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Myeloid liver kinase B1 contributes to lung 
inflammation induced by lipoteichoic acid 
but not by viable Streptococcus pneumoniae
Liza Pereverzeva1,2*, Natasja A. Otto1,2, Joris J. T. H. Roelofs2,3,4, Alex F. de Vos1,2 and Tom van der Poll1,2,5 

Abstract 

Background:  Liver kinase B1 (Lkb1, gene name Stk11) functions as a tumor suppressor in cancer. Myeloid cell Lkb1 
potentiates lung inflammation induced by the Gram-negative bacterial cell wall component lipopolysaccharide and 
in host defense during Gram-negative pneumonia. Here, we sought to investigate the role of myeloid Lkb1 in lung 
inflammation elicited by the Gram-positive bacterial cell wall component lipoteichoic acid (LTA) and during pneumo-
nia caused by the Gram-positive respiratory pathogen Streptococcus pneumoniae (Spneu).

Methods:  Alveolar and bone marrow derived macrophages (AMs, BMDMs) harvested from myeloid-specific Lkb1 
deficient (Stk11-ΔM) and littermate control mice were stimulated with LTA or Spneu in vitro. Stk11-ΔM and control 
mice were challenged via the airways with LTA or infected with Spneu in vivo.

Results:  Lkb1 deficient AMs and BMDMs produced less tumor necrosis factor (TNF)α upon activation by LTA or 
Spneu. During LTA-induced lung inflammation, Stk11-ΔM mice had reduced numbers of AMs in the lungs, as well 
as diminished cytokine release and neutrophil recruitment into the airways. During pneumonia induced by either 
encapsulated or non-encapsulated Spneu, Stk11-ΔM and control mice had comparable bacterial loads and inflamma-
tory responses in the lung, with the exception of lower TNFα levels in Stk11-ΔM mice after infection with the non-
encapsulated strain.

Conclusion:  Myeloid Lkb1 contributes to LTA-induced lung inflammation, but is not important for host defense dur-
ing pneumococcal pneumonia.
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Background
Lower respiratory tract infections remain in the top ten 
of mortality causes worldwide [1], with Streptococcus 
pneumoniae (Spneu) accounting for the most common 
bacterial pathogen of community-acquired pneumonia 
[2]. When pneumococci enter the lower respiratory tract, 
alveolar macrophages (AMs) are first in line to capture 

the bacteria and initiate a host response [3]. However, 
invasive strains of these Gram-positive bacteria are char-
acterized by a thick polysaccharide capsule that helps the 
organism invade the lung and escape the immune system 
[2]. This raises the interest to study the function of AMs 
during the host response to Spneu, exploring new poten-
tial targets for the treatment of pneumonia.

Over the last few years it has become evident that 
Liver kinase B1 (Lkb1) impacts the performance of mac-
rophages during the immune response [4–7]. Lkb1, also 
known as serine/threonine kinase 11 (STK11), plays 
a major role in many cell processes such as prolifera-
tion and development [8–10], and cell metabolism [11]. 
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It was first recognized as a tumor suppressor gene in 
Peutz-Jeghers Syndrome [12], and is now known to be 
involved in many other malignancies [13]. In the field 
of immune responses to infectious pathogens, Lkb1 has 
been described to have a suppressive effect on the pro-
inflammatory activity of macrophages [5, 7] and to be 
involved in the proliferation of AMs [7]. Two recent stud-
ies, including one from our group, reported that lack of 
Lkb1 in the myeloid lineage of mice is associated with 
reduced numbers of AMs [6, 7], which was accompanied 
by an impaired antibacterial defense during pneumonia 
caused by Klebsiella (K.) pneumoniae [6] or Staphylo-
coccus (S.) aureus [7]. Myeloid Lkb1 deficiency resulted 
in exaggerated lung pathology during S. aureus, but not 
during Klebsiella pneumonia [6, 7], suggesting that the 
role of this protein in the host response during lower 
respiratory tract infection at least in part depends on the 
causative pathogen. In this respect it is important to note 
that myeloid Lkb1 deficient mice demonstrated strongly 
reduced cytokine release in the airways upon intrapul-
monary delivery of lipopolysaccharide (LPS), a major 
component of Gram-negative bacteria (including Kleb-
siella) and a potent Toll-like receptor (TLR)4 agonist [6].

