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Abstract 

Background:  The prevalence of allergic respiratory disease (ARD) is increasing worldwide during the last few dec-
ades, causing a great disease burden especially for children. Air pollution has been increasingly considered as a poten-
tial contributor to this trend, but its role in ARD induced by house dust mite (HDM-ARD) remains unclear, especially in 
time-series study.

Methods:  A positive reporting of respiratory allergy to named allergens was included by serum specific IgE test-
ing. A time series Quasi-Poisson regression with distributed lag non-linear model, combined with generalized linear 
model was used to examine the effects of air pollutants on ARD, HDM-ARD and ARD induced by non-house dust mite 
(NHDM-ARD).

Results:  A total of 16,249 cases of ARD, including 8,719 HDM-ARD and 8,070 NHDM-ARD from 1 Jan 2013 to 31 Dec 
2017 were involved in this study. Air pollutants were significantly associated with clinical visits for childhood ARD 
and HDM-ARD. Exposure to higher O3 and interquartile range (IQR) increment in O3 (40.6 µg/m3) increased the risks 
of clinical visits for childhood HDM-ARD (RRlag0-5 for the 95th percentile of O3: 1.26, 95% confidence interval (CI): 1.03, 
1.55; RRlag0-5 for IQR increment (40.6 µg/m3): 1.09, 95% CI: 1.01, 1.17) and ARD (RRlag0-5 for the 95th percentile of O3: 
1.19, 95% CI: 1.03, 1.38; RRlag0-5 for IQR increment (40.6 µg/m3): 1.06, 95% CI: 1.01, 1.12). In addition, higher O3 was 
associated with increased RR of boys with ARD (RRlag0-5 for the 95th percentile: 1.26, 95% CI: 1.05, 1.51; RRlag0-5 for IQR 
increment (40.6 µg/m3): 1.09, 95% CI: 1.02, 1.16) and HDM-ARD (RRlag0-5 for the 95th percentile: 1.36, 95% CI: 1.06, 1.75; 
RRlag0-5 for IQR increment (40.6 µg/m3): 1.11, 95% CI: 1.02, 1.22), but not in girls.

Conclusions:  Exposure to O3 appeared to be a trigger of clinical visits for childhood ARD, especially for HDM-ARD 
and boys. These findings provide novel evidence on the impact of air pollution on HDM-ARD, which may have 
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Background
Since the publication of the Allergic Rhinitis and its 
Impact on Asthma (ARIA) document in 2001 [1], the 
“one airway” concept has been accepted almost unani-
mously by the physicians to describe specific aspects 
of patients diagnosed with allergic rhinitis (AR) with or 
without allergic asthma (AA). The clinical phenotypes of 
AR and AA relevant to allergy are encompassed in the 
term “allergic respiratory disease” (ARD) and the concept 
of a united allergic airway reflects a shared underlying 
mechanism of pathogenesis. The increasing prevalence 
of ARD has been assessed by many epidemiological stud-
ies worldwide [2–4]. Importantly, environmental factors 
have been increasingly considered as potential major 
contributors to this trend [5, 6].

Although the exact pathogenesis of ARD remains 
unclear, the increased presence of outdoor air pollut-
ants resulting from more intense energy consumption 
and exhaust emissions from cars and other vehicles, may 
play an important role in the development of ARD [7]. 
Air pollutants have been reported to be associated with 
worsening of ARD symptoms [8]. Nevertheless, allergens 
play a decisive role in the onset of symptoms and influ-
ence the clinical manifestations of ARD [9]. House dust 
mite (HDM) sensitization is a major causative factor in 
the development of ARD [10]. Furthermore, a study has 
revealed that HDM induced more severe late reactions 
than cat or pollens in asthmatic patients [11]. Compo-
nents of the ultrafine fraction of particulate matter (PM) 
induce allergic pulmonary inflammation and act as adju-
vant of the allergic response to HDM [12], which suggests 
that airway mucosal damage and impaired mucociliary 
clearance induced by air pollutants may facilitate the 
access of inhaled HDM to the cells of the immune system.

