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Abstract 

Background:  Clinically differentiating preinvasive lesions (atypical adenomatous hyperplasia, AAH and adenocarci-
noma in situ, AIS) from invasive lesions (minimally invasive adenocarcinomas, MIA and invasive adenocarcinoma, IA) 
manifesting as ground-glass opacity nodules (GGOs) is difficult due to overlap of morphological features. Hence, the 
current study was performed to explore the diagnostic efficiency of radiomics in assessing the invasiveness of lung 
adenocarcinoma manifesting as GGOs.

Methods:  A total of 1018 GGOs pathologically confirmed as lung adenocarcinoma were enrolled in this retrospective 
study and were randomly divided into a training set (n = 712) and validation set (n = 306). The nodules were deline-
ated manually and 2446 intra-nodular and peri-nodular radiomic features were extracted. Univariate analysis and least 
absolute shrinkage and selection operator (LASSO) were used for feature selection. Clinical and semantic computer-
ized tomography (CT) feature model, radiomic model and a combined nomogram were constructed and compared. 
Decision curve analysis (DCA) was used to evaluate the clinical value of the established nomogram.

Results:  16 radiomic features were selected and used for model construction. The radiomic model exhibited signifi-
cantly better performance (AUC = 0.828) comparing to the clinical-semantic model (AUC = 0.746). Further analysis 
revealed that peri-nodular radiomic features were useful in differentiating between preinvasive and invasive lung 
adenocarcinomas appearing as GGOs with an AUC of 0.808. A nomogram based on lobulation sign and radiomic fea-
tures showed the best performance (AUC = 0.835), and was found to have potential clinical value in assessing nodule 
invasiveness.

Conclusions:  Radiomic model based on both intra-nodular and peri-nodular features showed good performance in 
differentiating between preinvasive lung adenocarcinoma lesions and invasive ones appearing as GGOs, and a nomo-
gram based on clinical, semantic and radiomic features could provide clinicians with added information in nodule 
management and preoperative evaluation.
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Introduction
With the wide use of low-dose computerized tomogra-
phy (LDCT), the detection rate of lung malignant lesions 
appearing as ground-glass opacity nodules (GGOs) 
has risen rapidly [1–3]. Among the malignant GGOs 
detected, most of them are lung adenocarcinoma [4]. 
According to the pathological classification standard of 
World Health Organization (WHO), lung adenocarci-
noma is classified into atypical adenomatous hyperplasia 
(AAH), adenocarcinoma in situ (AIS), minimally invasive 
adenocarcinomas (MIA) and invasive adenocarcinoma 
(IA) [5]. There is still no standard of intervention con-
sidering the invasiveness of lung adenocarcinoma mani-
festing as GGOs worldwide. Given that AAH and AIS 
nodules often grow slowly and considered of low-grade 
malignancy, clinical follow-up or sub-lobar lung resec-
tion are normally recommended and have yielded good 
response [6, 7]. Nodules confirmed as IA could grow fast 
and have risk of potential metastasis so that they are nor-
mally considered for lobectomy and lymphadenectomy. 
For nodules diagnosed as MIA, there has been contro-
versy in surgical procedure selection [8, 9]. Neverthe-
less, a latest long-term follow-up study revealed that 
lobectomy was accomplished in 72.3% of patients with 
MIA, and recurrence was witnessed in patients with MIA 
(9.7%) but not in patients with AIS [10], indicating dif-
ferent intervention methods and prognosis for these two 
categories. Therefore, it is of great importance to distin-
guish preinvasive lesions (AAH and AIS) from invasive 
ones (MIA and IA), for it could potentially influence the 
treatment plan and follow-up schedule of the patients. 
However, although researchers have discovered that 
some variables such as maximum diameter of the nodule 
could be an indicator for the invasiveness of lung ade-
nocarcinomas [11], it is still challenging to make a final 
diagnosis based on clinical and semantic CT features due 
to the overlap of morphological characteristics. Hence, it 
is necessary to explore models with better performance 
of predicting the invasiveness of lung adenocarcinoma 
appearing as GGOs.

