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Early transcriptional responses of bronchial 
epithelial cells to whole cigarette smoke mirror 
those of in‑vivo exposed human bronchial 
mucosa
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Abstract 

Background:  Despite the well-known detrimental effects of cigarette smoke (CS), little is known about the com-
plex gene expression dynamics in the early stages after exposure. This study aims to investigate early transcriptomic 
responses following CS exposure of airway epithelial cells in culture and compare these to those found in human CS 
exposure studies.

Methods:  Primary bronchial epithelial cells (PBEC) were differentiated at the air–liquid interface (ALI) and exposed to 
whole CS. Bulk RNA-sequencing was performed at 1 h, 4 h, and 24 h hereafter, followed by differential gene expres-
sion analysis. Results were additionally compared to data retrieved from human CS studies.

Results:  ALI-PBEC gene expression in response to CS was most significantly changed at 4 h after exposure. Early 
transcriptomic changes (1 h, 4 h post CS exposure) were related to oxidative stress, xenobiotic metabolism, higher 
expression of immediate early genes and pro-inflammatory pathways (i.e., Nrf2, AP-1, AhR). At 24 h, ferroptosis-associ-
ated genes were significantly increased, whereas PRKN, involved in removing dysfunctional mitochondria, was down-
regulated. Importantly, the transcriptome dynamics of the current study mirrored in-vivo human studies of acute CS 
exposure, chronic smokers, and inversely mirrored smoking cessation.

Conclusion:  These findings show that early after CS exposure xenobiotic metabolism and pro-inflammatory path-
ways were activated, followed by activation of the ferroptosis-related cell death pathway. Moreover, significant over-
lap between these transcriptomic responses in the in-vitro model and human in-vivo studies was found, with an early 
response of ciliated cells. These results provide validation for the use of ALI-PBEC cultures to study the human lung 
epithelial response to inhaled toxicants.
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Introduction
Cigarette smoking remains the principal preventable 
cause of death (eight million deaths/year) associated with 
multiple diseases, including chronic obstructive pulmo-
nary disease (COPD), lung cancer, and cardiovascular 
diseases [1–5]. The respiratory epithelium is the first 
line of defence against inhaled pathogens and toxicants, 
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including cigarette smoke (CS). Billatos and colleagues 
demonstrated that individuals without recent CS expo-
sure developed an altered epithelial gene expression pro-
file 24  h after smoking three cigarettes [6], highlighting 
the rapid effects of CS on the airway epithelium. Moreo-
ver, numerous studies have shown that the gene expres-
sion profile of the airway epithelium is markedly different 
in active smokers [7–11]. Smoking cessation studies have 
revealed that altered expression of most smoking-related 
genes is transient and normalises over time to non-
smoker level. There is, however, a subset of genes that 
remains persistently altered, possibly related in part to 
lung tissue remodelling [7, 12].

In order to understand the physiological and patho-
logical processes resulting from CS, it is pivotal to 
unravel the complex dynamics of the transcriptional 
changes already in the early phase after exposure, as well 
as to better understand how they relate to the develop-
ment of long-term effects, such as impaired mucociliary 
clearance and tissue remodelling. Especially the char-
acterization of immediate early genes (IEGs) remains 
understudied and could give interesting insights into 
the rapid cellular response possibly dictating the long-
term effects and immune responses. IEGs are a collec-
tion of genes that are induced within minutes to hours by 
various triggers as these do not require de novo protein 
synthesis, and many are transcription factors or other 
DNA-binding proteins involved in transcription of genes 
involved in later responses [13, 14]. Human studies pose 
limitations into obtaining mechanistic insight in this very 
early phase. On the other hand, the translation of results 
from animal studies to humans is often problematic [15]. 
In-vitro models can therefore be more suitable, but their 
relevance is very dependent on the set-up. CS consists 
of more than 7000 chemical components, of which 158 
are considered as toxicants [16, 17]. These toxicants are 
distributed between the particulate and gaseous phases. 
However, in-vitro research on CS traditionally focuses 
on cell cultures which are exposed to cigarette smoke 
components dissolved in a medium under submerged 
conditions [18]. Whole CS exposure systems can capture 
the full interaction between the particulate and gaseous 
phase of CS but require a cell culture that is exposed to 
air. Therefore, various studies have now successfully 
used whole CS exposure of primary human airway epi-
thelial cells cultured at the physiological relevant air–
liquid interface (ALI) [19, 20]. Furthermore, these ALI 
cultures allow epithelial differentiation to a mucociliary 
layer that closely mimics the cellular makeup and func-
tion of the airway epithelium in situ in contrast to con-
ventional undifferentiated, submerged culture [21]. A 
direct comparison of results obtained using such systems 
to epithelial changes in smokers is an important step in 

the validation of cell culture models to study the epithe-
lial response to inhaled toxicants such as cigarette smoke, 
and would, furthermore, help to promote transition of 
animal experimentation to in-vitro models.

The aim of the present study is to first perform an 
in-depth transcriptomic analysis of the early and late 
response of human primary differentiated airway epithe-
lial cell cultures to whole cigarette smoke. Additionally, 
we aimed to compare these results to datasets obtained 
from human CS studies to validate the use of these 
models.

