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Abstract 

Background: Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are character-
ized by shared exposures and clinical features, but distinct genetic and pathologic features exist. These features have 
not been well-studied using large-scale gene expression datasets. We hypothesized that there are divergent gene, 
pathway, and cellular signatures between COPD and IPF.

Methods: We performed RNA-sequencing on lung tissues from individuals with IPF (n = 231) and COPD (n = 377) 
compared to control (n = 267), defined as individuals with normal spirometry. We grouped the overlapping differ-
ential expression gene sets based on direction of expression and examined the resultant sets for genes of interest, 
pathway enrichment, and cell composition. Using gene set variation analysis, we validated the overlap group gene 
sets in independent COPD and IPF data sets.

Results: We found 5010 genes differentially expressed between COPD and control, and 11,454 genes differen-
tially expressed between IPF and control (1% false discovery rate). 3846 genes overlapped between IPF and COPD. 
Several pathways were enriched for genes upregulated in COPD and downregulated in IPF; however, no pathways 
were enriched for genes downregulated in COPD and upregulated in IPF. There were many myeloid cell genes with 
increased expression in COPD but decreased in IPF. We found that the genes upregulated in COPD but downregu-
lated in IPF were associated with lower lung function in the independent validation cohorts.

Conclusions: We identified a divergent gene expression signature between COPD and IPF, with increased expression 
in COPD and decreased in IPF. This signature is associated with worse lung function in both COPD and IPF.
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Background
Chronic obstructive pulmonary disease (COPD) is a 
chronic lung disease characterized by airflow limitation, 
airway inflammation, and lung parenchymal destruction. 
In addition to well-known COPD risk factors including 
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age and cigarette smoking, more than 80 genetic loci 
have been associated with COPD susceptibility [1, 2]. Idi-
opathic pulmonary fibrosis (IPF) is another chronic lung 
disease with age and smoking as risk factors but is char-
acterized by lung parenchymal scarring on pathology and 
imaging and restriction on lung function testing. While 
fewer genetic loci have been associated with IPF, the esti-
mated heritability is greater for IPF compared to COPD, 
largely due to variants in the MUC5B gene.

Given the shared non-genetic risk factors, there has 
been significant recent interest in identifying shared 
genetic factors and biological mechanisms that under-
lie the development and progression of both diseases. 
Genome-wide association studies (GWAS) have identi-
fied five genetic loci that overlap between IPF and COPD 
[3, 4], albeit in opposite direction of association. Previous 
studies using gene expression from lung tissue have dem-
onstrated enrichment of the p53/hypoxia pathway among 
the overlapped differentially expressed genes and alter-
native splice variants in COPD and IPF [5]. In addition, 
several studies have implicated accelerated cellular senes-
cence in the development of both diseases [6, 7].

While convergent genes and pathways have been dem-
onstrated, fewer studies have investigated the divergent 
genes, pathways, and cell populations represented in 
the contrast of the disease states. Epithelial [8] vs. mes-
enchymal [9] precursor cell dysfunction has been linked 
to the divergence of COPD and IPF [10]. In addition, the 
Wnt and Notch signaling pathways appear to be overac-
tivated in IPF but aberrantly inhibited in COPD [11, 12]. 
However, the larger context of the genes and pathways 
involved and their relative effects in each disease is less 
clear. We therefore sought to identify genes and pathways 
involved in the divergence of IPF and COPD using gene 
expression in resected human lung tissue from well-char-
acterized subjects. We additionally hypothesized that 
these divergent gene sets are associated with worse clini-
cal outcomes in both COPD and IPF.

Methods
Study participants
Lung tissue samples were obtained through the Lung Tis-
sue Research Consortium (LTRC). Further details regard-
ing subject recruitment have been previously published 
[13]. Institutional review boards approved the study at 
all participating institutions and all patients provided 
written informed consent per LTRC protocol. We made 
the diagnosis of IPF based on a consensus clinical diag-
nosis of IPF according to American Thoracic Society/
European Respiratory Society guidelines for diagnosis of 
IPF or a pathologic diagnosis of UIP or honeycomb lung 
[14]. We defined COPD as forced expiratory volume in 
one second  (FEV1) to forced vital capacity (FVC) ratio 

< 0.70 and  FEV1% predicted  < 80% (Global Initiative for 
Chronic Obstructive Lung Disease [GOLD] stage 2–4) 
[15] and either pathologic emphysema or no alterna-
tive pathologic diagnosis. We defined control subjects as 
 FEV1/FVC ratio ≥ 0.70 and either no alternative patho-
logic diagnosis or pathologic emphysema. We excluded 
subjects missing demographic information, including 
current smoking status, and subjects whose correspond-
ing tissue did not have pathology information for the lobe 
of origin.