Radiomics refers to the extraction and analysis of high-
dimensional quantitative data derived from radiological 
images [12]. The segmentation of region of interest (ROI) 
is considered a crucial step in the process of radiom-
ics. Because of the high contrast resolution between the 
pulmonary nodules and lung parenchyma which makes 
nodules easily delineated from adjacent lung tissue, radi-
omics was deemed as a suitable tool in the field of lung 

nodule assessment [13–15]. In some studies, radiomics 
method has been applied to predict the pathological sub-
type of lung adenocarcinoma appearing as GGOs, with 
area under the curve (AUC) of the model ranging from 
0.62 to 0.89 [16–19]. However, these studies are limited 
by small sample size and few radiomics features. In addi-
tion, the diagnostic value of peripheral radiomic features 
of lung adenocarcinoma appearing as GGOs has not yet 
been fully explored. In the present study, we developed 
a nomogram using clinical, semantic CT characteristics 
and intra/peri-nodular radiomic features to differentiate 
preinvasive lesions from invasive lesions of lung adeno-
carcinoma manifesting as GGOs.

Materials and methods
Study cohort
From January 2018 to December 2019, patients diag-
nosed with lung adenocarcinoma manifesting as GGO 
and received lung resection in First Medical Center of 
Chinese People’s Liberation Army General Hospital was 
selected from the online medical record system to evalu-
ate the eligibility for enrollment. In the present study, 
preinvasive lesions were defined as nodules that patho-
logically diagnosed as AAH or AIS, while invasive lesions 
were defined as nodules that diagnosed as MIA or IA. 
The clinical and radiographic data (listed in Table 1) were 
acquired and collected by reviewing the medical records. 
The inclusion criteria of the patients were as follows: (1) 
diagnosed as lung GGO on CT images and confirmed to 
be lung adenocarcinoma pathologically by lung resection; 
(2) maximum diameter of GGO was less than 30  mm; 
(3) had high-quality preoperative CT images with slice 
thickness less than 1.5 mm; (4) the interval between pre-
operative CT and lung resection was less than 2 weeks. 
Patients with CT image slice thickness greater than 
1.5 mm, with incomplete clinical data or without specific 
pathological results were excluded. For multiple GGOs of 
the same patient, only those with confirmed pathologi-
cal results were included in this study. The included lung 
nodules were then divided randomly into a training set 
and validation set with a ratio of 7:3, and the proportion 
of preinvasive lesions over invasive lesions in the two sets 
was kept to the same level (Fig. 1).

CT image acquisition, CT semantic features and building 
of a clinical‑semantic model
All CT examinations were performed in one of the fol-
lowing scanners: Brilliance iCT (Phillips Medical 
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Table 1  Demographic, clinical and semantic CT features of patients in the training and validation set

Characteristic Training set (n = 712) p value Validation set (n = 306) p value

Preinvasive lesions 
(n = 97)

Invasive lesions 
(n = 615)

Preinvasive lesions 
(n = 42)

Invasive lesions 
(n = 264)

Gender

 Male 36 (37.1) 209 (34.0) 0.547 15 (35.7) 98 (37.1) 0.861

 Female 61 (62.9) 406 (66.0) 27 (64.3) 166 (62.9)

Age (years, average ± SD) 53.5 ± 8.5 54.9 ± 9.5 0.064 52.1 ± 10.9 55.1 ± 9.5 0.082

Having respiratory symptoms

 Yes 3 (3.1) 66 (10.7) 0.015 2 (4.8) 32 (12.1) 0.159

 No 94 (96.9) 549 (89.3) 40 (95.2) 232 (87.9)

BMI 24.1 ± 3.1 24.2 ± 3.0 0.761 23.4 ± 2.5 24.4 ± 3.0 0.07

Smoking history

 Yes 10 (10.3) 97 (15.8) 0.162 5 (11.9) 43 (16.3) 0.648

 No 87 (89.7) 518 (84.2) 37 (88.1) 221 (83.7)