To the best of our knowledge, no study has addressed 
the effects of air pollution on ARD induced by HDM 
(HDM-ARD) and/or non-house dust mite (NHDM-
ARD) to date. Therefore, in this study, we investigated 
the independent effects of air pollutants on ARD, HDM-
ARD, and NHDM-ARD in Shanghai, China.

Methods
Study participants
Shanghai, located in the east of China (N30°40′-31°53′, 
E120°52′-122°12′), is the most populous city in China, has 
a subtropical monsoon climate with four distinct seasons. 

In this study, data on daily clinical visits (outpatient and 
inpatient visits) for childhood ARD, HDM-ARD and 
NHDM-ARD from 1 January 2013 to 31 December 2017 
were collected from Shanghai Children’s Medical Center, 
the largest pediatric hospital affiliated to Shanghai Jiao 
Tong University School of Medicine. The outpatient visits 
include allergic respiratory diseases such as allergic rhi-
nitis and asthma, etc. The inpatient visits include emer-
gence department and general admissions for respiratory 
disease. The medical record included the age, gender, 
date of visit, total IgE level, all types of inhaled allergens 
(including HDM (Dermatophagoides pteronyssinus [Der 
p 1] and Dermatophagoides farinae [Der f 1]), cat/dog 
hair, molds, cockroaches, grass/tree and pollens) detec-
tion and identification. Principal diagnostic classifica-
tion of childhood ARD was made according to the tenth 
version of the International Classification of Diseases 
for anaphylaxis due to asthma (ICD-10, J45-J46) and AR 
(ICD-10, J30). The participants should meet the follow-
ing criteria: at least one inhaled allergen was positive and 
total IgE was above the normal range. The exclusion cri-
teria were as follows: (1) children were negative for aller-
gens detection; or (2) total IgE was normal; or (3) patients 
older than 18 years old.

Assessment of allergens‑specific IgE and total IgE in serum
Before testing, the performance qualification of total IgE 
had been done. The protocol had an inter-assay variance 
of 1.49% and an intra-assay variance of 1.63% when test-
ing the low concentration (70  IU/mL) of quality con-
trol serum, and an inter-assay variance of 0.65% and an 
intra-assay variance of 1.65% when testing the high con-
centration (200 IU/mL) of quality control serum. Serum 
total IgE (TIgE) was determined quantitatively in all the 
patients using the BN II and BN ProSpec (N Latex IgE 
mono, Siemens, Germany), after calibration using com-
mercial standard (also Siemens), and expressed in IU/
mL. The TIgE reference range depends on the age of the 
individual [It ranges from 0 to 1.5  IU/mL in newborn 
infants, 0–15  IU/mL in infants during the first year of 
life, 0–60 IU/mL in children (1–5 years), 0–90 IU/mL in 
children (6–9 years), and 0–200 IU/mL in children (10–
17  years)] [13]. HDM or HDM along with other more 
serum IgE species (sIgE) was found positive (≥ 0.35  IU/
ml) by Western blotting using AllergyScreen™ human 
serum specific IgE allergen detection kit for specific 

significant implications for designing effective intervention programs to control and prevent childhood ARD, espe-
cially HDM-ARD, in China and other similar developing countries.
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inhalant allergens as described in previous publications 
[14, 15]. In this study, ARD induced by non-house dust 
mite such as cat/dog hair, molds, cockroaches, grass/tree 
and pollens was classified as NHDM-ARD.

Air pollutants exposure assessment
The data on air pollutants (μg/m3) were collected from 
the Shanghai Environmental Protection Agency, includ-
ing nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone 
(O3), and airborne particulate matter with an aero-
dynamic diameter less than 2.5  μm (PM2.5) or 10  μm 
(PM10). The meteorological data (daily mean temperature 
(Tmean, °C) was obtained from the Shanghai Meteoro-
logical Service. Daily mean values of air pollutants and 
meteorological factors were calculated using the 24-h 
monitoring records. Daily averages of air pollutants from 
many monitoring stations in various regions of Shanghai 
were used in this study (Fig.  1). Shanghai Meteorologi-
cal Service is located at the center of the city, providing 
monitoring meteorological data with well calibrated and 
highly related to the records in other stations [16, 17]. In 
this study, we defined air pollutants as high level when 
the values were greater than the 95th percentile of each 
air pollutant.