Validation of findings from LTRC was performed using 
blood RNA-seq data from the COPDGene study [16] and 
blood gene expression microarrays from a study of IPF 
subjects initially recruited to investigate host-microbial 
interactions in IPF [17].

Differential expression
The methods of RNA data processing are available in 
Additional file  1. We performed differential expres-
sion using the limma and voom packages. Models were 
adjusted for age, race, sex, current smoking status, smok-
ing pack-years, and library preparation batch. Surrogate 
variables were used to estimate other latent effects and 
included in the models as covariates. Multiple testing was 
controlled with a false discovery rate (FDR) < 1%.

Genes that were differentially expressed in both COPD 
and IPF were grouped into four groups based on direc-
tion of  log2 fold change, where Group 1 was defined by 
genes with increased expression in IPF and COPD and 
Group 4 was defined by genes with decreased expres-
sion in IPF and COPD (convergent gene sets), and Group 
2 was defined by genes with increased expression in IPF 
but decreased expression in COPD and Group 3 was 
defined by genes with decreased expression in IPF but 
increased expression in COPD (divergent gene sets). The 
methods for gene set enrichment, pathway analysis, cell 
category composition, and cell deconvolution are avail-
able in Additional file 1.

Gene set variation analysis
To investigate the association of our overlap expression 
gene sets with outcomes in LTRC including  FEV1 and 
DLCO, we employed gene set variation analysis (GSVA) 
[18].

GSVA can be used to reduce noise and improve inter-
pretability via dimension reduction of the overlap gene 
expression sets [19]. GSVA produces an enrichment 
score, similar to those in other gene set enrichment 
techniques, but allows for analysis of novel gene sets 
not necessarily defined by pathways or other externally 
pre-determined gene sets. The scores can then be tested 
for association with various phenotypic data using tra-
ditional statistical methods. We tested the association 
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of overlap gene expression set GSVA score with clinical 
outcomes in all subjects from LTRC. We validated these 
findings using blood RNA sequencing data and clinical 
and chest CT imaging outcomes from an independent 
COPD case–control study [20] and blood RNA sequenc-
ing data and clinical outcomes from a publicly available 
IPF case–control study [17] (GEO accession GSE93606) 
and validated the association of the overlap gene sets 
with disease status in each replication cohort.

Results
Subject characteristics
We obtained lung samples from 1503 subjects from the 
LTRC. 1399 subjects had complete demographic and 
pathology information. Of these, 231 subjects met case 
criteria for IPF, 377 subjects met case criteria for COPD, 
and 267 subjects met control criteria. Demographic and 
clinical characteristics for the subjects included in the 
present study are shown in Table 1.

Compared to controls, IPF subjects were more likely 
to be male but otherwise similar demographically. Com-
pared to controls, COPD subjects were older, more likely 
to be male, had lower BMI, and significantly higher life-
time smoking intensity in pack-years.

Differential gene expression
There were 58,870 RNAs identified among all subjects. 
After filtering for low expressed genes, we assessed 

15,893 genes for differential expression between IPF 
and controls and 15,578 genes for differential expression 
between COPD and controls (Fig.  1). We found 11,454 
and 5010 genes differentially expressed for IPF and 
COPD, respectively, after accounting for multiple testing 
using 1% FDR (Additional file 2: Tables S1 and S2). There 
were 3853 genes that overlapped between IPF and COPD 
(Fig. 2A, Additional file 2: Table S3). Of these, 3846 genes 
had corresponding HGNC symbols and were used in 
downstream analyses. There were 1507 genes in Group 1 
(upregulated in both COPD and IPF), 397 genes in Group 
2 (downregulated in COPD, upregulated in IPF), 530 
genes in Group 3 (upregulated in COPD, downregulated 
in IPF), and 1412 genes in Group 4 (downregulated in in 
both) (Fig. 2B).