Smoking index (pack-year) 87.6 ± 386.3 93.9 ± 283.0 0.177 100.0 ± 338.0 78.4 ± 226.6 0.544

Former lung cancer history

 Yes 2 (2.1) 14 (2.3) 1.000 0 (0) 2 (0.8) 1.000

 No 95 (97.9) 601 (97.7) 42 (100) 262 (99.2)

Former malignancy history except lung cancer

 Yes 4 (4.1) 33 (5.4) 0.806 0 (0) 11 (4.2) 0.372

 No 93 (95.9) 582 (94.6) 42 (100) 253 (95.8)

Former pulmonary benign disorders

 Yes 2 (2.1) 31 (5.0) 0.296 1 (2.4) 7 (2.7) 1.000

 No 95 (97.9) 584 (95.0) 41 (97.6) 257 (97.3)

Family history of lung cancer

 Yes 10 (10.3) 66 (10.7) 0.900 2 (4.8) 28 (10.6) 0.399

 No 87 (89.7) 549 (89.3) 40 (95.2) 236 (89.4)

Family history of malignancy except lung cancer

 Yes 17 (17.5) 93 (15.1) 0.543 7 (16.7) 41 (15.5) 0.851

 No 80 (82.5) 522 (84.9) 35 (83.3) 223 (84.5)

Abnormal tumor biomarker resultsa

 Yes 6 (6.2) 99 (16.1) 0.011 5 (11.9) 31 (11.7) 0.976

 No 91 (93.8) 516 (83.9) 37 (88.1) 233 (88.3)

Multiple nodules

 Yes 38 (39.2) 309 (50.2) 0.043 15 (35.7) 130 (49.2) 0.103

 No 59 (60.8) 306 (49.8) 27 (64.3) 134 (50.8)

Nodule density

 pGGO 81 (83.5) 374 (60.8) < 0.001 35 (83.3) 163 (61.7) 0.007

 mGGO 16 (16.5) 241 (39.2) 7 (16.7) 101 (38.3)

Border

 Unclear 12 (12.4) 174 (28.3) 0.001 3 (7.1) 63 (23.9) 0.014

 Clear 85 (87.6) 441 (71.7) 39 (92.9) 201 (76.1)

Lobulation sign

 Yes 10 (10.3) 199 (32.4) < 0.001 3 (7.1) 65 (24.6) 0.009

 No 87 (89.7) 416 (67.6) 39 (9.3) 199 (75.4)

Spiculation sign

 Yes 6 (6.2) 104 (16.9) 0.007 1 (2.4) 35 (13.3) 0.04

 No 91 (93.8) 511 (83.1) 41 (97.6) 229 (86.7)

Pleural indentation sign

 Yes 6 (6.2) 106 (17.2) 0.005 1 (2.4) 44 (16.7) 0.01
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Systems, Netherlands) and Somatom Definition (Siemens 
Medical Systems, Germany). The detailed information of 
the CT image acquisition was shown in Additional file 1: 
Table S1.

The CT images were reviewed by two physicians in the 
Department of Respiratory Diseases (M.Z and Z.Y with 
5  years and 12  years of experience in lung CT imaging, 
respectively) who were blinded to the clinical profiles 

and pathological results of the patients. After review-
ing the CT images, the physicians then evaluated the CT 
semantic characteristics in both the lung window (level: 
− 600HU, width: 1200HU) and the mediastinal window 
(level: 40HU, width: 400HU). If inconsistent results came 
up, a group meeting would be held to make a consensus. 
The collected CT semantic characteristics were listed in 
Table 1.

Univariate analysis was used to select significant clini-
cal and semantic features on the training set. Multivariate 
logistic regression was then used to select independent 
factors and construct a clinical-semantic model. The per-
formance of the constructed model was evaluated by cal-
culating the AUC of the receiver operating characteristic 
(ROC) curve in both training and validation set.