Here, we sought to investigate the role of myeloid Lkb1 
in lung inflammation induced by the Gram-positive bac-
terial wall component and TLR2 agonist lipoteichoic acid 
(LTA) [14] and viable Spneu. For this we used myeloid-
specific Lkb1 deficient mice and well-established mouse 
models of an airway LTA challenge and pneumococcal 
pneumonia. Our research suggests that Lkb1 plays a role 
in the TLR2-mediated inflammatory response of myeloid 
cells, but that its potential function is obscured during 
respiratory infection by viable pneumococci.

Methods
Animals
Homozygous Stk11fl/fl mice (014143; Jackson Labora-
tory, Bar Harbor, ME) [10] were crossed with LysMcre 
mice [15] to generate myeloid cell specific Lkb1-defi-
cient (Stk11-ΔM) mice. Stk11fl/fl cre-negative littermates 
were used as controls in all experiments. All genetically 
modified mice were backcrossed at least 6 times to a 
C57Bl/6 background and housed under standard care. 
Mice were age and sex matched and used in experiments 
at 8–12  weeks of age. Experiments were performed in 
accordance with the Dutch Experiment on Animals Act 
and approved by the Central Commission for Animal 
Experiments.

Bone‑marrow isolation and differentiation
Bone-marrow derived macrophages (BMDMs) were 
obtained by harvesting bone marrow from tibias and 
femurs of naïve mice by flushing with sterile phosphate 

buffered saline (PBS; Invitrogen, Carlsbad, California). 
Clumps were removed by dispersing the cells using a 
syringe with a 21G needle. Cells were spun down at 
1250 rpm for 5 min at 4 °C. Cells were suspended in com-
plete medium (RPMI 1640 with l-glutamine and 25 mM 
HEPES; Gibco, Thermo Fisher, Waltham, MA) containing 
10% fetal bovine serum and 1% penicillin/streptomycin 
supplemented with 15% L929-conditioned medium (as 
source of M-CSF; produced as described in [16]) and cul-
tured at 37 °C and 5% CO2 to differentiate into BMDMs. 
After 7  days of differentiation, adherent BMDMs were 
washed with PBS and detached with trypsin (Lonza, 
Basel, Switzerland). Cells were seeded in 48-wells flat 
bottom culture pates (Greiner Bio-one Frickenhausen, 
Germany) at a density of approximately 250,000 cells per 
well in complete medium and left to adhere overnight.

Isolation of alveolar macrophages
Naive mice were anesthetized with isoflurane and ter-
minated by cervical dislocation. AMs were harvested by 
bronchoalveolar lavage (BAL) with PBS containing 2 mM 
ethylenediaminetetraacetic acid (EDTA). Cells were 
seeded in 96-wells flat bottom culture pates (Greiner Bio-
one Frickenhausen, Germany) at a density of approxi-
mately 40,000 cells per well in complete medium and left 
to adhere overnight.

Cell stimulation
Adherent BMDMs and AMs were washed with PBS, and 
stimulated for 4 or 24  h with 10  µg/ml ultrapure LTA 
(from S. aureus, Invivogen, San Diego, CA), heat-killed 
Spneu 6303 (ATCC 6303, American Type Culture Collec-
tion, Manassas, VA) at a multiplicity of infection (MOI) 
10:1, a non-encapsulated mutant strain of Spneu D39 
(isogenic capsule locus (cps) deletion mutant D39Δcps) 
[17] MOI 100:1, or medium control. After stimulation, 
supernatant for cytokine measurements was stored at 
− 20  °C and analyzed as described beneath. Viability of 
BMDMs was assessed after 24  h of stimulation in non-
adherent polypropylene 96-wells plates (Greiner Bio-
One, Kremsmünster, Austria). Cells were washed with 
PBS, stained with fixable viability dye eFluor 780 (Invitro-
gen) and analyzed by flow cytometry as outlined beneath.

Lung inflammation model
Lung inflammation in mice was induced by intranasal 
administration of 100  µg of ultrapure LTA (S. aureus, 
Invivogen, San Diego, CA) in 50 µl normal saline as previ-
ously described [18, 19]. Six hours after LTA installation, 
mice were euthanized as described above and BAL was 
performed with 5 × 500 µl sterile PBS containing 2 mM 
EDTA (Invitrogen, Carlsbad, CA). BAL fluid (BALF) was 
stored at − 20  °C until analysis; cells were analyzed by 
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flow cytometry. Lungs were digested as described before 
[6] and stained for analysis by flow cytometry.