Methods
Study population and sample selection
Cells were isolated from macroscopically normal lung 
tissue obtained from patients undergoing resection sur-
gery for lung cancer at the Leiden University Medical 
Center, the Netherlands. Patients (N = 8) from which this 
lung tissue was derived were enrolled in the biobank via 
a no-objection system for coded anonymous further use 
of such tissue (www.federa.org). However, since 29-11-
2020, patients are enrolled in the biobank using active 
informed consent in accordance with local regulations 
from the LUMC biobank with approval by the institu-
tional medical ethical committee (B20.042/Ab/ab and 
B20.042/Kb/kb).

Patients were diagnosed with lung cancer and had var-
ying smoking status, including smokers, ex-smokers, and 
non-smokers. No participants were clinically diagnosed 
with COPD or were receiving oral or inhaled steroids at 
the time of tissue collection. A summary of the partici-
pants’ characteristics is provided in Table 1.

ALI‑PBEC culture preparation and RNA‑sequencing
PBEC were differentiated in ALI and were exposed to 
whole cigarette smoke (CS), freshly generated from one 
cigarette, or air (Air) as control for 4–5 min. Cells were 
harvested for RNA-sequencing at 1 h, 4 h, and 24 h after 
exposure. The detailed description of the processing 
and differentiation of the ALI-PBEC culture, the CS/Air 
set-up, and RNA-sequencing is described in the online 

Table 1  Donor characteristics

SD standard deviation

Number of participants 8

Male/Female 7/1

Age (years) mean [SD] 66.6 [6.2]

BMI mean [SD] 25.5 [3.7]

Smoking Status (non-/ex-/smokers) 1/3/4

FEV1/VC mean [SD] 68.9 [11.7]
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supplement  (Additional file  1). A method flowchart is 
provided in Fig. 1.

Differential gene expression
Differential gene expression analysis was performed 
between CS and Air in a paired analysis using the edgeR 
package (version 3.30.3) in R (version 4.0.2). To correct 
for multiple testing, the false discovery rate (FDR) was 
set to 5% using the Benjamini–Hochberg procedure. Fold 
change (FC) above 2 and below -2 was considered signifi-
cantly up- and downregulated, respectively. The associ-
ated pathways were identified in gprofiler (https://​biit.​cs.​
ut.​ee/​gprof​iler/​gost). Gene set variation analysis (GSVA) 
was performed on the differentially expressed genes 
(DEGs) and identified pathways using the GSVA package 
(version 1.36.2) in R (version 4.0.2). The differential gene 
expression and pathway analysis is described in detail in 
the online supplement (Additional file 1).

Cell‑type deconvolution
Cell-type deconvolution analysis was performed to asso-
ciate gene signatures with epithelial cell types, and is 
described in the online supplement (Additional file  1) 
[22].

Comparative analysis with smoke‑related in‑vivo 
and in‑vitro studies
Gene expression analysed in a number of previously pub-
lished in-vivo human CS-related studies were compared 
with the current in-vitro study. The selected studies were: 
(i) an acute cigarette smoke exposure study (“Impact of 
acute exposure to cigarette smoke on airway gene expres-
sion”; ClinicalTrials.gov, Identifier: NCT00850863) [6]. 
In this study, airway epithelial brushings were collected 
from 63 individuals without recent smoke exposure (two 
days or longer) 24 h after smoking three cigarettes. Base-
line bronchial brushings were collected six weeks or more 
post-CS exposure. DGE was performed between the 
baseline and post-CS exposure (FC >|1.5|, FDR < 0.05). 
The threshold was lower in the study as there were no 
significant genes at FC >|2|. The second data set was 
used from (ii) a chronic cigarette smoke exposure study 
(“Nasal epithelium as a proxy for bronchial epithelium 
for smoking-induced gene expression and expression 
Quantitative Trait Loci”; ClinicalTrials.gov, Identifier: 
NCT00848406) [23]. In this study bronchial biopsies 
were collected from 42 healthy chronic smokers and 35 
never smokers. DGE was performed between chronic 
smokers and never smokers (FC >|2|, FDR < 0.05). Lastly, 

Fig. 1  Experimental design of ALI-PBEC study. Primary bronchial epithelial cell cultures were derived from resected lung tissue (n = 8) and 
differentiated at the air–liquid interface (ALI). Differentiated cultures were exposed once to whole cigarette smoke (CS) or Air and samples were 
collected at 1 h, 4 h and 24 h after exposure for RNA-sequencing and ELISA. Bioinformatics analysis was performed on the RNA-seq dataset. 
Incubator controls were kept untouched in the cell culture incubator during the whole procedure. DGE: differential gene expression, GSVA: gene set 
variation analysis, PBEC: primary bronchial epithelial cell, ALI: Air–liquid interface