Segmentation, extraction of the radiomic features 
and intra/inter‑observer agreement evaluation
Intra/peri-nodular region segmentation was performed 
manually using 3D Slicer software (version 4.10.2, https://​
www.​slicer.​org). Intra-nodular region, defined as mask 1, 
was drawn on each slice of CT images to cover all nodule 
area by using function “Draw” in module “Segmentation” 
of 3D Slicer. Peri-nodular region, defined as mask 2, was 
obtained by extending mask 1 by 5 mm from its boarder 
in three dimensions using function “Hollow” in module 
“Segmentation” (Fig. 2).

BMI, body mass index; pGGO, pure ground-glass opacity nodule; mGGO, mixed ground-glass opacity nodule
a An abnormal tumor biomarker result is defined as a higher blood concentration above the normal range of any of the following: carcinoembryonic antigen (CEA), 
CA-125 or CYFRA21-1

Table 1  (continued)

Characteristic Training set (n = 712) p value Validation set (n = 306) p value

Preinvasive lesions 
(n = 97)

Invasive lesions 
(n = 615)

Preinvasive lesions 
(n = 42)

Invasive lesions 
(n = 264)

 No 91 (93.8) 509 (82.8) 41 (97.6) 220 (83.3)

Bubble sign

 Yes 8 (8.2) 107 (17.4) 0.023 4 (9.5) 40 (15.2) 0.478

 No 89 (91.8) 508 (82.6) 38 (90.5) 224 (84.8)

Vessel change

 Yes 14 (14.4) 125 (20.3) 0.174 4 (9.5) 64 (24.2) 0.044

 No 83 (85.6) 490 (79.7) 38 (90.5) 200 (75.8)

Maximum 2D diameter (mm, 
average ± SD)

9.2 ± 3.2 12.6 ± 5.2 < 0.001 8.9 ± 3.4 12.7 ± 5.1 < 0.001

Location

 Left upper lobe 20 (20.6) 152 (24.7) 0.277 12 (28.6) 69 (26.1) 0.670

 Left lower lobe 21 (21.6) 91 (14.8) 7 (16.7) 34 (12.9)

 Right upper lobe 39 (40.2) 236 (38.4) 16 (38.1) 103 (39.0)

 Right middle lobe 2 (2.1) 33 (5.4) 3 (7.1) 12 (4.5)

 Right lower lobe 15 (15.5) 103 (16.7) 4 (9.5) 46 (17.4)

Rad-score 0.9 ± 1.5 2.7 ± 1.3 < 0.001 1.1 ± 1.2 2.8 ± 1.3 < 0.001

Fig. 1  Flow chart of the study

https://www.slicer.org
https://www.slicer.org
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Mask 1 and mask 2 were then used to extract the 
radiomic features using module “SlicerRadiom-
ics extension” (http://​pyrad​iomics.​readt​hedocs.​io/) 
in 3D Slicer. Firstly, the images were resampled to 
1  mm × 1  mm × 1  mm to reduce the influence of dif-
ferent CT reconstruction method. Then a total of 1223 
radiomic features were extracted in each mask based 
on the following five categories: (1) Shape; (2) First 
order features; (3) Texture features; (4) Wavelet fea-
tures; (5) Laplacian of Gaussian (LoG) features. Finally, 
data of the radiomic features was standardized using 
method Z-score to eliminate the potential preference 
during the building of the radiomic model. Detailed 
list of radiomic features was presented in Additional 
file 1: Methods.

Intra-observer and inter-observer agreement were 
assessed by calculating intra/inter-class correla-
tion coefficient (ICC). In order to evaluate the inter-
observer agreement, two physicians (M.Z and Z.Y) 
performed the segmentation of the same 60 randomly 
selected lung nodules. Then 1  week later, M.Z fin-
ished the segmentation of the 60 lung nodules again to 
assess the intra-observer agreement. Both average ICC 
and ICC for each radiomic feature were calculated. 
Features with ICC < 0.75 were removed due to lack 
of stability. Because the two physicians showed good 
inter-observer agreement, M.Z alone finished the seg-
mentation of the remaining nodules.