Gene set enrichment and pathway analysis
We examined the differential expression of the nearest 
genes and all genes within 200  kb of the 82 top single 
nucleotide polymorphisms identified in a large, collabo-
rative GWAS of COPD [1]. 18 of the nearest genes were 
differentially expressed (1% FDR) (Table  2), while 64 
out of 490 genes within 400 kb (± 200 kb) were differ-
entially expressed (Additional file 2: Table S4). We also 
examined the 4 genes, which were identified through 
chromatin interaction, methylation, open chromatin 
regions, and deleterious coding variants, affected by 
COPD expression quantitative trait loci (eQTLs). Of 

Table 1 LTRC subject characteristics

Data presented as mean (SD) or no. (%)

LTRC  Lung Tissue Research Consortium, IPF idiopathic pulmonary fibrosis, COPD chronic obstructive pulmonary disease, BMI body mass index, FEV1 forced expiratory 
volume in 1 s, FVC forced vital capacity, DLCO diffusion capacity for carbon monoxide

Characteristic IPF COPD Control p value
IPF vs. control

p value
COPD vs. control

n 231 377 267

Age, years 63.39 (7.90) 63.78 (9.05) 61.90 (12.65) 0.123 0.029

Male sex 157 (68.0) 201 (53.3) 105 (39.3) < 0.001 0.001

Race 0.180 0.222

White 205 (88.7) 344 (91.2) 246 (92.1)

Asian 3 (1.3) 0 (0) 0 (0)

Black 10 (4.3) 26 (6.9) 11 (4.1)

Hispanic 7 (3.0) 5 (1.3) 8 (3.0)

Other race 6 (2.6) 2 (0.5) 2 (0.7)

BMI, kg/m2 29.72 (5.44) 26.03 (5.11) 28.75 (5.88) 0.060 < 0.001

Current smoking 3 (1.3) 25 (6.6) 10 (3.7) 0.154 0.157

Ever smoking 152 (65.8) 365 (96.8) 173 (64.8) 0.888 < 0.001

Smoking pack-years 18.06 (23.33) 47.76 (30.48) 19.11 (26.75) 0.642 < 0.001

Pre-bronchodilator  FEV1, % predicted 66.17 (19.28) 40.18 (19.74) 96.62 (12.83) < 0.001 < 0.001

Pre-bronchodilator FVC, % predicted 61.11 (18.06) 67.94 (18.11) 96.67 (13.10) < 0.001 < 0.001

Pre-bronchodilator  FEV1/FVC 0.83 (0.08) 0.43 (0.15) 0.77 (0.06) < 0.001 < 0.001

DLCO, % predicted 38.95 (19.80) 40.98 (18.22) 73.78 (15.52) < 0.001 < 0.001
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these 4 genes, 2 genes (ADAMTSL3 and RIN3) were 
present in the overlapping differentially expressed 
genes between IPF and COPD.

Several genes had decreased expression in COPD com-
pared to control, including TGFB2, ADAMTSL3, and 
AGER. We examined the differential expression of the 
nearest genes and genes within 200 kb of the 13 genetic 
loci identified in a GWAS of IPF. Three of the nearest 
genes were differentially expressed in IPF vs. controls (1% 
FDR), including AKAP13, DEPTOR, and DPP9 (Table 3), 
while 19 of the 125 genes within 200  kb were differen-
tially expressed (Additional file 2: Table S5).

Of the 50 MSigDB Hallmark pathways, 31 pathways 
demonstrated significant enrichment in the four COPD 
and IPF overlap gene groups (Additional file 2: Table S6). 
In the convergent gene sets, there were 16 pathways 
significantly enriched in Group 1 (upregulated in both 
COPD and IPF) and 5 pathways enriched in Group 4 
(downregulated in both COPD and IPF). In the diver-
gent gene sets, there were 0 pathways enriched in Group 
2 (downregulated in COPD, upregulated in IPF) but 
there were 10 pathways significantly enriched in Group 
3 (upregulated in COPD, downregulated in IPF). A heat-
map of the enrichment scores and hierarchical clustering 