https://biit.cs.ut.ee/gprofiler/gost
https://biit.cs.ut.ee/gprofiler/gost
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(iii) data from a smoke cessation study (“Effect of 1-year 
smoking cessation on airway inflammation in COPD 
and asymptomatic smokers”) was used [24, 25]. In this 
study bronchial biopsies were collected from 16 cigarette 
smokers before and after one year of smoking cessation. 
DGE analysis was performed between pre- and post-
cessation (FC >|2|, FDR < 0.05). Expression of these dif-
ferentially expressed genes from each of the mentioned 
in-vivo human studies was analysed by GSVA pack-
age (version 1.36.2) in R (version 4.0.2). Furthermore, 
we also compared our DEGs with (iv) publicly available 
single-cell sequencing of bronchial brushings collected 
from healthy never smokers (n = 6) and current smok-
ers (n = 6) (“Characterizing smoking-induced transcrip-
tional heterogeneity in the human bronchial epithelium 
at single-cell resolution”, GSE131391) [26]. Signature 
expression of the DEGs in the current in-vitro study was 
assessed in the single-cell in-vivo study. The analysis was 
performed using Seurat package (version 4.0.2) in R (ver-
sion 4.0.5). Gene expression measurements were nor-
malised using the global-scaling normalisation method, 
‘LogNormalize’, and linear transformation was applied 
using the highly variable genes identified by the variance-
stabilising method. The dimensional reduction was per-
formed using principal component analysis, and the cells 
were clustered at 0.2 resolution using the Louvain algo-
rithm. To visualise the dataset, the nonlinear dimension-
ality reduction technique UMAP was selected. Cell types 
were identified using the canonical marker genes, which 
were also used in the respective in-vivo study.

Additionally, we also compared our study with two 
e-cigarette related studies. One is (v) an in-vitro study 
(“Molecular impact of electronic cigarette aerosol 
exposure in human bronchial epithelium”, GEO acces-
sion: GSE82137), where we performed GSVA on the 
DEGs between e-cigarette (with or without nicotine) 
and air, using the gene expression dataset of the cur-
rent study [27]. In this study, differentiated ALI-PBECs, 
collected from the lungs of a single healthy male donor, 
were exposed to whole CS, e-cigarette aerosol (with and 
without nicotine) or air. DGE was performed between 
CS/e-cigarette and air (FC >|2|, FDR < 0.05). The other 
study was (vi) an in-vivo e-cigarette study where bron-
chial epithelial cells were collected from former cigarette 
smokers (n = 21), e-cigarette users (n = 15), and current 
cigarette smokers (n = 9) (“Gene Expression Altera-
tions in Bronchial Epithelium of Electronic Cigarette 
Users”, GEO accession: GSE112073) [28]. The study was 
an observational study. However, in this study no differ-
entially expressed genes were identified between e-ciga-
rette smokers and former smokers (FC >|2|, FDR < 0.05). 
Therefore, we used DEGs identified in the current study 
at 24 h between CS and Air and performed GSVA using 

the gene expression dataset of the in-vivo e-cigarette 
smoke study.

Statistical analysis
Analyses of the significance of differences between CS 
and Air gene signatures using GSVA were performed 
using two-way ANOVA with Sidak’s multiple compari-
sons test in Prism 8 (version 8.4.3).

Results
Transcriptional profiling of the response of differentiated 
ALI‑PBEC to whole CS
Mucociliary-differentiated ALI-PBEC cultures were gen-
erated from 8 different donors and exposed to whole 
CS or Air. At several time-points hereafter (1 h, 4 h and 
24 h), RNA-sequencing was performed to measure total 
gene expression (Fig. 1). At 1 h after exposure, 72 genes 
were significantly increased in expression when compar-
ing CS to Air, and 40 genes were significantly reduced 
in expression (FDR < 0.05, FC >|2|). Within the set of 72 
increased genes, a variety of IEGs were identified includ-
ing NRFA1 and 2, FOS, FOSB, JUN, ATF3, and EGR-1. 
In addition, a number of xenobiotic metabolism-asso-
ciated genes were identified, including the well-known 
CYP1A1 and CYP1B1 [29, 30]. The highest number of 
DEGs across all exposures was found after 4 h when 633 
genes were significantly increased in expression compar-
ing CS to Air, and 415 genes were significantly reduced in 
expression (FDR < 0.05, FC >|2|). At 4 h, genes associated 
with the Nrf2 pathway such as TXNRD1, GSR, HMOX1, 
and the inflammatory mediator CXCL8 were significantly 
increased [31, 32]. At 24 h, we found 68 DEGs, comparing 
CS to Air (42 increased, and 26 decreased (FDR < 0.05, 
FC >|2|)). Ferroptosis-related genes, such as, FTL, TFRC, 
FTH1, were actively transcribed, and PRKN, which plays 
a central role in removing dysfunctional mitochondria, 
was significantly downregulated in response to CS [33, 
34]. The complete dataset is summarised in Fig.  2. The 
top DEGs for each time points are provided in Table  2 
and Additional file  2: Table  S1 respectively. ALI-PBEC 
cultures were exposed in two independent experiments 
(n = 4 donors each) with minor variation in overall smoke 
exposure (2.1 mg and 3.9 mg). A total of 49 and 92 genes 
were found to be different between the two batches at 1 h 
and 4 h, respectively, while no genes differed after 24 h of 
exposure (Additional file 1: Figure S1).

To determine whether the genes that were significantly 
increased in expression at earlier time points remained 
differentially expressed at 24  h post-exposure, we con-
ducted gene set variation analysis (GSVA). GSVA esti-
mates the relative enrichment score for a gene-set per 
sample, instead of a single gene value for each sample. 
This facilitates the interpretation of large gene expression 
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dataset. The results showed that early response genes 
turned on in the first hour were reduced by 4 h and com-
pletely turned off by 24 h (p < 0.05, Fig. 3A, B), whereas 
long-term responsive genes that remained differentially 
expressed by 24  h were already switched on within the 
first hour after exposure (Fig. 3C–F).