Feature selection and building of a radiomic model
High dimensional data could lead to overfitting of the 
model, hence a dimensionality reduction of the radi-
omic features was essential. Here we used a two-step 
method for feature selection. First, Student’s t test or 
Mann–Whitney U test was applied to select significant 
features in the training set. Then least absolute shrink-
age and selection operator (LASSO), a classic method 
to improve precision and reduce the possibility of 

model overfitting was used to select nonzero coefficient 
features. Tenfold cross-validation method was used to 
find the optimal regularization parameter (λ) in which 
the LASSO model had minimum error.

Next, the features selected by LASSO were used to 
construct a radiomic model in the training set. Logistic 
regression, support vector machines (SVM) and ada-
boost were used as the modeling method respectively, 
and the one with the best diagnostic performance was 
selected to build the final radiomic model. Radiomic-
score (rad-score) was calculated according to the 
logistic regression model. The performance of the radi-
omic model was then confirmed in both training and 
validation set. Finally, the intra-nodular features and 
peri-nodular features were used to build two models 
respectively in order to compare their diagnostic value.

Construction of a nomogram
Independent factors among the selected clinical, 
semantic features and rad-score were identified using 
a multivariate logistic regression. A diagnostic nomo-
gram was then constructed based on the multivari-
ate logistic regression model. A calibration curve was 
also plotted to evaluate the diagnostic efficiency of the 
nomogram.

Clinical utility of the nomogram
Decision curve analysis (DCA) was performed to evalu-
ate the clinical utility of the nomogram by calculating 
net benefits at different threshold probabilities.

Statistical analysis
R software (version 4.0.2, The Free Software Foundation, 
USA) was used for statistical analysis, random grouping 
and model construction in this study. The “psych” pack-
age was used to calculate the ICC. The “glmnet” pack-
age was used to perform LASSO regression. The “e1071” 

Fig. 2  The segmentation of the regions of interest. A Computerized tomography (CT) image of a ground-glass opacity nodule pathologically 
confirmed as atypical adenomatous hyperplasia (AAH). B The segmentation of the nodule. Green area indicates the nodule region and yellow area 
indicates the peri-nodule region. C The constructed 3D model of the nodule in 3D slicer software

http://pyradiomics.readthedocs.io/
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package was used for SVM model construction. The “ada-
bag” package was used to perform adaboost. The “pROC” 
package was used to plot the ROC curve. The “Hmisc”, 
“lattice”, “survival”, “Formula”, “ggplot2”, “rms” and “rmda” 
packages were used to construct the nomogram, calibra-
tion curve and decision curve.

Student’s t test, Pearson’s x2 test or Mann–Whitney U 
test was applied to evaluate the significance of clinical 
and semantic CT features, depending on the distribution 
and type of the data. Delong test was performed when 
comparing the AUCs of two ROC curves. A p value less 
than 0.05 was considered statistically significant.

Results
Baseline characteristics
From January 2018 to December 2019, a total of 1010 
patients with 1018 GGOs were included in this study (As 
shown in Table  1). The GGOs were randomly divided 
into a training set (n = 712) and a validation set (n = 306). 
Among the 1018 lung nodules, 139 were preinvasive 
lesions (68 AAH and 71 AIS) and 879 were invasive 
lesions (145 MIA and 734 IA). In the preinvasive lesion 
group, 63.3% of the patients were female, and the average 
age was 53.0 ± 9.3 years. Only 5 patients (3.6%) suffered 
from respiratory symptoms, and most of the nodules 
were located in the right (39.6%) and left (23.0%) upper 
lobe. In the invasive lesion group, the average age of 
the patients was significantly higher (55.0 ± 9.5  years), 
and more patients had respiratory symptoms (11.1%), 
while the location of the nodules resembled that in the 
preinvasive lesion group. In the training set, there were 
significant differences in symptoms, abnormal tumor 
biomarker results, nodule amount (solitary vs multi-
ple), nodule density, boarder (clear vs unclear), lobu-
lation sign, spiculation sign, pleural indentation sign, 
bubble sign and maximum 2D diameter between the 
preinvasive lesion group and invasive lesion group. A 
multivariate logistic regression showed that abnormal 
tumor biomarker results, nodule density, lobulation sign 
and maximum 2D diameter were independent factors 
associated with the invasiveness of lung adenocarcinoma 
appearing as GGOs (odds ratio: 2.419, 1.926, 2.711 and 
1.180, respectively), which were then used to construct a 
clinical-semantic model by logistic regression. The AUCs 
of the clinical-semantic model in training set and valida-
tion set were 0.755 (95% CI 0.707–0.804) and 0.746 (95% 
CI 0.667–0.824), respectively.

