. In 
addition, a lack of statistical power due to the small sam-
ple sizes could be a reason for not identifying interaction 
effects.

Conclusions
While this study confirmed that higher chronic expo-
sure to air pollution increased the risk of subclinical 
airway inflammation in elderly women, we could not 
detect a significant role of polygenic susceptibility on 
this pathway. Our study added to the evidence on airway 
inflammation in elderly women, especially for the harm-
ful effects of NO2 and NOx on subclinical inflamma-
tion, considering a 15-year long exposure window, and 
the harmful air pollution effects on LTB4 levels. Further 
GxE studies including genome-wide derived SNPs are 
required to investigate the role of polygenic susceptibil-
ity to air pollution-induced subclinical airway inflam-
mation and to provide further insights into underlying 
mechanisms.

Take home message
Higher chronic exposure to air pollution increases the 
risk of subclinical airway inflammation in elderly women. 
Our study could not detect a significant role of polygenic 
susceptibility in air pollution-induced subclinical airway 
inflammation and further studies are required.
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Table S10). Annotation data of the 278 SNPs included in our calculation of 
the polygenic risk score such as CHROM chromosome, rsID reference SNP 
cluster ID, POS reference position, REF reference allele, ALT alternative 
non-reference allele, SNP CHROM:POS:REF:ALT, MAF minor allele frequency 
in the specific cohort as the second most common allele count from the 
number of alleles in called genotypes in the specific cohort, TYPED 
indicates if the variant was genotyped or imputed, R2 imputation quality 
as the estimated value of the squared correlation between imputed 
genotypes and true/unobserved genotypes, ER2 empirical R2 for 
genotyped variants (not calculated for imputed variants), * = SNPs 
included in our polygenic risk score of sentinel SNPs belonging to causal 
genes. Table S2. Descriptive statistics on each study and model sample, 
airway inflammatory biomarker levels and air pollution exposures in the 
SALIA cohort. Descriptive statistics on each study and model sample using 
arithmetic and geometric mean and standard deviation of airway 
inflammatory biomarkers (tumor necrosis factor-α, leukotriene B4, and the 
sum of eosinophils, macrophages, neutrophils and epithelial cells in 
induced sputum), study characteristics including mean age, body mass 
index, education, smoking, indoor air pollution, and chronic inflammatory 
respiratory condition defined as any condition of asthma, chronic 
bronchitis, hay fever, cough, cough with sputum or chronic obstructive 
pulmonary disease, and median and interquartile ranges of chronic air 
pollution exposure of nitrogen dioxide, nitrogen oxides, particulate matter 
with aerodynamic diameters ≤ 2.5/ ≤ 10/2.5–10 µm, reflectance of PM2.5 
filters calculated as the mean of the annual average concentrations from 
baseline and first follow-up examinations within a time window of 
15 years before the biomarker assessments, statistically centred across the 
participants. Table S3. Environmental main effects of chronic air pollution 
exposure and the polygenic main effects on natural log-transformed 
airway inflammatory biomarker level in elderly women using adjusted 
linear regression models in test dataset. Environmental main effects as the 
effect of chronic air pollution exposure (nitrogen dioxide, nitrogen oxides, 
particulate matter with aerodynamic diameters of ≤ 2.5/ ≤ 10/2.5–10 µm, 
reflectance of PM2.5 filters calculated as the mean of the annual average 
concentrations from baseline and first follow-up examinations within a 
time window of 15 years prior to the biomarker assessments, statistically 
centred across the participants, standardized using interquartile ranges) 
on airway inflammatory biomarkers (tumor necrosis factor-α, leukotriene 
B4, and the sum of eosinophils, macrophages, neutrophils and epithelial 
cells in induced sputum) adjusted for: age, body mass index (BMI in kg/
m2), highest education of the participant or her spouse (low < 10 years, 
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medium = 10 years, high > 10 years of education), ever-/never-smoking, 
and second-hand smoking using adjusted linear regression models in test 
dataset: beta estimate with 95% confidence intervals on natural 
log-transformed airway inflammatory biomarker level and percentage 
change with 95% confidence interval in airway inflammatory biomarker 
level. P-values < 0.05 are highlighted bold and p-values < 0.1 cursive. 