Pathways associated with DEGs upon CS exposure
To investigate pathways associated with the observed 
changes in gene expression after CS exposure, we used 
gprofiler. This unbiased analysis revealed that at earlier 
time points (1 h and 4 h after exposure), pathway asso-
ciated with oxidative stress, and xenobiotic metabo-
lism were significantly upregulated (p < 0.05) (Table 3). 
Moreover, we selected a list of eight genes (FOS, FOSB, 
JUN, NR4A1, NR4A2, MCL1, ATF3, EGR1) which have 
been identified as immediate early genes (IEGs) across 
several publications [13, 35]. All of these genes except 
MCL1 had their maximal expression at the 1  h time 
point with a reduction by the 4 h time point (Additional 
file 1: Figure S2). Furthermore, activator protein-1 (AP-
1) and aryl hydrocarbon receptor (AhR)-related path-
ways were also significantly upregulated at 1  h after 
CS exposure (p < 0.05). GSVA on IEGs, AhR- and AP-
1-pathway-related genes showed that expression was 
maximal at 1  h after CS and remained significantly 

enriched at all following time points compared to 
Air (p < 0.05) (Fig.  4A−C). At 4  h after CS exposure, 
nuclear factor erythroid 2-related factor 2 (Nrf2) sig-
nalling pathway was activated (p < 0.05, Fig.  4D). At 
24 h after CS exposure, ferroptosis (a necrotic form of 
cell death) pathway was significantly upregulated by CS 
(p < 0.05) (Fig. 4E). A list of top associated pathways is 
provided in the supplementary material (Additional 
file 2: Table S2).

To further investigate the observation that the most 
significant pathway associated with 4  h of CS exposure 
was the Nrf2 pathway, we identified genes associated 
with this pathway from the publicly available data of 
Nrf2-siRNA treated A549 epithelial cells (GSE113519). 
GSVA showed that these Nrf2-associated genes were 
significantly enriched (p < 0.001) at 1  h, 4  h, and 24  h 
after CS compared to Air (Fig. 4D). Nrf2 is a transcrip-
tion factor that regulates gene expression following its 
binding to antioxidant responsive elements and activates 
anti-oxidant genes [36]. Hence, we matched the positions 
of the Nrf2-associated genes to determine the proxim-
ity (± 50,000 bp) to known binding sites (obtained from 
publicly available ChIP-seq dataset, GSE75812). GSVA 
of genes thus identified to be associated with Nrf2 also 
showed significant differences (p < 0.001) at all three-time 

Fig. 2  Differential expression of genes after whole cigarette smoke exposure of primary bronchial epithelial cells differentiated at the air–liquid 
interface. Gene expression was assessed by RNA-seq in well-differentiated primary bronchial epithelial cells (PBEC; n = 8 individual donors) grown at 
the air–liquid interface (ALI) at several time-points after whole cigarette smoke exposure. The volcano plots show DEGs (adj. p-value < 0.05, FC >|2|) 
upon smoke exposure at A 1 h (112 genes), B 4 h (1048 genes), and C 24 h (57 genes). The red dots indicate the upregulated genes, and the blue 
dots indicate the downregulated genes. D Heatmap of DEGs upon cigarette smoke exposure. Red and blue in the row sidebar indicate upregulated 
and downregulated genes, respectively
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points after CS compared to Air (Additional file 1: Figure 
S3).

A well-known pro-inflammatory gene that was signifi-
cantly increased in expression after 4  h of CS exposure 
was CXCL8 (FDR < 3 × 10–4, Fig.  4F), which returned to 
base line by 24 h. This increase in CXCL8 expression is 
likely the result of the suggested activation of the AP-1 
pathway [37, 38]. Protein levels of CXCL8/IL-8 signifi-
cantly increased by 24 h after CS exposure compared to 
Air (p < 0.05). These findings suggest transiently increased 
CXCL8 gene expression at 4  h after CS exposure, fol-
lowed by translation resulting in significantly increased 
CXCL8 levels at 24 h after CS exposure compared to Air.

Assessment of impact of CS exposure on cell‑type 
proportions in ALI‑PBEC by cell‑type deconvolution
Cell-type composition is an important factor in gene 
expression analysis, which is not often investigated in 
bulk RNA-Seq data [39]. Therefore, we conducted cell-
type deconvolution using support vector regression 
(SVR) and non-negative least squares (NNLS) methods 
to assess the transcriptomic changes in cell-type pro-
portions upon CS exposure. Initially we investigated 
the most abundant cell-types in our samples. Com-
bined, basal, ciliated, and goblet/club cells had an aver-
age proportion greater than 75% in both SVR and NNLS 
methods (Additional file  1: Figure S4). The presence of 
different cell-types indicates that differentiation of our 
ALI-PBEC culture was successful, as no unexpected cell 
types were present. Next, we plotted a time-lapse graph 
to observe the change in proportions of these three cell-
types. There was no significant difference in proportions 
of basal and ciliated cells upon CS exposure compared to 
Air (Fig. 5A–D). However, the proportion of goblet/club 
cell-expressing markers was significantly increased at 
4 h and 24 h after CS exposure compared to Air in both 
SVR and NNLS methods (Fig.  5E, F). Although marker 
expression alone does not signify full differentiation, CS 
may have triggered the cellular machinery to start the dif-
ferentiation process to goblet/club cells.