Statistical analysis
The analysis of the data was conducted in three phases. 
Firstly, we did descriptive analysis using mean, standard 
deviation (SD), interquartile range (IQR), minimum, 
maximum, 25th percentile (P25), 50th percentile (P50) 
and 75th percentile (P75) to describe daily clinical vis-
its and environmental factors. Spearman’s correlation 
analysis was used to examine the correlations between 

environmental factors and clinical visits for childhood 
ARD, HDM-ARD and NHDM-ARD on the current day.

Secondly, a Quasi-Poisson generalized linear regres-
sion model combined with a distributed lag non-linear 
model (DLNM) [18] was used to determine the lagged 
and non-linear effects of air pollutants on childhood 
ARD, HDM-ARD and NHDM-ARD. Since Spearman 
correlation coefficients between NO2, SO2, PM10, and 
PM2.5 were high (rs > 0.6), to avoid collinearity, only one 
of these variables was included in the final model, with 
the lowest Akaike information criterion (AIC) value. By 
comparing all multivariable models, we finally found 
that the model with Tmean and O3 performed the best, 
with the smallest AIC and residual deviance. The final 
multivariable model is as follows:

where E (Yt) is the number of daily clinical visits for 
childhood ARD, HDM-ARD or NHDM-ARD expected 
on day t; maxlag was set at 28 for temperature and 5 for 
O3 according to previous studies and the reference of 
AIC [19]; α is the intercept; day of the week (dow) and 
public holiday are controlled for as categorical variables; 
ns(time, df/year) is the natural cubic spline function (ns) 
for time (i.e., 1–1826 in total), with 9 df/year selected for 
the final model by calculating the minimum of the resid-
uals using the partial autocorrelation function and based 
on the lowest AIC [20, 21]; ns(time, df/year) was used 
to control for seasonality and long-term trends in child-
hood ARD; Tmean indicates the mean temperature. cb 
represents the “cross-basis” function which defined the 
matrix about temp, O3 and lag using ns or linear function 
as appropriate.

Finally, sensitivity analyses were conducted to verify 
the robustness of the final results. We used 6–14 df per 
year for calendar time and 2–7 df for environmental 
factors in the model. The model included Tmean, PM2.5, 
and O3 were performed. We also set the maximum lag 
as 14 or 21 in the model to compare the results. We also 
did many subgroup analyses stratified by gender.

All analyses were conducted with R software 3.6.3. 
The statistical significance level was set at p-value < 0.05 
(two-side).

Ethics issue
The ethical approval of this project was granted by 
the Ethics Committee of Shanghai Children’s Medical 
Center (approval number: SCMCIRB-Y2020100) prior 

Efficacy(%)against ticks =100× (Mean count control

−Mean count treated)

/Mean count control.

Fig. 1  The locations of pediatric hospital and air quality monitoring 
stations in this study. SCMC: Shanghai Children’s Medical Center; Star 
represent the SCMC; Circles represent the monitoring stations
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to the data collection. Since the data were de-identified 
and aggregated, written consent was waived.

Results
There were 16,249 ARD cases in total, including 8179 
HDM-ARD and 8070 NHDM-ARD, of which there were 
11,437 outpatients and 4812 inpatients from 1 Jan 2013 
to 31 Dec 2017. HDM-ARD accounted for more than 
one half of ARD population (50.3%), and NHDM-ARD 
accounted for 49.7%. The number of outpatient visits was 
far greater than inpatient visits for either of childhood 
ARD, HDM-ARD and NHDM-ARD. The average age of 
daily clinical visits for childhood ARD, HDM-ARD and 
NHDM-ARD was 4.8, 5.6 and 3.9  years, respectively, in 
which boys made up the majority (62.7%, 64.0%, 61.4%, 
respectively). The median and IQR of TIgE value for 
childhood ARD, HDM-ARD and NHDM-ARD was 123.0 
(48.4 ~ 278), 235.0 (118 ~ 574) and 77.1 (26.3 ~ 146) IU/
ML, respectively (Table 1).