Polygenic main effects as the effect of polygenic risk score (normally 
distributed (Shapiro–Wilk normality test: n = 194, p-value = 0.002) on 
airway inflammatory biomarkers (tumor necrosis factor-α, leukotriene B4, 
and the sum of eosinophils, macrophages, neutrophils and epithelial cells 
in induced sputum) adjusted for: age, body mass index (BMI in kg/m2), 
highest education of the participant or her spouse (low < 10 years, 
medium = 10 years, high > 10 years of education), ever-/never-smoking, 
and second-hand smoking using adjusted linear regression models in test 
dataset: beta estimate with 95% confidence intervals on natural 
log-transformed airway inflammatory biomarker level and percentage 
change with 95% confidence interval in airway inflammatory biomarker 
level. P-values < 0.05 are highlighted bold and p-values < 0.1 cursive. The 
polygenic weights are gained from the interaction terms between each 
SNP and the air pollution exposure using elastic net regression models, 
hence it results one polygenic main effect with each air pollutant per 
airway inflammatory biomarker. Table S4. The environmental main effects 
of chronic air pollution exposure and the polygenic main effects on 
natural log-transformed airway inflammatory biomarker level in elderly 
women using adjusted linear regression models (without adjustment for 
body mass index) in test dataset. Environmental main effects as the effect 
of chronic air pollution exposure (nitrogen dioxide, nitrogen oxides, 
particulate matter with aerodynamic diameters of ≤ 2.5/ ≤ 10/2.5–10 µm, 
reflectance of PM2.5 filters calculated as the mean of the annual average 
concentrations from baseline and first follow-up examinations within a 
time window of 15 years prior to the biomarker assessments, statistically 
centred across the participants, standardized using interquartile ranges) 
on airway inflammatory biomarkers (tumor necrosis factor-α, leukotriene 
B4, and the sum of eosinophils, macrophages, neutrophils and epithelial 
cells in induced sputum) adjusted for: age, highest education of the 
participant or her spouse (low < 10 years, medium = 10 years, 
high > 10 years of education), ever-/never-smoking, and second-hand 
smoking using adjusted linear regression models in test dataset: beta 
estimate with 95% confidence intervals on natural log-transformed airway 
inflammatory biomarker level and percentage change with 95% 
confidence interval in airway inflammatory biomarker level. P-values < 0.05 
are highlighted bold and p-values < 0.1 cursive. Polygenic main effects as 
the effect of polygenic risk score (normally distributed (Shapiro–Wilk 
normality test: n = 194, p-value = 0.002) on airway inflammatory 
biomarkers (tumor necrosis factor-α, leukotriene B4, and the sum of 
eosinophils, macrophages, neutrophils and epithelial cells in induced 
sputum) adjusted for: age, highest education of the participant or her 
spouse (low < 10 years, medium = 10 years, high > 10 years of education), 
ever-/never-smoking, and second-hand smoking using adjusted linear 
regression models in test dataset: beta estimate with 95% confidence 
intervals on natural log-transformed airway inflammatory biomarker level 
and percentage change with 95% confidence interval in airway 
inflammatory biomarker level. P-values < 0.05 are highlighted bold and 
p-values < 0.1 cursive. The polygenic weights are gained from the 
interaction terms between each SNP and the air pollution exposure using 
elastic net regression models, hence it results one polygenic main effect 
with each air pollutant per airway inflammatory biomarker. Table S5. 
Gene-environment interaction effects between the weighted polygenic 
risk score and chronic air pollution exposure on natural log-transformed 
airway inflammatory biomarker levels in elderly women using adjusted 
linear regression models in test dataset. Gene-environment interaction 
effects between the weighted polygenic risk score (derived by the 
interaction-training approach, standardized using interquartile ranges) 
and chronic air pollution exposure (nitrogen dioxide, nitrogen oxides, 
particulate matter with aerodynamic diameters of ≤ 2.5/ ≤ 10/2.5–10 µm, 
reflectance of PM2.5 filters calculated as the mean of the annual average 
concentrations from baseline and first follow-up examinations within a 
time window of 15 years prior to the biomarker assessments, statistically 
centred across the participants, standardized using interquartile ranges) 

on natural log-transformed airway inflammatory biomarker levels (tumor 
necrosis factor-α, leukotriene B4, and the sum of eosinophils, mac-
rophages, neutrophils and epithelial cells in induced sputum) adjusted for: 
age, body mass index (BMI in kg/m2), highest education of the participant 
or her spouse (low < 10 years, medium = 10 years, high > 10 years of 
education), ever-/never-smoking, and second-hand smoking using 
adjusted linear regression models in test dataset: beta estimate with 95% 
confidence intervals on natural log-transformed airway inflammatory 
biomarker level and percentage change with 95% confidence interval in 
airway inflammatory biomarker level. P-values < 0.05 are highlighted bold 
and p-values < 0.1 cursive. Table S6. Gene-environment interaction effects 
between the weighted binary polygenic risk score (genetic low-risk vs. 