Mouse infection model
Pneumonia was induced by intranasal inoculation with 
approximately 5 × 104 colony forming units (CFU) of 
Spneu serotype 3 (ATCC 6303) or 1 × 108 CFU of Spneu 
D39Δcps. Infection and processing of organs were done 
as described elsewhere [20]. In brief, mice were eutha-
nized at 12 or 40  h after infection with Spneu 6303 for 
collection of blood, lungs, spleens and livers. Tissue was 
homogenized or fixed for histopathology (lungs). Spneu 
D39Δcps-infected mice were euthanized after 5  h of 
infection for collection of BALF and lungs (for homog-
enization). Bacterial loads were determined by counting 
CFU from serial dilutions plated on blood agar plates, 
incubated at 37  °C for 16  h. Lung homogenates were 
made exactly as described previously [21]. Briefly, lung 
material was collected in 4 volumes of cold (4 °C) sterile 
saline and homogenized for 10  s using a tissue homog-
enizer (Qiagen). For cytokine and chemokine meas-
urements, lung homogenates were lysed in an equal 
volume of lysis buffer (150 mM NaCl, 15 mM Tris, 1 mM 
MgCl(H2O)6, 1  mM CaCl2(H2O)2, 1% Triton, pH 7.4) 
with protease inhibitor (Roche Complete Protease Inhib-
itor cocktail) on ice for 30  min. Lysates were then spun 
down; supernatants were stored at − 20 °C until analysis.

Flow cytometry
Total cell counts in BALF and lung digestions were 
assessed by flow cytometry using Precision Count 
Beads™ (BD Bioscience, San Jose, CA). Cell subsets were 
identified by staining with fixable viability dye eFluor 780 
(Invitrogen) and the following antibodies: rat anti-mouse 
CD45 PE-eFluor610 (clone 30-F11), hamster anti-mouse 
CD11c PerCP-Cy5,5 (clone HL3), rat anti-mouse CD11b 
PE-Cy7 (clone M1/70), rat anti-mouse Siglec-F Alex-
aFluor647 (clone E50-2440), rat anti-mouse Ly-6G Alex-
aFluor700 (clone 1A8) (all from BD Biosciences); mouse 
anti-mouse CD64 PerCP-Cy5,5 (clone X54-5/7.1), rat 
anti-mouse MerTK PE (clone 2B10C42), rat anti-mouse 
Ly-6G FITC (clone 1A8) (all from Biolegend, San Diego, 
CA). Flow cytometry was performed using a CytoFLEX S 
(Beckman Coulter) and data were analyzed using FlowJo 
software (BD Biosciences). Gating of cell populations was 
performed as described previously [6]. Neutrophils were 
gated on CD11cnegLy6Gpos cells.

RNA isolation and transcription analysis
Total RNA was extracted from BMDMs using the Nucle-
ospin RNA isolation kit (Marcherey-Nagel, Düren, Ger-
many) following the manufacturer’s instructions. Reverse 
transcription was performed using the M-MLV Reverse 

Transcriptase (Promega, Madison, WI) in the presence 
of RNase inhibitor (ThermoFisher, Waltham, MA) with 
300  ng of DNase I (Roche, Basel, Switzerland) treated 
total RNA. RT-PCR was performed on LightCycler 480 
(Roche, Basel, Switzerland) using the SensiFAST SYBR 
No-ROX Kit (Bioline, London, UK). Gene expression was 
normalized to HPRT as a housekeeping gene.

Assays
Interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor 
α (TNFα), C-X-C Motif Chemokine Ligand (CXCL)1, 
CXCL2 and myeloperoxidase (MPO) were measured by 
ELISA according to the manufacturers protocol (R&D 
Systems, Minneapolis, MN).