Additional file  1: Table  S1 shows the summary statis-
tics of air pollutants and daily clinical visits for childhood 
ARD, HDM-ARD and NHDM-ARD from 2013 to 2017. 
The median and IQR value of NO2, SO2, PM10, PM2.5, 
and O3 was 41 (30 ~ 56) μg/m3, 13 (10 ~ 19) μg/m3, 56 
(40 ~ 82) μg/m3, 41 (26 ~ 63) μg/m3 and 72 (51 ~ 91.6) μg/
m3, respectively. The daily median (IQR) number of clini-
cal visits for childhood ARD, HDM-ARD and NHDM-
ARD was 9 (5 ~ 13), 4 (2 ~ 7) and 4 (2 ~ 7), respectively. 
Additional file  1: Table  S2 shows the associations of air 
pollutants and meteorological factor with childhood 
ARD, HDM-ARD and NHDM-ARD during 2013–2017. 
Spearman correlation coefficient between ARD and 
HDM-ARD was 0.88 (p < 0.05). There were positive 

associations of O3 with HDM-ARD (rs = 0.08, p < 0.05), 
while no association was found for other air pollutants. 
Additional file 1: Figs. S1, S2 and S3 depict a time series 
plot of apparent long-term trends and seasonality of clin-
ical visits for childhood ARD, HDM-ARD and NHDM-
ARD, respectively. Additional file 1: Fig. S4 indicates the 
distribution of air pollutants during the period.

Figure  2a shows that there was no statistically signifi-
cant single-day effect of O3 on the daily clinical visits for 
childhood ARD. However, Fig. 2b reveals that higher O3 
(relative risk (RR) lag0-5) was significantly associated with 
an increased risk of clinical visits for ARD in children.

Figure  3a indicates that the strongest relationship 
between O3 and childhood HDM-ARD was found at lag 
5 days. Figure 3b depicts the cumulative lagged effects of 
O3 on the daily clinical visits for childhood HDM-ARD, 
suggesting that higher O3 (RRlag0-1 and RRlag0-5) was sig-
nificantly associated with an increased risk of clinical vis-
its for childhood HDM-ARD.

Figure  4a and b show the single-day effects and the 
cumulative lagged effects of O3 on the daily clinical visits 
for childhood NHDM-ARD, respectively. It indicates that 
O3 was not significantly associated with the risk of clini-
cal visits for NHDM-ARD in children.

Additional file  1: Figs. S5 and S6 show the single-day 
effects and cumulative lagged effects of NO2, SO2, PM10 
and PM2.5 on the daily clinical visits for ARD, HDM-ARD 
and NHDM-ARD in children, respectively. It suggested 
that NO2, SO2, PM10 and PM2.5 were not significantly 
associated with the risks of clinical visits for ARD, HDM-
ARD and NHDM-ARD in children.

Table  2 shows the single-day effects and cumula-
tive lagged effects of air pollutants on childhood ARD, 

Table1  Characteristics of the patient episodes for ARD, HDM-ARD and NHDM-ARD

ARD allergic respiratory disease, HDM-ARD allergic respiratory disease induced by house dust mite, NHDM-ARD allergic respiratory disease induced by non-house dust 
mite, TIgE serum total IgE. p-value was calculated by Pearson Chi-square test or Mann–Whitney U test

variables ARD HDM-ARD NHDM-ARD p-value

Total clinical visits 16,249 8179 (50.3%) 8070 (49.7%) < 0.001

Outpatient visits 11,437 (70.4%) 6691(81.8%) 4746 (58.8%) < 0.001

Inpatient visits 4812 (29.6%) 1488 (18.2%) 3324 (41.2%) < 0.001

Age (years)

 Mean (SD) 4.8 (2.8) 5.6 (2.8) 3.9 (2.5) < 0.001

 ≤ 2 2597 (16.0%) 436 (5.3%) 2161 (26.8%) < 0.001

 3–6 10,178 (62.6%) 5289 (64.7%) 4889 (60.6%)