Fig. 1 Principal component analysis (PCA) plots for lung tissue RNA sequencing data and volcano plots of differential expression results. Principal 
component analysis (PCA) plots for lung tissue RNA sequencing data and volcano plots of differential expression results. A PCA plot for control 
samples (orange) vs. IPF samples (blue). B PCA plot for control samples (orange) vs. COPD samples (blue). C Volcano plot of IPF vs. control differential 
expression results. FDR < 0.01 results shown in blue and results that did not meet FDR threshold are shown in orange. D Volcano plot of COPD vs. 
control differential expression results
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Fig. 2 Overlap of IPF and COPD vs. control differentially expressed genes. A Venn diagram of differentially expressed genes between IPF vs. control 
and COPD vs. control. B Scatterplot of overlapping differentially expressed genes with  log2 fold change of IPF vs. control on x axis and  log2 fold 
change of COPD vs. control on y axis. Genes with increased expression in IPF and COPD (Group 1) are in green; genes with increased expression in 
IPF but decreased expression in COPD (Group 2) are in red; genes with decreased expression in IPF but increased expression in COPD (Group 3) are 
in blue; genes with decreased expression in IPF and COPD (Group 4) are in orange

Table 2 COPD GWAS [1] genes in the overlapping differentially expressed gene groups

The gene nearest to each lead GWAS single nucleotide polymorphism is included

COPD vs. control  log2FC, unadjusted p values, and Benjamini–Hochberg adjusted p value shown. Genes identified as eQTLs denoted with *. Group 1: genes with 
increased expression in IPF and COPD; Group 2: genes with increased expression in IPF but decreased expression in COPD; Group 3: genes with decreased expression 
in IPF but increased expression in COPD; Group 4: genes with decreased expression in IPF and COPD

COPD chronic obstructive pulmonary disease, GWAS genome-wide association study, log2FC  log2 fold change, eQTL expression quantitative trait locus

Gene COPD vs. control  log2FC Unadjusted p value Adjusted p value Overlap 
group

TGFB2 − 0.32 1.72E−15 3.51E−13 4

ZKSCAN1 − 0.14 8.44E−12 4.59E−10 2

PABPC4 0.14 1.99E−10 6.96E−09 1

MFAP2 0.27 1.87E−07 2.44E−06 1

ADAMTSL3* − 0.18 4.48E−07 5.21E−06 4

AGER − 0.23 5.32E−07 6.03E−06 4

PID1 0.16 5.00E−07 5.72–06 3

RPL23 0.11 9.15E−07 9.56–06 1

MFHAS1 0.11 1.22E−06 1.22E−05 3

BTC − 0.17 2.27E−05 1.47E−04 2

CHRM3 − 0.28 4.39E−05 2.60E−04 4

SFTPD 0.17 1.10E−04 5.80E−04 3

MED13L − 0.06 1.04E−04 5.47E−04 4

NR4A2 0.45 3.20E−04 1.42E−03 3

ZBTB38 − 0.06 3.40E−04 1.48E−03 4

HHIP 0.19 1.73E−03 5.92E−03 3

RIN3* 0.07 2.09E−03 6.93E−03 3

CITED2 0.16 2.21E−03 7.28E−03 3
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of the pathways is shown in Fig.  3A. The top enriched 
pathways, ranked by joint enrichment MANOVA p 
value, include tumor necrosis factor alpha (TNFA) sign-
aling, epithelial–mesenchymal transition, inflammatory 

response, and transforming growth factor beta (TGFB) 
signaling. While the majority of pathways showed single 
visual clusters of genes, TGFB signaling and TNFA sign-
aling appeared to have two separate clusters (Fig. 3B–E). 
TGFB signaling, TNFA signaling, and inflammatory 
response were in Group 3, while epithelial–mesenchymal 
transition was in Group 1.

Cell category composition of overlap groups and cell type 
deconvolution
Using the top five genes ranked by FDR adjusted p-value 
from a previously reported single cell RNA-Seq study in 
IPF and COPD [21] for each of the 38 cell types in four 
cell categories, we examined the distribution of the 190 
genes in the four overlap groups. There was an overrepre-
sentation of stromal cell genes in Group 1 and a relatively 
uniform distribution of cell categories in Group 4. In the 
divergent gene sets, there was minimal representation 
of lymphoid, myeloid, and stromal cell genes in Group 2 
and an overrepresentation of myeloid genes in Group 3 
(Fig. 4A).