Histopathology
Pathology was performed exactly as described [21]. 
Briefly, one lung lobe of each mouse was carefully har-
vested by cutting the bronchia with a scissor, placed 
in a pathology cassette and fixed in standard 10% for-
maldehyde (i.e. 4% paraformaldehyde) for 24  h at room 
temperature and embedded in paraffin. Four-microm-
eter sections of the lung were stained with hematoxylin 
and eosin and scored by an independent pathologist as 
described elsewhere [20]. The following parameters were 
scored on a scale of 0 (absent), 1 (mild), 2 (moderate), 3 
(severe), and 4 (very severe): interstitial inflammation, 
endothelitis, bronchitis, edema, thrombus formation, and 
pleuritis. In all experiments, the samples were scored by 
the same pathologist blinded for experimental groups.

Statistical analysis
Non-parametric variables were analyzed using the 
Mann–Whitney U test. Parametric variables were ana-
lyzed using Student’s t-tests for 2-group comparisons and 
multiple t-tests for 2-group comparisons with > 2 condi-
tions. Analysis were done using GraphPad Prism version 
9.1.0 (GraphPad Software, San Diego, CA). Statistical sig-
nificance is shown as *P < 0.05, **P < 0.01, ***P < 0.001 or 
****P < 0.0001.

Results
Lkb1‑deficiency in macrophages is associated 
with impaired TNFα production upon stimulation 
with Spneu or LTA
To investigate the role of Lkb1 in macrophages during 
activation by Spneu, we generated myeloid-specific Lkb1-
deficient (Stk11-ΔM) mice by crossing Lkb1-floxed mice 
(Stk11fl/fl) with LysMcre mice. A previous study by our 
group confirmed very low Lkb1 protein expression in 
BMDMs and AMs of Stk11-ΔM mice compared to litter-
mate controls [6]. The ability to initiate a proper immune 
response by Lkb1-deficient macrophages was studied by 
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in  vitro stimulation of BMDMs and AMs with different 
strains of heat-killed pneumococci and the Gram-posi-
tive bacterial wall component LTA. We focused on TNFα 
since this proinflammatory cytokine is readily produced 
by AMs upon stimulation with Spneu [22, 23] and plays 
a major role in host defense during pneumonia caused 
by this pathogen [24]. Lkb1 deficient BMDMs exposed 
to LTA, the encapsulated Spneu 6303 or the unencap-
sulated Spneu D39Δcps showed reduced TNFα mRNA 
levels (4-h incubation) as compared to controls BMDMs 
(Fig.  1A). TNFα protein release by Stk11-ΔM BMDMs 
was also decreased after 4-h stimulation with Spneu 
6303 or Spneu D39Δcps, and after 24  h for all condi-
tions (Fig. 1B). Because Lkb1 deficiency has been associ-
ated with increased apoptosis [7], we sought to establish 
that the effect of reduced TNFα production was not due 
to impaired viability of Stk11-ΔM BMDMs. To enable 

measurement of cell viability by flow cytometry, we cul-
tured BMDMs in non-adherent plates and stained them 
with a fixable viability dye. After stimulation with either 
LTA, Spneu 6303 or Spneu D39Δcps, the percentage live 
BMDMs was close to 100% and similar between geno-
types (Additional file  1: Fig. S1A). We confirmed that 
the non-adherent condition did not alter the phenotype 
of Lkb1-deficient BMDMs, as they also showed impaired 
TNFα secretion (Additional file 1: Fig. S1B).

In two separate experiments, we studied the role of 
Lkb1 in TNFα production by AMs in response to LTA 
and Spneu 6303 (Fig. 1C), and Spneu D39Δcps (Fig. 1D). 
Lkb1-deficient AMs were impaired in their ability to pro-
duce TNFα in all mentioned conditions when compared 
with control AMs. Altogether, these results suggest that 
Lkb1 potentiates TNFα production by BMDMs and AMs 
upon activation by Spneu.
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Fig. 1  Lkb1-deficiency in macrophages is associated with decreased expression and production of TNFα upon stimulation with LTA or 
pneumococci. Bone marrow-derived macrophages (BMDMs) and alveolar macrophages (AMs) were harvested and stimulated with LTA (10 μg/
ml), heat-killed Streptococcus pneumoniae (Spneu) 6303 (MOI 10:1) and uncapsulated Spneu D39 (D39Δcps) (MOI 100:1), or medium control. mRNA 
levels of TNFα (normalized to the housekeeping gene HPRT) in BMDMs after 4 h stimulation (A). TNFα production by BMDMs after 4 h and 24 h 
stimulation (B). TNFα production by AMs after 24 h stimulation with LTA and Spneu 6303 (C) and Spneu D39Δcps (D). Data are shown as bar graphs 
with mean ± SD representing technical replicates (n = 4 for BMDMs and n = 6 for AMs per condition). Gene expression and cytokine levels of 
macrophages from Stk11-ΔM mice were compared to littermate control mice using multiple t-test. *P < 0.05; **P < 0.01, ***P < 0.001, ****P < 0.0001
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Stk11‑ΔM mice show reduced cytokine release 
and neutrophil influx in the lungs after LTA challenge
To investigate whether the role of Lkb1 in AMs would 
also stand during an acute inflammatory response in vivo, 
we administered LTA via the airways of Stk11-ΔM and 