Transcriptional changes in in‑vitro ALI‑PBEC model mirror 
those of in‑vivo human CS studies
To validate the results of our ALI-PBEC model, we com-
pared this with human in-vivo studies of CS exposure. 
First, we used the results of a previous acute smoke 
exposure study in which bronchial brushings were col-
lected from 63 individuals, without recent CS exposure, 
24  h after smoking three cigarettes [6]. GSVA was per-
formed on differentially expressed genes identified in the 
in-vivo dataset. This analysis showed that genes identi-
fied in the in-vivo study that were increased or reduced in 

Table 2  Top 15 DEGs at 1 h, 4 h, and 24 h after whole cigarette 
smoke exposure

Gene symbol logFC logCPM Adj. P-value FDR

1 h

CYP1A1 5.69 8.73 1.23E−17 1.76E−13

ATF3 2.92 6.41 2.91E−16 1.39E−12

HMOX1 4.20 9.42 4.78E−16 1.71E−12

FOSB 3.16 4.71 8.43E−15 2.01E−11

KLF6 1.80 6.62 1.52E−14 3.10E−11

TIPARP 2.34 7.06 1.89E−14 3.38E−11

ZNF331 2.04 4.57 7.22E−14 1.15E−10

PER1 1.51 6.00 1.92E−13 2.74E−10

NR4A2 1.36 6.20 2.73E−13 3.55E−10

CYP1B1 2.70 8.93 3.27E−13 3.90E−10

SNHG3 -1.27 3.93 7.38E−13 8.12E−10

NR4A1 2.43 6.25 8.27E−13 8.45E−10

CBARP 2.64 2.00 1.41E−12 1.34E−09

OVOL1 1.65 3.56 1.70E−12 1.52E−09

RHOB 1.84 6.31 2.92E−12 2.46E−09

4 h

TXNRD1 2.76 9.97 1.38E−32 1.97E−28

UNKL 2.70 5.80 2.72E−29 1.94E−25

GCLM 2.66 7.79 1.23E−26 5.87E−23

SQSTM1 2.47 10.51 1.80E−26 6.45E−23

STX3 1.28 6.34 4.49E−26 1.28E−22

ZNF469 3.62 5.31 1.38E−25 3.30E−22

SYNJ2 1.88 6.97 2.31E−25 4.71E−22

GSR 1.26 7.67 9.42E−25 1.68E−21

SLC12A7 1.56 7.84 2.02E−24 3.20E−21

HMOX1 8.16 9.42 5.57E−24 7.96E−21

GCLC 2.33 8.75 6.23E−24 8.10E−21

CYP1A1 9.16 8.73 3.97E−23 4.38E−20

AKR1C3 1.60 7.27 3.98E−23 4.38E−20

CYP4F3 2.75 6.02 1.15E−22 1.13E−19

OSGIN1 4.23 6.66 1.19E−22 1.13E−19

24 h

FTL 1.38 9.38 9.49E−16 9.61E−12

G6PD 1.21 7.97 1.34E−15 9.61E−12

TFRC 1.52 7.39 2.38E−15 1.13E−11

CYP1A1 4.21 8.73 4.23E−14 1.21E−10

FTH1 1.30 10.70 9.39E−13 1.92E−09

CYP1B1 2.54 8.93 1.92E−12 3.04E−09

ALDOC 1.25 3.90 6.35E−12 7.57E−09

GPR37L1 1.38 2.82 2.44E−10 1.74E−07

KLF3.AS1 − 1.43 3.76 1.22E−09 7.26E−07

KLK6 1.99 1.88 1.76E−09 9.00E−07

NQO1 1.20 8.47 2.87E−09 1.37E−06

ALDH3A1 1.03 10.37 1.29E−08 4.86E−06

SERPINB4 1.78 5.46 2.60E−08 9.05E−06

PRKN − 1.39 1.04 2.98E−08 1.01E−05

AKR1B10 1.15 6.46 4.68E−08 1.49E−05

logFC log fold change, logCPM log counts per million, adj. adjusted, FDR false dis-

covery rate
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expression upon CS exposure were also significantly up- 
or downregulated 24 h after CS compared to Air (Fig. 6A, 
B).

Similarly, we compared our in-vitro ALI-PBEC study 
with the in-vivo chronic smoke study where the bronchial 
biopsies were collected from 42 asymptomatic chronic 
smokers and 35 never smokers, both with a normal 
lung function [23]. GSVA of the gene set obtained from 
this chronic smoker study showed that the significantly 
higher expressed genes in chronic smokers were also sig-
nificantly increased at 24 h after CS in the current study 
when compared to Air (Fig.  6C). The lower expressed 

genes were significantly decreased at 4 h as well as 24 h 
after CS exposure in our ALI-PBEC study (Fig. 6D).

Furthermore, we compared our human in-vitro ALI-
PBEC study with an in-vivo smoke cessation study where 
the bronchial biopsies were collected from 16 subjects 
before and after 1 year of smoking cessation [24, 25]. 
GSVA on the gene set showed that the downregulated 
genes in the cessation study were significantly upregulated 
at 24 h after CS exposure in the current ALI-PBEC study 
compared to Air (Fig. 6E). On the other hand, the upregu-
lated genes in the cessation study were significantly down-
regulated at 4 h and 24 h after CS exposure (Fig. 6F).