Table 3 IPF GWAS [4] genes in the overlapping differentially 
expressed gene groups

The gene nearest to each lead GWAS single nucleotide polymorphism is 
included

IPF vs. control  log2FC and Benjamini–Hochberg adjusted p value shown. Group 
1: genes with increased expression in IPF and COPD; Group 2: genes with 
increased expression in IPF but decreased expression in COPD; Group 3: genes 
with decreased expression in IPF but increased expression in COPD; Group 4: 
genes with decreased expression in IPF and COPD

IPF idiopathic pulmonary fibrosis, GWAS genome-wide association study, log2FC 
 log2 fold change

Gene IPF vs. 
control 
 log2FC

Unadjusted p 
value

Adjusted p value Overlap 
group

AKAP13 −0.25 3.48E−21 1.88E−20 3

DEPTOR 0.33 2.13E−06 4.07E−06 1

DPP9 0.08 1.43E−05 2.56E−05 1

Fig. 3 Hallmark pathway enrichment. A Heatmap of enrichment scores for differentially expressed genes in IPF and COPD vs. control with 
hierarchical clustering. Cells in red denote positive enrichment score whereas cells in blue denote negative enrichment score. B Density plot of 
genes ranks in IPF on x axis and gene ranks in COPD on y axis in TNF-alpha signaling via NFKB pathway. Color gradient represents the number of 
genes at the given rank coordinates, where darker shades of red denote the location with the highest number of genes and lighter shades of yellow 
denote the location with the lowest number genes. C Density plot of genes ranks in IPF on x axis and gene ranks in COPD on y axis in epithelial 
mesenchymal transition pathway. D Density plot of gene ranks in IPF on x axis and gene ranks in COPD on y axis in inflammatory response pathway. 
E Density plot of gene ranks in IPF on x axis and gene ranks in COPD on y axis in TGF Beta signaling pathway
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We performed cell type deconvolution using Bisque, a 
robust and efficient method that employs non-negative 
least-squares regression, and a publicly available lung sin-
gle-cell RNA sequencing data [19, 22]. We focused on cell 
types previously associated with COPD and IPF [23, 24]. 
We found that there was a higher proportion of adven-
titial fibroblasts (p = 0.035) in IPF samples compared to 
COPD and control samples, but there was no difference 
between the other selected cell types (Fig. 4B, C).

Gene set variation analysis in LTRC 
We used GSVA to compute scores for the differentially 
expressed genes from Groups 1–4. The scores were 
applied in all LTRC subjects, including COPD subjects, 
IPF subjects, control subjects, and subjects with other 
diagnoses not included in the previous disease com-
parisons. We computed Spearman correlation of Group 
GSVA score with  FEV1, % predicted and DLCO, % 

predicted (Figs. 5 and 6). The Group 1 and Group 3 scores 
were negative correlated with  FEV1 and DLCO and the 
Group 4 score was positively correlated with  FEV1 and 
DLCO. The Group 2 score was positively correlated with 
 FEV1 but was not correlated with DLCO. There was qual-
itative visual clustering of both IPF and COPD cases by 
GSVA score in each group, though with more obvious 
clustering for IPF subjects than COPD subjects.

Gene set variation analysis validation in independent 
COPD and IPF cohorts
We sought to validate our findings in independent COPD 
and IPF cohorts with available gene expression data. 
Given the lack of widely available, large scale lung tissue 
gene expression data and for potential utility as disease 
biomarkers, we used RNA sequencing and microar-
ray data available from whole blood. There were 1139 
COPD cases (GOLD 1–4) and 1459 control subjects 