Intra‑observer and inter‑observer agreement
For intra-observer agreement evaluation, the average 
ICC of the total radiomic features (n = 2446, including 
intra-nodule and inter-nodule features) was 0.90, and 
the ICCs of 2181 features were higher than 0.75. For 

inter-observer agreement evaluation, the average ICC 
was 0.89, and an ICC higher than 0.75 was observed in 
2122 features (Additional file 1: Fig. S1). In total, 442 fea-
tures that had an ICC lower than 0.75 were removed. The 
results showed that the 2 observers showed good agree-
ment in nodule segmentation and feature extraction, and 
the remaining 2004 robust radiomic features were used 
for feature selection and model construction.

Feature selection, performance of the radiomic model 
and diagnostic value of peri‑nodular features
A univariate analysis showed that 1789 out of 2004 radi-
omic features were significantly different between the 
preinvasive lesion group and invasive lesion group in the 
training set (data not shown). Then LASSO regression 
was performed and as shown in Fig. 3A, when λ = 0.022, 
logλ = − 3.817, the model had the minimum error, and 16 
nonzero features were selected and used for construction 
of a radiomic model. Among the three methods used for 
modeling, logistic regression was found to have the best 
performance in the validation set (Additional file 1: Fig. 
S2), which was then used to build the radiomic model. 
Rad-score was calculated according to the results of the 
radiomic model, and it was significantly higher in the 
invasive lesion group than preinvasive lesion group in 
both training set (2.7 ± 1.3 vs 0.9 ± 1.5, p < 0.001) and val-
idation set (2.8 ± 1.3 vs 1.1 ± 1.2, p < 0.001). The formula 
of rad-score was presented in Additional file 1: Methods. 
As shown in Fig. 4, the AUCs of the radiomic model were 
significantly higher than those of the clinical-semantic 
model in both training set (0.828 vs 0.755, p = 0.001) and 
validation set (0.828 vs 0.746, p = 0.008), indicating that 
a better diagnostic efficiency was observed when using 
radiomic features rather than clinical and semantic CT 
features.

Among the selected features, there were nine intra-
nodular features and seven peri-nodular ones, which 
signified that features surrounding the nodule were also 
highly informative and important. To explore the diag-
nostic value of peri-nodular features in specific, intra-
nodular features and peri-nodular ones were separated 
and used to build two models based on logistic regres-
sion. The AUCs for intra-nodular model and peri-nodu-
lar model were 0.814 and 0.808 in the validation set, and 
a combination of the models raised the AUC to 0.828 
(Fig. 4). These results showed that peri-nodular features 
were also good predictors for lung adenocarcinoma inva-
sion evaluation.

Nomogram and clinical utility
Multivariate logistic regression of the selected clinical-
semantic features (abnormal tumor biomarker results, 
nodule density, lobulation sign and maximum 2D 
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diameter) and rad-score revealed that lobulation sign 
and rad-score was independent factors associated with 
the invasiveness of lung adenocarcinoma appearing as 
GGOs (Table 2). These two variables were then used for 

the construction of a diagnostic nomogram (Fig. 5). The 
nomogram exhibited the best discrimination ability com-
paring with the radiomic model and clinical-semantic 

Fig. 3  Feature selection using least absolute shrinkage and selection operator (LASSO). A Tenfold cross-validation analysis of LASSO was performed 
and when λ = 0.022, logλ = − 3.817 (the first dotted vertical line), the model had minimum error, and 16 non-zero features were selected. B The 
coefficient profiles of the 1789 features

Fig. 4  The receiver operating characteristic (ROC) curves showing the performance of the nomogram, radiomic model, clinical-semantic model, 
intra-nodular radiomic model and peri-nodular radiomic model in A training and B validation set. A Delong test showed that the nomogram 
exhibited better performance comparing to the clinical-semantic model in both training (p = 0.0002) and validation set (p = 0.003). Data in the 
parentheses referred to the 95% confidence interval of area under the curve (AUC)
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model in both the training set (AUC = 0.834) and the val-
idation set (AUC = 0.835).