Fig. 3  Time-point signatures of DEGs after whole cigarette smoke exposure of primary bronchial epithelial cells differentiated at the air–liquid 
interface. Gene set variation analysis (GSVA) was performed on DEGs after A, B 1 h, C, D 4 h, and E, F 24 h of exposure (n = 8 donors). The error bar 
indicates the standard deviation. Gene sets which were significantly different after cigarette smoke exposure compared to Air (p < 0.05) are shown 
by the * symbol. *p < 0.01, ***p < 0.001
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Using these datasets, an overlap was found in gene 
expression related to oxidative stress, xenobiotic metab-
olism, AhR and Nrf2 pathways, as shown by a positive 
association between the in-vitro study and the former 
two in-vivo smoker studies, and a negative association 
with the in-vivo smoking cessation study (Additional 
file 2: Table S3).

Finally, to assess gene expression pattern at the single 
cell level, we compared the DEGs of the current in-vitro 
study with a publicly available human CS-related in-vivo 
single-cell RNA-sequencing study (Fig. 6G). Interestingly, 
we found that the upregulated genes at 4 h after CS expo-
sure in the current in-vitro study were higher expressed 
in the ciliated cells in the single-cell in-vivo study in 
current smokers compared to never smokers. The 
upregulated genes at 24 h after exposure were higher in 
expression in all of the identified cell-types in the in-vivo 
study in current smokers compared to never smokers. 

We also observed a similar lower expression pattern in 
the in-vivo study for the downregulated genes of the cur-
rent study.

Similarities between effects of CS and e‑cigarette smoke 
on epithelial cells in‑vivo and in‑vitro
To compare the transcriptomic profile of CS exposure 
with that of e-cigarette, we analysed an e-cigarette in-
vitro study in which PBECs, differentiated by ALI cul-
ture, were exposed to e-cigarette vapour or air, and gene 
expression changes were observed at 24  h after expo-
sure. GSVA on DEGs, which displayed a higher expres-
sion after e-cigarette exposure, revealed a similar trend 
after CS exposure at all time points in the current CS 
study, regardless of the presence of nicotine in e-cigarette 
(Figs. 6C, 7A). In the case of DEGs, which were decreased 
in expression after e-cigarette exposure, the trend was 
significant at 24 h after CS exposure (Figs. 6D, 7B).

Table 3  Top pathways associated with the DEGs upon cigarette smoke exposure

No pathway was found related to 1 h downregulated genes

Pathway description Term ID Database source Adj. p-value

1 h upregulated

DNA-binding transcription activator activity, RNA polymerase II-specific GO:0001228 Gene ontology 2.42E−09

Positive regulation of macromolecule metabolic process GO:0010604 Gene ontology 7.73E−08

Positive regulation of nitrogen compound metabolic process GO:0051173 Gene ontology 2.84E−07

Response to hydrogen peroxide GO:0042542 Gene ontology 4.12E−06

Response to organic cyclic compound GO:0014070 Gene ontology 6.88E−06

Positive regulation of apoptotic process GO:0043065 Gene ontology 8.93E−06

4 h upregulated

Response to arsenic-containing substance GO:0046685 Gene ontology 1.96E−07

Positive regulation of cell death GO:0010942 Gene ontology 3.92E−05

Unsaturated fatty acid metabolic process GO:0033559 Gene ontology 5.97E−05

Oxidative Stress WP408 WikiPathways 1.77E−07

NRF2 pathway WP2884 WikiPathways 3.44E−06

Glutamate-cysteine ligase activity GO:0004357 Gene ontology 2.04E−04

24 h upregulated

Nuclear Receptors Meta-Pathway WP2882 WikiPathways 7.85E−06

NRF2 pathway WP2884 WikiPathways 1.86E−05

Aryl Hydrocarbon Receptor Pathway WP2873 WikiPathways 5.17E−05

Ferroptosis KEGG:04216 KEGG 3.31E−05

Iron ion binding GO:0005506 Gene ontology 2.73E−05

Oxidoreductase activity GO:0016491 Gene ontology 1.11E−04

4 h downregulated

Sequence-specific double-stranded DNA binding GO:1990,837 Gene ontology 5.99E−06

Positive regulation of RNA metabolic process GO:0051254 Gene ontology 8.11E−05

Positive regulation of nucleic acid-templated transcription GO:1903508 Geneontology 1.08E−04

24 h downregulated

F-box domain binding GO:1990444 Gene ontology 3.30E−02

Mitochondrion-derived vesicle GO:0099073 Gene ontology 3.06E−02
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Subsequently, we compared the DEGs after CS expo-
sure in the current study and investigated their expres-
sion in e-cigarette users. Hence, we performed GSVA 
using an in-vivo study where gene expression of bron-
chial epithelial cells, collected from former, current and 
e-cigarette smokers, were measured. GSVA on the DEGs 
at 24 h after CS exposure showed a similar trend in e-cig-
arette smokers compared to ex-smokers (Fig. 7E, F).