control mice and studied the cell composition in BALF 
and the lung, as well as cytokine and chemokine lev-
els in BALF (Fig.  2). Previous results from our group 
showed a decreased number of AMs in the lungs of 
naive Stk11-ΔM mice, which was explained by lower 
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Fig. 2  Macrophage Lkb1-deficient mice show reduced neutrophil influx and cytokine release into the airways on LTA challenge. Cell counts and 
phenotypes in lungs (A), BALF (B, C) and cytokine concentrations in BALF 6 h after intranasal inoculation with 100 μg LTA. Numbers of neutrophils 
and alveolar macrophages (AMs) in the lung (A) and BALF (B) after LTA challenge. Neutrophils were gated on CD11cnegLy6Gpos cells. AM subtypes: 
“classic” AMs (cAMs) (CD11cposSiglecFhighCD11bneg), “non-classic” AMs (ncAMs) (CD11cposSiglecFlowCD11bpos) and interstitial macrophages (IMs) 
(SiglecFneg and CD11bhigh). C Total number and fractional contribution of cAMs and ncAMs in BALF. D Cytokine and chemokine concentrations in 
BALF. Data are shown as bar graphs showing mean ± SD, representing 8 mice per group. Cell counts and cytokine levels of the Stk11-ΔM mice were 
compared to littermate controls using multiple student t-test for cells counts (A–C) and the Mann–Whitney U test for cytokine levels (D). *P < 0.05; 
**P < 0.01, ***P < 0.001, ****P < 0.0001
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numbers of ‘classical’ (CD11cposSiglecFhighCD11bneg) 
AMs (cAMs) [6]. We were therefore interested to inves-
tigate the pulmonary cell composition after an inflam-
matory challenge in these mice. In agreement with our 
findings in naïve mice [6], LTA challenged Stk11-ΔM 
mice had lower AMs counts in whole lung cell suspen-
sions, caused by reduced cAM numbers (Fig.  2A). As a 
possible compensatory mechanism, LTA administered 
Stk11-ΔM mice had higher numbers of “non-classical” 
(CD11cposSiglecFlowCD11bpos) AMs (ncAMs) and inter-
stitial macrophages (IMs), but this did not restore total 
AM numbers to those in control mice. In addition, 
Stk11-ΔM mice had a significantly reduced neutrophil 
influx (CD11cnegLy6Gpos cells) into the lung compared to 
control mice 6 h after LTA inoculation (Fig. 2A). Impor-
tant to note is that the lungs were digested after BAL 
was performed, indicating that these numbers represent 
cells residing in lung tissue. In BALF, neutrophil influx 
was also impaired in Stk11-ΔM mice, while AM counts 
were similar to those in control mice (Fig.  2B). Akin to 
results from lung tissue, cAM numbers were higher 
and ncAM counts lower in BALF from Stk11-ΔM mice 
(Fig. 2C). Moreover, LTA challenged Stk11-ΔM mice had 
significantly lower levels of cytokines (TNFα, IL-6) and 
chemokines (CXCL1, CXCL2), as well as MPO concen-
trations, in BALF compared to control mice (Fig.  2D). 
These data suggest that macrophage Lkb1 contributes to 
LTA-induced lung inflammation.

Stk11‑ΔM mice show an unaltered response 
during pneumonia caused by encapsulated Spneu
We next sought to determine the role of myeloid cell 
Lkb1 in the host response during pneumonia caused by 
viable pneumococci. To this end, we infected Stk11-ΔM 
and control mice with Spneu 6303 and measured bacte-
rial growth and dissemination, and lung inflammatory 
reactions at 12 and 40  h after infection. Remarkably, 
Lkb1 deficiency in myeloid cells did not influence any 
of the responses, as illustrated by comparable bacterial 
outgrowth in lungs and distant organs (Fig. 3A and Addi-
tional file  2: Fig. S2), and similar lung pathology scores 
(Fig. 3B) and pulmonary cytokine levels (Fig. 3C).