high-risk group) and chronic air pollution exposure on natural log-trans-
formed airway inflammatory biomarker levels in elderly women using 
adjusted linear regression models in test dataset. Gene-environment 
interaction effects between the weighted binary polygenic riskscore 
(derived by the interaction-training approach, dichotomized using the 
median of weighted polygenic risk score) and chronic air pollution 
exposure (nitrogen dioxide, nitrogen oxides, particulate matter with 
aerodynamic diameters of ≤ 2.5/ ≤ 10/2.5–10 µm, reflectance of PM2.5 
filters calculated as the mean of the annual average concentrations from 
baseline and first follow-up examinations within a time window of 
15 years prior to the biomarker assessments, statistically centred across 
the participants, standardized using interquartile ranges) on natural 
log-transformed airway inflammatory biomarker levels (tumor necrosis 
factor-α, leukotriene B4, and the sum of eosinophils, macrophages, 
neutrophils and epithelial cells in induced sputum) adjusted for: age, body 
mass index (BMI in kg/m2), highest education of the participant or her 
spouse (low < 10 years, medium = 10 years, high > 10 years of education), 
ever-/never-smoking, and second-hand smoking using adjusted linear 
regression models in test dataset: beta estimate with 95% confidence 
intervals on natural log-transformed airway inflammatory biomarker level 
and percentage change with 95% confidence interval in airway 
inflammatory biomarker level. P-values < 0.05 are highlighted bold and 
p-values < 0.1 cursive. Table S7. Gene-environment interaction effects 
between the weighted polygenic risk score and chronic air pollution 
exposure on natural log-transformed airway inflammatory biomarker 
levels in elderly women using linear regression models in test dataset with 
additional adjustment according to indoor air pollution (exposure to 
mould), and heating with fossil fuels. Gene-environment interaction 
effects between the weighted polygenic risk score (derived by the 
interaction-training approach, standardized using interquartile ranges) 
and chronic air pollution exposure (nitrogen dioxide, nitrogen oxides, 
particulate matter with aerodynamic diameters of ≤ 2.5/ ≤ 10/2.5–10 µm, 
reflectance of PM2.5 filters calculated as the mean of the annual average 
concentrations from baseline and first follow-up examinations within a 
time window of 15 years prior to the biomarker assessments, statistically 
centred across the participants, standardized using interquartile ranges) 
on natural log-transformed airway inflammatory biomarker levels (tumor 
necrosis factor-α, leukotriene B4, and the sum of eosinophils, mac-
rophages, neutrophils and epithelial cells in induced sputum) adjusted for: 
age, body mass index (BMI in kg/m2), highest education of the participant 
or her spouse (low < 10 years, medium = 10 years, high > 10 years of 
education), ever-/never-smoking, second-hand smoking, indoor air 
pollution (exposure to mould), and heating with fossil fuels using adjusted 
linear regression models in test dataset: beta estimate with 95% 
confidence intervals on natural log-transformed airway inflammatory 
biomarker level and percentage change with 95% confidence interval in 
airway inflammatory biomarker level. P-values < 0.05 are highlighted bold 
and p-values < 0.1 cursive. Table S8. Gene-environment interaction effects 
between the weighted polygenic risk score and chronic air pollution 
exposure on natural log-transformed airway inflammatory biomarker 
levels in elderly women using linear regression models in test dataset with 
no adjustment according to body mass index. Gene-environment 
interaction effects between the weighted polygenic risk score (derived by 
the interaction-training approach, standardized using interquartile ranges) 
and chronic air pollution exposure (nitrogen dioxide, nitrogen oxides, 
particulate matter with aerodynamic diameters of ≤ 2.5/ ≤ 10/2.5–10 µm, 
reflectance of PM2.5 filters calculated as the mean of the annual average 
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concentrations from baseline and first follow-up examinations within a 
time window of 15 years prior to the biomarker assessments, statistically 
centred across the participants, standardized using interquartile ranges) 
on natural log-transformed airway inflammatory biomarker levels (tumor 
necrosis factor-α, leukotriene B4, and the sum of eosinophils, mac-
rophages, neutrophils and epithelial cells in induced sputum) adjusted for: 
age, highest education of the participant or her spouse (low < 10 years, 
medium = 10 years, high > 10 years of education), ever-/never-smoking, 
and second-hand smoking using adjusted linear regression models in test 
dataset: beta estimate with 95% confidence intervals on natural 
log-transformed airway inflammatory biomarker level and percentage 
change with 95% confidence interval in airway inflammatory biomarker 
level. P-values < 0.05 are highlighted bold and p-values < 0.1 cursive. 