DCA was performed (Fig.  6) and the results showed 
that within the threshold probability ranging from 10 to 
90%, using the nomogram added more net benefits than 
clinical and semantic CT features in differentiating prein-
vasive lung adenocarcinoma manifesting as GGOs from 
invasive ones.

Discussion
The present study aimed to evaluate the performance and 
clinical value of radiomic features to assess the invasive-
ness of lung adenocarcinoma manifesting as GGOs. A 
total of 1018 GGOs with 2446 intra-/peri-nodular radi-
omic features and 22 clinical and semantic CT features 
were included in this study. After feature selection and 
model construction process, the established radiomic-
based nomogram exhibited better diagnostic efficiency 
and clinical value than using clinical and semantic CT 
features alone.

At present, clinical and semantic CT features are com-
monly applied to recognize an invasive lesion appearing 
as GGO. Previous studies have explored their clinical 
value. A study involving 272 GGOs during a 6-year span 
showed that large nodule maximum diameter (with cut-
off of 10 mm), lobulated boarder and spiculated margin 
were predictors for invasiveness of lung adenocarcinoma 

Fig. 5  The nomogram and calibration curve. A The constructed nomogram based on lobulation sign and rad-score. B The calibration curve of the 
established nomogram. The curve showed that the nomogram had a good agreement between prediction and observation

Fig. 6  Decision curve analysis (DCA) of the nomogram and the 
clinical-semantic model. The DCA curve showed that within the 
threshold probability ranging from 10 to 90%, using the nomogram 
added more net benefits than clinical and semantic CT features in 
differentiating preinvasive lung adenocarcinoma manifesting as 
ground-glass opacity nodules from invasive ones

Table 2  Results of multivariate logistic regression of significant 
features

β, regression coefficient; OR, odds ratio; CI, confidence interval

Variables β OR (95% CI) p value

Intercept 0.049 0.89

Lobulation 0.76 2.138 (1.029–4.442) 0.042

Rad-score 0.976 2.653 (2.058–3.422) < 0.001
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appearing as mixed GGOs [11], while some research-
ers [20] found that GGOs with size larger than 16.4 mm 
were more likely to be invasive lesions. In our study, nod-
ule maximum diameter, nodule density and lobulation 
sign were also found to be related to nodule invasive-
ness. Moreover, we discovered that abnormal lung cancer 
related tumor biomarker results could be a predictor for 
nodule invasiveness, which was seldom involved in pre-
vious studies. However, in our study, the combination of 
clinical and semantic CT features only exhibited moder-
ate performance (AUC = 0.746), and mistakenly diagnos-
ing an invasive lesion into a preinvasive one is risky cause 
it could lead to shortened survival of the patients. There-
fore, we explored the potential of radiomic features and 
try to obtain a model with better performance.

With high dimensional data, radiomics is a potentially 
more valuable method for nodule invasiveness evalua-
tion comparing with clinical and semantic features, for 
it could recognize and extract the tiny changes that are 
unnoticeable with naked eyes. In a retrospective study, 
researchers used five radiomic features to construct 
a radiomic model for nodule invasiveness prediction, 
which yielded good efficiency (AUC = 0.89) [16]. Another 
study showed that a radiomic-based model using two fea-
tures exhibited excellent performance (AUC = 0.942 on a 
validation cohort) [21]. In our study, 16 robust radiomic 
features were selected and used to construct a radiomic 
model, which showed good predicting ability for lung 
adenocarcinoma invasion with AUC of 0.828. Different 
from other researches, the selected radiomic features 
in our study were all extracted from wavelet and LoG 
filtered images. These filters could strengthen certain 
characteristics of the original image to reveal some infor-
mation that was hidden before. These results showed that 
image filtering could dig out more information from CT 
slices and should be used more frequently in radiomic 
researches. In addition, rad-score and lobulation sign 
were selected as independent factors for nodule inva-
sion prediction and were used to construct a nomogram. 
The nomogram showed best performance with an AUC 
of 0.835, and a decision curve analysis revealed that it 
had better clinical value than using clinical and semantic 
CT features alone. With the nomogram, the quantitative 
risk for invasiveness of a certain GGO could be calcu-
lated precisely, which could then be used as a reference to 
assist the judgement of clinicians in processes of nodule 
intervention and management.