Fig. 4 Cell category composition of differentially expressed genes and cell deconvolution in IPF and COPD. A Histogram of differentially expressed 
genes in LTRC in each overlap group by single cell RNA sequencing (scRNASeq) defined cell category [26]. Cell category genes were defined by 
top 5 scRNASeq genes differentially expressed by each cell type within each category. Group 1: genes with increased expression in IPF and COPD; 
Group 2: genes with increased expression in IPF but decreased expression in COPD; Group 3: genes with decreased expression in IPF but increased 
expression in COPD; Group 4: genes with decreased expression in IPF and COPD. B Selected COPD-associated deconvoluted cell type proportion 
distributions across COPD, IPF, and control samples. C Selected IPF-associated deconvoluted cell type proportion distributions across COPD, IPF, and 
control samples
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from COPDGene for whom RNA-Seq data was avail-
able (Additional file 2: Table S7). There were 49 subjects 
categorized as preserved ratio with impaired spirometry 
(PRISm) who were also included in the analysis. Cases 
were older, more likely to be male, more likely to be non-
Hispanic white, had lower BMI, less likely to be current 
smokers, and had higher pack-years. Cases also had 
lower  FEV1, % predicted,  FEV1/FVC ratio, and DLCO, 
% predicted. There were 57 IPF subjects and 20 control 
subjects from the Molyneaux et al. study for whom gene 
expression microarray data was available (Additional 
file 2: Table S8). There was no difference in age and sex 
distribution between cases and controls. FVC (% pre-
dicted) and DLCO (% predicted) were not reported for 
control subjects.

GSVA scores were calculated for all subjects in COP-
DGene and the IPF study using the gene sets derived in 
LTRC in each of the overlap groups, Groups 1–4. Only 

the Group 3 GSVA score was significantly different 
between both COPD cases and controls in COPDGene 
and IPF cases and controls in the Molyneaux et  al. IPF 
study (Additional file  1: Fig. S3). The Group 2 GSVA 
score was also significantly different (p < 0.001) between 
COPD cases and controls in COPDGene, while the 
Group 1 and Group 4 GSVA scores were significantly dif-
ferent (p < 0.001 and p < 0.01, respectively) between IPF 
cases and controls in the Molyneaux et al. IPF study.

We tested the association of GSVA scores derived from 
Group 1–4 genes and clinical traits in COPDGene and 
the IPF study. Similar to case–control status, the Group 
3 GSVA score was significantly associated with worse 
lung function in both COPDGene  (FEV1% predicted) and 
the IPF dataset (FVC % predicted). The Group 2 score 
was also associated with  FEV1% predicted as well as the 
square root of wall area of a hypothetical airway with 
10  mm internal perimeter (Pi10) from chest CT scan 

Fig. 5 Association of GSVA scores from overlap groups with  FEV1% predicted in LTRC. Scatterplots with trend lines of association of GSVA scores 
from overlap groups with  FEV1% predicted in LTRC subjects. Turquoise represents COPD cases, purple represents IPF cases, and gray represents all 
other diagnoses. Trend lines are colored to represent overlap group. Spearman correlation coefficient and p value are shown for each association. 
Group 1: genes with increased expression in IPF and COPD; Group 2: genes with increased expression in IPF but decreased expression in COPD; 
Group 3: genes with decreased expression in IPF but increased expression in COPD; Group 4: genes with decreased expression in IPF and COPD. 
A Association of GSVA score from Group 1 genes with  FEV1% predicted. B Association of GSVA score from Group 2 genes with  FEV1% predicted. 
C Association of GSVA score from Group 3 with  FEV1% predicted. D Association of GSVA score from Group 4 with  FEV1% predicted. GSVA gene set 
variation analysis, LTRC  Lung Tissue Research Consortium, COPD chronic obstructive pulmonary disease, IPF idiopathic pulmonary fibrosis, FEV1 
forced expiratory volume over 1 s
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analysis (Additional file 2: Table S9). The Group 2 score 
was also nominally associated with DLCO % predicted 
and mortality in COPDGene, though the p-value did not 
reach the Bonferroni-corrected significance threshold. 
The Group 3 score was also only nominally associated 
with Pi10, percent emphysema, and DLCO % predicted.

In the IPF study, the Group 2 score was also correlated 
with FVC % predicted (Additional file 1: Fig. S4), but no 
Group scores were significantly correlated with DLCO % 
predicted (Additional file 1: Fig. S5).