Table S9. Gene-environment interaction effects between the weighted 
polygenic risk score and chronic air pollution exposure on natural 
log-transformed airway inflammatory biomarker levels in elderly women 
using adjusted linear regression models in test dataset excluding women 
with any chronic inflammatory respiratory condition. Gene-environment 
interaction effects between the weighted polygenic risk score (derived by 
the interaction-training approach, standardized using interquartile ranges) 
and chronic air pollution exposure (nitrogen dioxide, nitrogen oxides, 
particulate matter with aerodynamic diameters of ≤ 2.5/ ≤ 10/2.5–10 µm, 
reflectance of PM2.5 filters calculated as the mean of the annual average 
concentrations from baseline and first follow-up examinations within a 
time window of 15 years prior to the biomarker assessments, statistically 
centred across the participants, standardized using interquartile ranges) 
on natural log-transformed airway inflammatory biomarker levels (tumor 
necrosis factor-α, leukotriene B4, and the sum of eosinophils, mac-
rophages, neutrophils and epithelial cells in induced sputum) adjusted for: 
age, body mass index (BMI in kg/m2), highest education of the participant 
or her spouse (low < 10 years, medium = 10 years, high > 10 years of 
education), ever-/never-smoking, and second-hand smoking in women 
without any condition of asthma, chronic bronchitis, hay fever, cough, 
cough with sputum or chronic obstructive pulmonary disease using 
adjusted linear regression models in test dataset: beta estimate with 95% 
confidence intervals on natural log-transformed airway inflammatory 
biomarker level and percentage change with 95% confidence interval in 
airway inflammatory biomarker level. P-values < 0.05 are highlighted bold 
and p-values < 0.1 cursive. Table S10. Gene-environment interaction 
effects between the weighted polygenic risk score including only the 
Sentinel SNPs belonging to causal genes and chronic air pollution 
exposure on natural log-transformed airway inflammatory biomarker 
levels in elderly women using adjusted linear regression models in test 
dataset. Gene-environment interaction effects between the weighted 
polygenic risk score (derived by the interaction-training approach, 
standardized using interquartile ranges, including only the Sentinel SNPs 
belonging to causal genes) and chronic air pollution exposure (nitrogen 
dioxide, nitrogen oxides, particulate matter with aerodynamic diameters 
of ≤ 2.5/ ≤ 10/ 2.5–10 µm, reflectance of PM2.5 filters calculated as the 
mean of the annual average concentrations from baseline and first 
follow-up examinations within a time window of 15 years prior to the 
biomarker assessments, statistically centred across the participants, 
standardized using interquartile ranges) on natural log-transformed 
airway inflammatory biomarker levels (tumor necrosis factor-α, leukotriene 
B4, and the sum of eosinophils, macrophages, neutrophils and epithelial 
cells in induced sputum) adjusted for: age, body mass index (BMI in kg/
m2), highest education of the participant or her spouse (low < 10 years, 
medium = 10 years, high > 10 years of education), ever-/never-smoking, 
and second-hand smoking using adjusted linear regression models in test 
dataset: beta estimate with 95% confidence intervals on natural 
log-transformed airway inflammatory biomarker level and percentage 
change with 95% confidence interval in airway inflammatory biomarker 
level. P-values < 0.05 are highlighted bold and p-values < 0.1 cursive.
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