Impaired TNFα release in the lung of Stk11‑ΔM mice 
during pneumonia with non‑encapsulated Spneu
The capsule of Spneu is a major virulence factor, shield-
ing the pathogen from the host immune system [2]. 
Our group previously showed that part of the virulence 
of encapsulated pneumococci depends on the capac-
ity of the capsule to impede recognition of TLR ligands 
expressed by this bacterium [17]. Considering that Spneu 
6303 has a particularly thick capsule [25], we hypoth-
esized that a role of myeloid cell Lkb1 would be exposed 

after infection with a unencapsulated Spneu strain. 
Therefore, we infected Stk11-ΔM and control mice with 
viable D39Δcps and compared their responses. Myeloid 
Lkb1-deficiency did not affect Spneu D39Δcps counts 
in the lungs 5  h after infection (Fig.  4A). Furthermore, 
neutrophil influx (CD11cnegLy6Gpos cells) and total AM 
counts in BALF were similar between Stk11-ΔM and con-
trol mice (Fig. 4B). However, in line with the findings in 
the LTA-inflammation model, the proportion of ncAMs 
was higher in Stk11-ΔM mice. The levels of TNFα were 
lower in BALF (Fig. 4C) and lungs (Additional file 3: Fig. 
S3) of Stk11-ΔM compared to control mice, whilst levels 
of IL-6, CXCL1, CXCL2 and MPO were similar between 
groups. These results suggest that myeloid cell Lkb1 only 
plays a role in TNFα production after infection with 
unencapsulated Spneu, while all inflammatory responses 
do not rely on Lkb1.

Discussion
Lkb1 has been widely studied as a tumor suppressor gene 
in the context of cancer. Here we used myeloid-specific 
Lkb1 deficient mice to demonstrate that Lkb1 plays a role 
in the TLR2-mediated inflammatory response. In two 
types of macrophages, AMs and BMDMs, loss of Lkb1 
was associated with reduced TNFα production upon 
stimulation with LTA and Spneu. Moreover, during lung 
inflammation upon LTA challenge, mice lacking Lkb1 
in myeloid cells had decreased AM numbers and lower 
cytokine levels in the lungs. However, myeloid Lkb1 
appeared not to play a role in the host response during 
respiratory infection caused by viable pneumococci.

Earlier studies on the role of Lkb1 in the inflammatory 
response of macrophages focused on effects of the Gram-
negative bacterial component LPS, a TLR4 agonist [4–6, 
26]. To our best knowledge the involvement of Lkb1 in 
the TLR2-mediated response specific for Gram-positive 
bacteria has remained unexplored. In the current study, 
we expand existing evidence that the role of Lkb1 in 
pneumonia is pathogen specific. A previous study from 
our group documented that myeloid Lkb1-deficiency 
results in reduced numbers of AMs in the lung, and that 
Lkb1 deficient AMs had an unaltered TNFα produc-
tion upon in  vitro exposure to LPS or the Gram-nega-
tive pathogen K. pneumoniae [6]. Another investigation 
reported that Lkb1 inhibits LPS-induced NF-κB acti-
vation, resulting in higher TNFα production by Lkb1-
deficient BMDMs [5]. Contrarily, our current data show 
that upon in  vitro stimulation of AMs with the Gram-
positive bacterial component LTA (a TLR2 agonist) [14], 
Lkb1 is required for adequate TNFα production. This 
role of Lkb1 in response to LTA-induced cytokine pro-
duction was confirmed in another type of macrophages 
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(BMDMs), and by stimulation with the Gram-positive 
bacterium Spneu.