 7–17 3474 (21.4%) 2454 (30.0%) 1020 (12.6%)

Gender

 Male 10,193 (62.7%) 5238 (64.0%) 4955 (61.4%) < 0.001

 Female 6056 (37.3%) 2941 (36.0%) 3115 (38.6%)

TIgE (IU/ML)

 Median, interquartile 123.0 (48.4 ~ 278) 235.0 (118 ~ 574) 77.1 (26.3 ~ 146) < 0.001
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HDM-ARD and NHDM-ARD after taking putative con-
founders into account. The cut points of 95th percen-
tile of NO2, SO2, PM10, PM2.5 and O3 were 87.0  μg/m3, 
39.0 μg/m3, 143.0 μg/m3, 118.0 μg/m3, and 123.0 μg/m3, 
respectively. Exposure to higher O3 (95th percentile, 
123.0 μg/m3) or an IQR increment (40.6 μg/m3) elevated 
the RR of childhood ARD (RRlag0-5 = 1.19, 95% CI: 1.03, 
1.38, and 1.06, 95% CI: 1.01, 1.12, respectively). However, 

the single-day effects of higher O3 and an IQR increment 
(40.6  μg/m3) were not significantly associated with the 
risk of clinical visits.

For HDM-ARD, there were stronger cumulative 
lagged effects of O3 exposure (RRlag0-5 for the 95th per-
centile: 1.26, 95% CI: 1.03, 1.55; RRlag0-5 for IQR incre-
ment (40.6  μg/m3): 1.09, 95% CI: 1.01, 1.17) and the 
single-day effects (RRlag5 for the 95th percentile: 1.13, 

Fig. 2  The single-day effects of O3 on the daily clinical visits for childhood ARD (a) and (b) the cumulative lagged effects of O3 on the daily clinical 
visits for childhood ARD. RR relative risk, ARD allergic respiratory disease; Green color indicates childhood ARD

Fig. 3  The single-day effects of O3 on the daily clinical visits for childhood HDM-ARD (a) and (b) the cumulative lagged effects of O3 on the daily 
clinical visits for childhood HDM-ARD. RR relative risk, HDM-ARD allergic respiratory disease induced by house dust mite; Blue color represents 
childhood HDM-ARD
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95% CI: 1.01, 1.27; RRlag5 for IQR increment (40.6  μg/
m3): 1.05, 95% CI: 1.00, 1.09, respectively).

For NHDM-ARD, neither the single-day effects nor 
cumulative lagged effects of O3 exposure were signifi-
cantly associated with the risk of clinical visits.

Figure 5 shows the results of the stratification analysis 
based on different genders in O3. Higher O3 was associ-
ated with increased RR of boys with ARD (RRlag0-5 for 
the 95th percentile: 1.26, 95% CI: 1.05, 1.51; RRlag0-5 for 
IQR increment (40.6 μg/m3): 1.09, 95% CI: 1.02, 1.16) and 
HDM-ARD (RRlag0-5 for the 95th percentile: 1.36, 95% CI: 
1.06, 1.75; RRlag0-5 for IQR increment (40.6 μg/m3): 1.11, 
95% CI: 1.02, 1.22), but not in girls. Additional file 1: Fig. 
S7 shows the results of subgroup analysis by gender in 
other pollutants. But there was no significant association 
for other air pollutants.

Additional file  1: Fig. S8 shows the overall exposure–
response relationships between exposure to O3 and 
clinical visits including outpatient and inpatient visits for 
ARD, HDM-ARD and NHDM-ARD. Additional file  1: 
Fig. S9 shows the overall exposure–response relation-
ships between exposure to O3 and outpatient visits for 
ARD, HDM-ARD and NHDM-ARD. Additional file  1: 
Fig. S10 shows the overall exposure–response relation-
ships between exposure to O3 and inpatient visits for 
ARD, HDM-ARD and NHDM-ARD. In the stratified 
analysis, for ARD and HDM-ARD, we found that O3 
exposure was significantly associated with the increased 
risk of outpatient visits, while there was no such associa-
tion for inpatient visits. There was no significant asso-
ciation between other air pollutants and inpatient or 

outpatient visits. In addition, the results show that both 
the single-day and cumulative exposures to O3 were sig-
nificantly associated with the risk of clinical visits for the 
childhood HDM-ARD, whereas no such effect was found 
for childhood NHDM-ARD.