It is known that invasive lung adenocarcinoma could 
have influence on the surrounding environment such as 
the form of micro-vessels. Moreover, in some peri-nod-
ular area, there might be actual differences but unnotice-
able on CT slices, which might give rise to changes on a 
radiomic scale. Hence, peri-nodular features could have 

potential values in radiomic researches [22, 23]. A few 
studies [24, 25] have explored the value of peri-nodular 
features in distinguishing preinvasive lesions from invasive 
ones, however, these studies were limited by their sample 
size and radiomic feature number. Therefore, we evaluated 
the performance of peri-nodular features extracted from 
the 5 mm ring area surrounding the nodule in our study. 
The results signified that a radiomic model based on pure 
peri-nodular area was useful in differentiating preinvasive 
lesions from invasive ones with an AUC of 0.808, and a 
combination of both intra-nodular and peri-nodular fea-
tures exhibited best performance. This shows that nodule 
surroundings are also important and should be paid more 
attention to in future radiomic researches.

In some studies, radiomic methods were found to have 
relatively unsatisfactory performance. Luo et  al. [18] 
found that a radiomic model had an AUC of 0.769, com-
paring to 0.853 of a clinical model. In another study, both 
radiomic features and clinical features exhibited poor per-
formance in the testing cohort when used to predict nod-
ule invasiveness [17]. Although performance of radiomic 
features changes with distribution of the data, it is also 
greatly related to dimension of the features and modeling 
methods. According to our results, we tried three differ-
ent modeling methods and the performance varied from 
0.677 to 0.828 in the validation set, which highlighted the 
importance of selecting a suitable modeling method. A 
study [26] involving 12 different modeling methods also 
found that with different classifiers, the variance of AUC 
of the established models could be as high as 40%. In addi-
tion, the same classifier might have different performance 
in various of data sets. Therefore, to extend the full poten-
tial of radiomics, incorporating more radiomic features 
and trying more modeling methods are encouraged to 
obtain the radiomic model with the best performance.

This study has several limitations. First, in order 
to ensure a confirmed pathological result, this study 
only included patients who received lung resection. 
This inclusion criteria ruled out the patients who were 
unwilling to take the operation or those who were in a 
follow-up process, which might cause a selection bias. 
Second, external validation was not accomplished in 
this single-center retrospective study, which could lead 
to bias of the model performance. Third, quantitative 
CT features, such as nodule mass, solid proportion and 
pleural contact index have been reported to be useful 
in nodule assessment [27–29], which were not included 
in this study. The combination of quantitative CT fea-
tures with radiomic features could be of clinical value. 
Lastly, due to difficulties in data collection, longitudinal 
follow-up CT data of patients was not included in this 
study. The radiomic model based on these data could be 
used to indicate the turning point when a preinvasive 
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lesion becomes an invasive one, which might help to 
shorten the follow-up period of the patients. There-
fore, future studies are still needed to break through the 
above limitations.

Conclusions
Radiomic model showed a better performance in 
assessing the invasiveness of lung adenocarcinoma 
appearing as GGOs than clinical and semantic CT 
model. Besides intra-nodular radiomic features, peri-
nodular radiomic features also played an important part 
in nodule invasive assessment. A nomogram incorpo-
rated clinical, semantic and radiomic features showed 
good performance and clinical value, which could pro-
vide more information for clinicians in the process of 
nodule evaluation, intervention and management.
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