During lung inflammation caused by a LTA challenge 
via the airways, Stk11-ΔM mice had decreased cytokine 
release (including IL-6) and a reduced neutrophil influx 
into the lungs. In the early phase of a proinflammatory 
response to invasive pathogens in the airways, neutro-
phil recruitment into the lung is generally orchestrated 
by AMs [27]. During LTA-induced lung inflamma-
tion, neutrophil influx occurs in a TLR2-dependent 

manner [28]. Reduced numbers of AMs in the lungs 
of Stk11-ΔM mice, as well as the impaired function 
of Lkb1-deficient AMs as determined in the in  vitro 
model, could explain the decreased recruitment of neu-
trophils, along with the lower levels of the neutrophil 
degranulation product MPO in BALF of Stk11-ΔM 
mice. Of note, our group previously showed that neu-
trophil influx was not impaired in Stk11-ΔM mice 
challenged with the TLR4 agonist LPS, which was 
accompanied by unaffected IL-6 levels [6]. Together 
these data suggest that neutrophil recruitment upon 
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airway administration of LTA may partially be medi-
ated by AMs and TLR2-Lkb1 mediated IL-6 production 
[29].

Upon infection with the non-encapsulated Spneu 
strain, neutrophil influx into the lung was not signifi-
cantly impaired in myeloid Lkb1-deficient mice, and 
MPO levels in BALF were comparable to control mice. 
This implicates that the presence of pneumococci in the 
lung, independently of their thick capsule, leads to neu-
trophil recruitment by means other than TLR2-Lkb1 
mediated signalling in AMs. Apart from its capsule, 
pneumococci carry other important virulence factors, 
such as pneumolysin [2]. Whilst Spneu is primarily rec-
ognized by TLR2 [2, 23], TLR4 has been implicated as 
the receptor for pneumolysin and could therefore be a 
potential mediator of the neutrophil influx [30, 31]. Fur-
thermore, detection of bacterial DNA from Spneu by 
TLR9 has been identified as an important receptor in the 
defence to pneumococci, as TLR9 deficient mice were 
highly susceptible to lethal infection [32]. Another expla-
nation for the difference in Lkb1-mediated host response 
to LTA and Spneu could be a role of non-myeloid cells 
(not affected in Stk11-ΔM mice), considering that mice 
with a global TLR2 deficiency showed a reduced neutro-
phil influx during pneumococcal pneumonia [23]; airway 
epithelial cells may play a role in this context [33, 34].

In experiments using viable pneumococci, myeloid 
Lkb1 deficiency did not impact inflammatory responses 
with the exception of TNFα production after infection 
with the non-encapsulated Spneu D39Δcps strain. This 
finding taken together with the unaltered TNFα levels in 
Stk11-ΔM mice infected with the capsulated Spneu strain 
is in agreement with a previous in vivo investigation from 
our laboratory showing that during pneumonia the pneu-
mococcal capsule can impede recognition of TLR ligands 
expressed by this bacterium [17].

A limitation of this study is the fact that the LTA used 
in the experiments was derived from S. aureus and not 
Spneu, while their structures differ in some significant 
ways [35]. Notably, however, even within different strains 
of Spneu, LTA structures and characteristics vary. None-
theless, a study comparing LTA from S. aureus and two 
different Spneu strains, described no differences in 
important characteristics such as TLR2-dependence for 
TNF production [36]. Another limitation of our study is 
that we have not used highly purified LTA from surface 
lipoprotein-deficient (∆lgt) bacteria, but a preparation 
which may contain lipoproteins. Several studies have 
shown that lipoproteins, rather than LTA, are the actual 
bioactive TLR2 ligands in purified preparations of LTA 
[37–39]. Since both Spneu LTA and lipoproteins have 
previously been implicated in activation of TLR2 [40, 41], 
our experiments with LTA provide insight into the role 

of Lkb1 in the inflammatory response to TLR2 ligands. 
Further studies, however, with synthethic TLR2 ligands 
or LTA preparations from Spneu∆lgt are required to 
establish which bacterial ligands trigger Lkb1-dependent 
inflammatory responses.

Conclusions
We here report that myeloid Lkb1 has an important role 
in the induction of TLR2 mediated lung inflammation. 
In contrast, its contribution to the host response dur-
ing infection of the respiratory tract by viable pneumo-
cocci is highly limited. Taken together with our earlier 
study showing a strongly impaired antibacterial defense 
during pneumonia caused by Klebsiella [6], these results 
exemplify the complex nature of the innate immune 
response in the airways, triggered by an interaction 
between various pattern recognition receptors expressed 
by distinct host cell types and a variety of pathogen 
associated molecular patterns expressed by multiplying 
microorganisms.
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