Discussion
In this study, we report results from a large sample size 
of lung tissue RNA sequencing from subjects with COPD 
and IPF. The overlap patterns of gene expression in lung 
tissue between the two diseases revealed four distinct 
groups. We demonstrated that one group of divergent 
genes in particular, the gene set with increased expression 

in COPD but decreased expression in IPF (Group 3), was 
enriched for multiple genes identified by GWAS in IPF 
and COPD, enriched for important pathways includ-
ing TNFA signaling via NFKB and TGFB signaling, and 
overrepresented by myeloid cell genes. These results 
characterize a unique gene expression signature that 
may represent specific inflammatory pathways that play 
a divergent role in the pathogenesis of COPD and IPF. 
Furthermore, overexpression of this gene signature in 
blood was associated with reduced lung function in both 
diseases.

The divergent role of inflammation in COPD and IPF 
has been independently established but has not been 
demonstrated using the contrast and overlap approach 
we employed above. Broadly, immune suppression with 
systemic corticosteroids has been shown to improve 
symptoms and reduce length of stay in acute COPD 
exacerbations [25], but the chronic use of inhaled 

Fig. 6 Association of GSVA scores from overlap groups with DLCO % predicted in LTRC. Scatterplots with trend lines of association of GSVA scores 
from overlap groups with DLCO % predicted in LTRC subjects. Turquoise represents COPD cases, purple represents IPF cases, and gray represents all 
other diagnoses. Trend lines are colored to represent overlap group. Spearman correlation coefficient and p value are shown for each association. 
Group 1: genes with increased expression in IPF and COPD; Group 2: genes with increased expression in IPF but decreased expression in COPD; 
Group 3: genes with decreased expression in IPF but increased expression in COPD; Group 4: genes with decreased expression in IPF and COPD. A 
Association of GSVA score from Group 1 genes with DLCO % predicted. B Association of GSVA score from Group 2 genes with DLCO % predicted. 
C Association of GSVA score from Group 3 with DLCO % predicted. D Association of GSVA score from Group 4 with DLCO % predicted. GSVA gene 
set variation analysis, LTRC  Lung Tissue Research Consortium, COPD chronic obstructive pulmonary disease, IPF idiopathic pulmonary fibrosis, DLCO 
diffusion capacity of carbon monoxide
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corticosteroids remains somewhat controversial. On the 
other hand, immune suppression with corticosteroids 
and azathioprine was associated with increased mortality 
in IPF [26].

TNFA signaling represents one such pathway we found 
to be divergent between COPD and IPF that has been 
examined in-depth in both diseases. TNFA has a long 
history in COPD but has ultimately been disappointing as 
an avenue for pharmacologic intervention. It is thought 
to play a role in the pathogenesis of COPD via expres-
sion from dysregulated monocytes [27] and subsequent 
apoptosis of cells in the alveolar wall [28], leading to the 
loss of lung parenchyma and development of emphysema 
[29]. However, while there may have been a trend toward 
benefit in a subgroup of subjects with cachexia, a rand-
omized clinical trial of TNFA blockade in subjects with 
moderate to severe COPD failed to demonstrate a benefit 
[30]. The role of TNFA in IPF is less clear. While several 
studies have suggested the role of endogenous TNFA in 
potentiating the pathogenesis of IPF [31], there may be 
a protective effect of exogenous or overexpression of 
TNFA in IPF [32].

TGFB signaling represents another immune-related 
pathway that has been shown to be associated with both 
COPD and IPF. TGFB has been studied extensively in IPF 
and has been linked to inflammatory cell and fibroblast 
recruitment in the pathogenesis of fibrosis [33]. We found 
ubiquitous negative enrichment of TGFB signaling in IPF, 
which may reflect the expression consequences of disease 
rather than the elements involved in the pathogenesis. 
On the other hand, there were two distinct gene clusters 
of TGFB signaling enrichment in COPD, one with posi-
tive enrichment and one with negative enrichment. This 
may signify the presence of TGFB-determined subgroups 
in COPD [34], defined either by TGFB signaling enrich-
ment or temporal differences of TGFB signaling (i.e. early 
vs. late). Interestingly, TGFB2 gene expression, which 
was one of the genes associated with COPD by GWAS, 
was decreased in both COPD and IPF and did not belong 
to the divergent gene signature.