Discussion
To the best of our knowledge, this is the first time-series 
study to examine the relationship between air pollution 
and childhood ARD induced by specific allergen such 
as HDM. The key findings of this study include: (a) O3 
exposure was significantly associated with clinical visits 
for childhood ARD; (b) there was a stronger relationship 
between O3 exposure and clinical visits for childhood 
HDM-ARD; (c) the effects of O3 exposure on childhood 
ARD and HDM-ARD were markedly lagged; (d) in strati-
fied analyses, a significant association was only found for 
outpatient visits but not for inpatient visits.

High level of O3 was associated with the risk of clini-
cal visits for childhood ARD, particularly for HDM-ARD. 
Therefore, exposure to O3, might significantly increase 
the exacerbation of HDM-ARD in children and threaten 
their respiratory health. Air pollutants lead to increased 
mucosal permeability through airway inflammation in 
susceptible subjects, promoting inhaled allergen penetra-
tion and entry into immune system [22]. The role of pol-
lutants in increasing ARD sensitization and symptoms 
has been reviewed elsewhere [23–27]. HDM—an impor-
tant factor leading to ARD, is the main inhaled allergen 
in Shanghai [28]. Ye et al. found that haze facilitates sen-
sitization to HDM in children [29]. A cohort study in 

Fig. 4  The single-day effects of O3 on the daily clinical visits for childhood NHDM-ARD (a) and the cumulative lagged effects of O3 on the daily 
clinical visits for childhood NHDM-ARD (b). RR relative risk, NHDM-ARD allergic respiratory disease induced by non-house dust mite; Red color means 
childhood NHDM-ARD
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Taiwan reported that children sensitized to HDM were 
most vulnerable to the adverse effects of air pollutants. In 
addition, HDM allergens may also alter the effects of air 
pollutants on ARD [9].

Although the mechanism underlying the relation-
ship between air pollution and HDM-ARD was unclear, 
a review of mouse models and human studies suggests 
that the association might be mediated by an immune 
response [30]. Exposure high levels of air pollutants, 
particularly O3, PM, NO2 and diesel exhaust, could alter 
innate immunity. There is also evidence that components 
of air pollutants, particularly O3, diesel exhaust parti-
cles and total PM, interact with allergens in the air [31]. 
Due to this interaction, air pollutants can promote lung 
penetration of aeroallergens by increasing the release of 
allergenic proteins, leading to allergenic sensitization, 
and promoting Th2 inflammation and allergen-specific 
IgE response. Other studies have shown that HDM can 
directly or indirectly activate airway epithelial cells, lead-
ing to a variety of changes in allergic airway inflamma-
tion and the occurrence of HDM-ARD [32]. Epigenetic 
modifications induced by HDM reveal several changes 
in bronchial tissue that lead to inflammation and bron-
chial hyperresponsiveness. Furthermore, epigenome 
might influence susceptibility to mite sensitization by 

hypomethylation of the IL13 gene and DNA methylation 
in B-cell [33, 34].

In this study, we conducted stratified analyses to 
examine the effects of air pollutants on outpatient and 
inpatient visits for childhood ARD, HDM-ARD and 
NHDM-ARD. The results show that for ARD and HDM-
ARD, we found that O3 exposure was significantly associ-
ated with the increased risk of outpatient visits, but no 
such association was observed for inpatient visits. No 
significant association was found for other air pollut-
ants. The previous studies have not yielded consistent 
results on associations between O3 exposure and clinical 
visits or hospital admissions for ARD. For example, O3 
exposure exacerbated asthma and increased the risk of 
asthma emergency department visits in the Seattle area 
[35]. However, a study in Taiwan found no association 
between O3 exposure and daily hospital admissions for 
respiratory conditions [9].