Discussion
The current study shows that the transcriptional response 
of the airway epithelial cells to CS was initiated already 
after 1 h and was maximal at 4 h after exposure. This first, 
early wave involved immediate early response genes and 
was followed by genes associated with oxidative stress, 
xenobiotic metabolism and pro-inflammatory pathways, 
most of which remained active over time. At the 24  h 

Fig. 4  Pathway and protein level analysis of DEGs after whole cigarette smoke exposure of primary bronchial epithelial cells differentiated at the 
air–liquid interface. GSVA analysis of A immediate early genes (IEGs), and genes associated with B activator protein-1 (AP-1), C aryl hydrocarbon 
receptor (AhR), D Nrf2, E ferroptosis pathways. F Kinetics of CXCL8 gene expression and CXCL8 protein level upon cigarette smoke exposure. The 
error bar indicates the standard deviation (n = 8). Gene sets which were significantly different after cigarette smoke exposure compared to Air 
(p < 0.05) are shown by the * symbol. **p < 0.01, ***p < 0.001



Page 10 of 15van der Does et al. Respiratory Research          (2022) 23:227 

time-point, expression of genes related to a necrotic form 
of cellular death, ferroptosis, was increased, which we 
speculate to have occurred in response to oxidative stress 
[33]. Additionally, changes in gene expression in response 
to CS were found to be associated with a higher propor-
tion of goblet/club cells. The relevance of these findings is 

also supported by the significant overlap with a number 
of CS-related human in-vivo studies, providing impor-
tant validation for the use of primary bronchial epithelial 
cell cultures differentiated at the air–liquid interface to 
support studies into kinetics of (whole) cigarette smoke-
related events.

Fig. 5  Cell-type deconvolution of primary bronchial epithelial cells differentiated at air–liquid interface during whole cigarette smoke exposure. 
Proportion of A, B basal, C, D ciliated, and E, F goblet/club cells based on gene-markers are shown here. The vertical error bar indicates the standard 
deviation (n = 8). Cell proportions which were significantly different after cigarette smoke exposure compared to Air (p < 0.05) are shown by the * 
symbol. *p < 0.05, ***p < 0.001. SVR support vector regression, NNLS non-negative least squares

(See figure on next page.)
Fig. 6  Comparison of cigarette smoke-related human in-vivo studies with the current in-vitro study. Expression of the genes that were differentially 
expressed in the A, B acute smoke exposure study is shown. Only two genes were upregulated and one gene was downregulated in the study. 
Gene set variation analysis (GSVA) of DEGs identified in in-vivo studies of C, D chronic smokers, and E, F smoking cessation is depicted here. The 
vertical bar indicates the standard deviation (n = 8). Gene sets which were significantly different after cigarette smoke exposure compared to Air 
(p < 0.05) are shown by the * symbol. *p < 0.05, ***p < 0.001. G UMAP of the identified cell-types of single-cell RNA-sequencing study of current 
smokers and never smokers, and H average expression of the DEGs identified in the in-vivo study
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Fig. 6  (See legend on previous page.)
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Exposure of ALI-PBEC cultures to CS activated several 
genes of the cytochrome P450 family, of which CYP1A1 
and CYP1B1 genes were upregulated from the earliest 
time point till the latest at 24 h. This family of enzymes has 
been reported to be induced by polycyclic aromatic hydro-
carbons (PAH), one of the carcinogens present in CS, and 
these P450 enzymes cause metabolic activation of PAH 
resulting in the formation of ROS [40]. Expression of vari-
ous CYP genes in airway epithelial cells was shown to be 
dependent on their level of differentiation, underscoring 
the relevance for using well-differentiated cell cultures for 
these studies [40]. The peak of the increased expression 
for most genes by CS was at the earlier time points. For 
example, although Nrf2-associated genes were significantly 
upregulated throughout the measured 24 h, the expression 
of this gene set peaked at 4 h and decreased at 24 h after 
exposure. A similar pattern was seen for IEGs, AhR and 
AP-1. These data show the essence of capturing the early 
response to CS exposure as this can easily be missed when 
measuring gene expression only at 24 h after exposure. This 
could also explain why often changes in inflammation-
related pathways remain undetected in studies focusing 
on those time points [6]. This is especially relevant in in-
vivo studies, where it is often not possible to collect multi-
ple samples so rapidly after the CS exposure. Alternatively, 
these cultures don’t represent the full tissue compartment 
in the airways, for example, in bronchial biopsy-derived 
studies where the multilayers of the tissue could have an 
influence over the pro-inflammatory response.

In the current study, PRKN was significantly down-
regulated at 24 h after CS exposure. This may be relevant 
in view of the central role of the PINK1-PRKN pathway 
in the removal of dysfunctional mitochondria through 
mitophagy [41]. Mitochondrial dysfunction is associ-
ated with a wide range of pathologies, including COPD 
[42]. Mitochondria release reactive oxygen species (ROS) 
as second messengers to maintain cellular homeostasis. 
However, dysfunctional mitochondria generate and accu-
mulate an excessive amount of ROS leading to further 
impairment of mitochondrial function and increase in 
oxidative stress, cellular injury or cell death [43]. More-
over, decreased levels of the PRKN-encoded protein, 
parkin, has been reported in COPD lung tissue [44]. In 
a separate study, thickening of the airway wall (a charac-
teristic feature of COPD) was shown in PRKN-deficient 
mice, as well as the accumulation of small-sized dysfunc-
tional mitochondria in response to CS [34].