The overrepresentation of myeloid cell genes in the 
divergent gene expression signature between COPD and 
IPF further characterizes the opposing role of inflamma-
tion in the two diseases. While a small but distinct popu-
lation of myeloid cells has been associated with IPF [35], 
several populations of myeloid cells, including alveolar 
macrophages, dendritic cells, neutrophils, and other 
cells that make up the foundational population of innate 
immunity, have been implicated in the chronic inflam-
mation that has been a demonstrated hallmark of COPD 
[36].

We demonstrated the association of the divergent 
gene expression signature between the two diseases with 

worse lung function in LTRC and validated these findings 
in independent COPD and IPF blood expression data 
sets. As discussed above, the divergent gene expression 
signature may represent specific inflammatory pathways 
that play a divergent role in the branching pathogen-
esis of the two diseases. Inflammation, both systemic 
[37, 38] and lung-specific [39], has been associated with 
worse lung function and progressive decline in COPD. 
We observed this effect in the COPDGene study replica-
tion, with the divergent gene expression signature associ-
ated with decreased  FEV1 and nominally associated with 
airway wall thickness and mortality. In contrast, while 
there may be inflammatory aspects of IPF pathogenesis, 
the data on the role of inflammation in IPF progression 
are mixed. On one hand, increased innate and adaptive 
immune infiltrates distinguished rapid progressors from 
slow progressors in IPF [40]. Similarly, downregulation of 
CD28 on CD4 T cells has been shown to be associated 
with a dysregulated, increased immune response associ-
ated with progression of IPF [41]. Several genes that are 
a part of a 52-gene expression score predictive of survival 
in IPF belong to the costimulatory T cell activation signal 
[42, 43]. On the other hand, nintedanib [44, 45] and pir-
fenidone [46], the only pharmacologic interventions that 
have been shown to slow disease progression in IPF, are 
thought to affect fibroblast proliferation without a direct 
effect on inflammation or immune function. Thus, while 
our findings highlight the divergent gene expression sig-
nature with increased expression COPD and decreased 
expression in IPF, the association of this signature with 
worse lung function may belie an inflammatory subtype 
common to both diseases that results in reduced lung 
function.

While we were able to demonstrate validation of our 
findings across several analytic modalities and across two 
independent cohorts, we recognize that there are several 
limitations to our current study. First, we identified the 
gene signatures in lung tissue and used gene expression 
data from blood for validation. Ideally, we would use gene 
expression from independent lung tissue cohorts for rep-
lication. However, gene expression data from blood is 
much more widely available and in larger sample sizes 
by several orders of magnitude. In addition, our group 
has previously shown overlapping disease-specific gene 
expression across multiple tissue types [47], and periph-
eral blood is more accessible as a disease biomarker. Sec-
ond, our use of bulk lung tissue for RNA sequencing has 
limited cellular precision compared to single cell RNA 
sequencing. We attempted to address this limitation by 
including results from a single cell RNA-Seq study in IPF 
to determine the cell composition of the gene expres-
sion overlap groups and cell deconvolution proportions 
between COPD, IPF, and controls. In addition, given the 
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pathologic heterogeneity associated with both COPD and 
IPF, we acknowledge that some of the findings may be 
attributable to differences in lung tissue sampling. How-
ever, we attempted to mitigate any differences associated 
with sampling by using strict, clinical and pathologic 
composite definitions. Third, subjects in LTRC under-
went thoracic surgery for clinical indications, includ-
ing lung cancer. While the study protocol included clear 
pathologic margins, any residual field effect could impact 
gene expression results [48]. Finally, given the advanced 
stage of disease in the IPF and COPD cases in LTRC, it 
is difficult to distinguish whether the gene expression in 
the lung tissue is a reflection of casual pathways or reac-
tive changes. Future studies with early-stage samples may 
help clarify these results.

Conclusions
Our study reveals a divergent gene signature with 
increased expression in COPD and decreased expression 
in IPF that highlights the opposing role of several inflam-
matory and immune-related pathways in lung tissue from 
COPD and IPF. We show that this gene signature is asso-
ciated with reduced lung function in both COPD and IPF, 
suggesting the presence of a common inflammatory sub-
type with increased disease severity.
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