According to the stratification analysis of different 
gender, we found that gender was the factor influenc-
ing the correlation between air pollutants and ARD and 
HDM-ARD. Higher O3 was associated with increased 
RR of male children with ARD and HDM-ARD, but not 
in female children. Several studies have shown that the 
airways of male and female children respond differently 

Fig. 5  The overall effects of O3 on clinical visits of childhood ARD based on different genders (a, b). The overall effects of O3 on clinical visits 
of childhood HDM-ARD based on different genders (c, d). RR relative risk, ARD allergic respiratory disease, HDM-ARD allergic respiratory disease 
induced by house dust mite; Green color indicates childhood ARD; Blue color represents childhood HDM-ARD



Page 9 of 11Li et al. Respiratory Research           (2022) 23:48 	

to air pollutants [36, 37]. This is reasonable as there 
are differences in the airway between male and female 
children in the early and whole life stages of fetal lung 
development [38]. In childhood, the hyper-respon-
siveness of airway and ARD is more common among 
boys than girls [39]. As shown in this study, among the 
children, the stronger association between ambient 
O3 exposure and ARD and HDM-ARD was observed 
in males, which may be related to having less mature 
lungs and relatively narrower airways in boys than girls 
during childhood.

This study has four major strengths. First, this is the 
first time-series study to investigate the independ-
ent effects of air pollutants on childhood ARD, HDM-
ARD and NHDM-ARD. Well-designed panel studies 
of time-series manner conducted in high risk (specific 
allergen sensitized) individuals could be sufficiently 
powered. Consistent with our findings, a cohort study 
on childhood environment and allergic diseases in 
Taiwan reported that children sensitized to HDM 
were most vulnerable to the adverse effects of air pol-
lutants [9]. In addition, a large-scale cross-sectional 
study by Chen et  al. found that O3 exposure may 
increase asthma exacerbation frequency [40]. Second, 
data from multi-sources including clinical records, air 
monitoring systems and meteorological services were 
integrated. Third, an advanced time series regression 
model (DLNM) was used in this study. The DLNM has 
increasingly been used in environmental health and 
epidemiological research. Finally, both single-day and 
cumulative effect estimates over 5 years were calculated 
to minimize short-term random variations.

Limitations of this study should also be acknowledged. 
Firstly, the cases in our study were selected from one hos-
pital, and its generalizability may be limited. The find-
ings of this study need to be interpreted with caution and 
multicenter studies are needed to validate these findings. 
Secondly, like other ecological time series studies, meas-
urement bias is inevitable to some extent, since air pollu-
tion data were derived from monitoring stations, which 
could not be fully representative of individual exposures 
[41–43]. However, this type of measurement error may 
be non-differential, which may bias effect estimates 
towards the null [44]. Thirdly, some potential confound-
ers that could affect the relationship between air pollu-
tion and ARD, such as influenza infections and life events 
[45], were not controlled for in this study because these 
data were unavailable.

To address the issues illustrated above, future research 
may focus on the following directions:

	 i.	 Prospective cohort studies are required to examine 
the causal/temporal relationship between environ-

mental factors and childhood ARD, particularly 
HDM-ARD;

	 ii.	 Multi-center studies are needed to identify the 
influence of environmental factors on childhood 
ARD, HDM-ARD and NHDM-ARD;

	iii.	 It is desirable to examine the interactive effects 
between air pollutants and meteorological factors 
on childhood ARD, HDM-ARD and NHDM-ARD;

	iv.	 All potential confounding factors, including influ-
enza infections and life events should be consid-
ered in further research.

Conclusions
O3 exposure was significantly associated with the 
increase of clinical visits for childhood ARD, especially 
for HDM-ARD. These findings contribute to an in-depth 
understanding of the etiology of HDM-ARD, and sug-
gest that it may be beneficial to adopt control measures 
(e.g., increased ventilation and mite removal) to avoid 
co-exposure to allergens and air pollutants. Moreover, 
these findings shed light on the impacts of air pollution 
on ARD, HDM-ARD and NHDM-ARD, which may have 
significant ramifications for designing effective interven-
tion programs to control and prevent childhood ARD, 
especially HDM-ARD, in China and other developing 
countries around the world.
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