Importantly, our findings in differentiated ALI-PBEC cul-
tures exposed to CS were in line with observations in smok-
ing or ex-smoking human subjects. The DEGs identified 
after acute smoke exposure [6] and in chronic smokers [23] 
were found to be also differentially expressed in this study. In 
line with these findings, the gene signatures identified in the 
smoking cessation study were found to be reversed in the 
current ALI-PBEC study, i.e., downregulated genes in the 
smoking cessation study were significantly increased in our 
ALI-PBEC study and vice versa. This finding is expected as 
smoking cessation studies have shown that a subset of genes 
reverses back to the normal level after quitting smoking [7, 
12]. Whereas here we investigated the acute CS response in 
a culture model comprised only of airway epithelial cells, 
the findings mirrored the pathways activated in response 
to CS of a much more complex cellular environment of 
the intact human bronchial mucosa sampled in the clini-
cal bronchoscopy studies. Another study has provided evi-
dence for a significant overlap in altered gene sets between 
an in-vitro set-up and human in-vivo exposure studies 
using a commercial airway cell culture system and cigarette 
smoke exposure combined with microarray analysis of the 
response of cells from a single donor [19]. However, our 
study demonstrates a significant overlap with findings from 
in-vivo exposures using multiple donors instead of a single 
donor, a different ALI culture protocol and different smoke 
set-up, as well as detailed RNA-seq on different time-points 
including the very early. These results show the robustness 
of the ALI culture set-up for in depth mechanistic investiga-
tions on effects of CS on the airway epithelium in-vitro and 
their translation in support of the transition into validated 
animal-free alternatives.

Moreover, in our study we have added the comparison 
with a single-cell RNA-sequencing in-vivo study reveal-
ing that ciliated cells, which are positioned at the apical 
side of the airway epithelium, mirror the expression of the 
DEGs that are found in our exposed cultures at 4 h, and in 
all other epithelial cell types by 24 h [26]. These are new 
insights that suggest ciliated cells to be early responders to 
external stimuli such as cigarette smoke and require fur-
ther investigation. These results underscore the relevance 
of differentiated ALI-PBEC cultures and whole cigarette 
smoke exposure for understanding the complexity of the 
epithelial response to CS or any other toxicants and pro-
vide evidence for the robustness of these models.

Lastly, we have shown that transcriptional changes follow-
ing exposure to e-cigarette vapour or in e-cigarette smokers 

Fig. 7  Transcriptomic analysis of e-cigarette smoke exposure or e-cigarette users in comparison with CS exposure. Gene set variation analysis 
(GSVA) of DEGs identified in in-vitro e-cigarette smoke study A, B with and C, D without nicotine. E, F GSVA of DEGs in the current study after CS 
exposure, plotted on the gene expression dataset of in-vivo e-cigarette smokers’ study. The vertical bar indicates the standard deviation. Gene sets 
which were significantly different after cigarette smoke exposure compared to Air (p < 0.05) are shown by the * symbol. *p < 0.05, ***p < 0.001

(See figure on next page.)
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Fig. 7  (See legend on previous page.)
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show a similar trend to those in CS-exposed cells in the cur-
rent study; this is in line with previous studies showing that 
that e-cigarette may induce both shared and distinct patterns 
of gene expression when compared to tobacco smoking [28, 
45]. However, interestingly, and consistent with the pattern 
after CS exposure, the DEGs higher in expression at 24  h 
after e-cigarette exposure reached the peak of their expres-
sion at 4 h and goes down at 24 h, although still significant 
compared to Air. This suggests that, like CS, also e-cigarettes 
may elicit its transcriptomic effects at the early stages of 
exposure. While these similarities are interesting, further 
studies are needed, especially since the e-cigarette study was 
based on the use of a single donor, whereas the observational 
study in e-cigarette users was not a controlled study.

This study also has a number of limitations that need to be 
taken into account. Firstly, since we have not performed sin-
gle cell RNA-seq the cell-specific mechanisms in response 
to cigarette smoke exposure are not directly explored. 
However, findings from the cellular deconvolution analy-
sis showed that there might be a response initiated related 
to goblet cell hyperplasia after cigarette smoke exposure, 
which is line with existing literature [46, 47]. It will be inter-
esting to establish a single-cell RNA-sequencing follow-up 
study that elucidates a detailed cell-type specific differences 
in altered gene expression upon cigarette smoke exposure. 
Furthermore, this study is performed with cell cultures 
derived from 8 different donors that were not matched in 
smoke history and with only one female included. We were 
therefore unable to investigate not only a possible sex effect 
in response to CS exposure, but also not able to compare 
responses of donors that were non-smokers, ex-smokers 
and current smokers. Such studies would have required 
inclusion of additional, adequately sized subgroups. Addi-
tionally, we found that many of the pathways identified in 
the current study had a number of overlapping genes indi-
cating a common core list of genes that are likely regulating 
the majority of smoking related pathways.

Conclusion
In conclusion, our study has provided novel insights in 
the epithelial transcriptional responses to CS immedi-
ately after exposure, and provides validation for the rel-
evance of the findings in humans. These are important 
steps that are needed for the stepwise development of 
more complex models that will contribute to the reduc-
tion in the use of animal models.
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